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ABSTRACT

A finite difference method for numerical solution of the inverse problem of heat transfer in
a soil is described with an emphasis on algorithmic and software implementation issues. A
mathematical package Matlab v.5.3 is chosen for the method implementation as it includes
a number of matrix procedures with special measures for sparce matrices. Field experiments
data obtained from the Lithuanian Institute of Agriculture are used to provide an input
information and to calculate identification criteria at each iteration step. Typical numerical
results of inverse problem solution and investigation of algorithm convergation process are
presented and discussed in detail.

1. INTRODUCTION

Complex simulation models of agroecosystems dynamics are widely used in
agricultural applications for agronomic decision support and operational crop
management, agricultural market predictions and training of specialists [1; 6;
9]. To be applied in different environments these models should be identified,
i.e. their parameters should be estimated according to the local soil, plant
and climate conditions. A method presented below is designed to this purpose
and is described on a particular example of a process of heat transfer in a soil.
In a typical simulation model of agroecosystems dynamics [1; 6] a process
of heat transfer in a soil is described by the equation [5]:
Ts(t, x Ts(t, x
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in A={(z,t) : 0 <z <1,0 <t <T}. Boundary conditions are defined on
the edge of A:

Ts(t,0) = (t), Ts(t,1) = const. (1.2)

The initial condition is given at t =0 :
T (0,2) = ¢ (). (1.3)

In (1.1) — (1.3) Ts(t, ) is the soil temperature profile, ¢s(w) — volumetric soil
heat capacity, As (w) — soil heat conductivity, w — volumetric soil moisture, [
— depth of root zone, T' — duration of the vegetation season. For a variety of
soil types parameters ¢, (w) and As (w) can be approximated by the following
equations [5]:

cs(w) = CpW + CssPs, (14)

As (W) = ¢ [oq (w — ag)” + pears + (13] , (1.5)

where ¢, is the averaged soil water heat capacity, css — averaged heat capacity
of soil aggregates, ps — soil bulk density.

A problem of parameter identification in this case is considered as estima-
tion of vector of parameters 8 = (css, 1, 2, 3, a4) by minimization of the
weighted least squares function of errors Q(3) in the area A :

minQ(6) = {(r-70) r(r-11)}. (1.6)

where 'T(,B) — calculated soil temperature profile, T — observed soil tempera-
ture profile and I' = diag (y;) — weight coefficients matrix.

2. FINITE-DIFFERENCE SOLUTION OF SOIL HEAT TRANS-
FER IDENTIFICATION PROBLEM

Let the computational space A be covered by a grid w; x @, :

wp ={t; =47, j=0,1,...,N, ty =T},

W ={x;=xi—1 +hy, =1,...,M, 20 =0, xpr =1}

We denote the diS(_:rete approximations of the function T(¢,z) by Tij =
T(tj, i), ¥(t) by g = 1(t;) and ¢ (z) by ¢f = ¢ (1) .
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Initial-boundary value problem (1.1) — (1.3) is solved numerically by ap-
proximating it with the implicit finite-difference scheme

T 1 (Tl -TN o T =T
SREA S VT (et B Y ) |
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7,+§
j=0,1,...,N—-1,i=1,2,...,M -1, (2.1)
Tg+1 :wgﬂ, ngl =const, 7 =0,1,...,N — 1,
T =¢? i=0,1,..., M,

or in a matrix form:
¢t =piT/, j=0,1,...,N -1, (2.2)

where T7and T7*! are respectively current and calculated vectors of state
variables, which are given in the form:

T =(T§,T4,...,T};), Di= diag(=h, 1 hivihicsi),

Shithin oy ()

i w], hiy1 +wlh;
h, 1 . ’ w
i+35 2 i+3 it5

ity hithip

and the matrix C/ has a tridiagonal structure, with elements:
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=—(clim1 + ¢l + hi+lhi+1hicsi)a 0<i<M,
2

and appropriately changed for boundary equations. For the whole time inter-
val (i.e., vegetation period of crop) system (2.2) can be written in a compact
block form:

GT =X (2.4)
or, in an explicit form:
co o 0
-Dt Cct 0 ... ... 0
0 ... ... ... 0 -D/ C' o0 ... 0
0 ... ... .. .. .. .. .. 0 -pit ctt
T! DOTO
T2 0
X ;I.‘J:H = 0

Tr 0
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A solution of a whole direct problem therefore is given by

T=G'X. (2.5)

3. NUMERICAL SOLUTION OF IDENTIFICATION PROBLEM

Condition (1.6) leads to the system of normal equations:

92B) _ (3.1)

op

or in an explicit form

oT (B) 9(G™1(B)X ()
B op

which is nonlinear with respect to 8. So it is advisable to use gradient op-
timization methods for minimization of @ (3). However it is difficult to use
them directly due to huge dimension of matrices in (3.1). A recurrent method
proposed below allow to calculate gradient and approximation of Hessian ite-
ratively when solving direct problem and therefore to apply gradient opti-
mization for solving the inverse problem. A modified Marquard method with
regularization is chosen to solve the system (3.1), so the iteration process is [8]:

r(T-1T(8)= T(T-G ' (B)X () =0,

B =B+ (PTTP+uR) P'T (T - T(Bl)) ) (3-2)

where [ — iteration number, y — regularization step parameter,

_ oT (,3)‘ _ d (G (B)X(B))

B 1B=4' B
B 190G (B)) 4 1 0X(By)
_<—G 7%1 G 'X+G 7%[)’

P is the matrix of derivatives of solution with regard to parameters, R =
diag(PTTP) or R = I, T is weight matrix.

By applying Frobenius formula for inverse block matrix and a blocked ana-
logue of an adjacent matrix method it is possible to show, that G~! elements
can be calculated by recurrent formula [3]:

Pl = (ci)™ [Dijc_l +FIT 4 BIT (3:3)
where
0G (B) ~ oC/ . 0D/ .
V. = T ,BJ_—; FJ_—ak_]-a ,m, :17 7N
k aBk (IB) aﬁk aBk J
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Having the formula (3.3) for recurrent calculation of matrix P elements at
j time step of a direct problem it is easy to see that the values of elements of
Hessian matrix approximation

. hir hi2 ... him
H=P IP =
hmi hm2 .. hpm

are accumulated during the direct problem solution as well [3]:

L
hrg = Zprﬂrqu, Rt =hl, +plyipl, ra=1,..,m. (3.4)
=1

4. IDENTIFICATION ALGORITHM AND ITS SOFTWARE IM-
PLEMENTATION

Initial conditions of direct
problem

[ One time step of direct prablem |
| Calculation of H and P matrices elements|
] ~ s ditect problem salved

.. for the whole time interval?

Q/Yes

Minimization method's iteration,
Mew parameter vector calculation

N%

____.--r-"""'I-S--iléiemiﬂcation problem salved:
T irequired accuracy achieved?)

— Mo

\l/ Yes

| Output of the results

Figure 1. Scheme of the identification algorithm.

A method described above consists of the repetition of the following main
steps (Fig. 1):
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0 5 10 15 20 28 30 35 40 45
Iteration number

Figure 2. Example of algorithm convergation process. Bas =
[0.04; —255.6;11.9;5.2;0.05]. Qo = 113, Q44 = 0.49.

1. Solve finite-difference scheme with a parallel calculation of the elements of
matrix P and H;

2. Make an iteration of a modified Marquard optimization process to calculate
new parameter values;

3. If the required accuracy of obtained parameter vector values is achieved,
the iterative process ends, else the algorithm returns to the first step.

A mathematical package Matlab [7] is chosen for software implementation of
the proposed method. There are several reasons for this choice. The algorithm
deals with a number of large dimension sparce (diagonal) matrices during
calculations. The Matlab package apart a great number of standard matrix
functions provides a set of functions for dealing with sparce matrices, that
saves computer memory and decreases calculation time [4]. The second reason
is that it is easy to provide a user interaction with a program and to control
the iterative process during calculations. The method described above was
numerically investigated using the data obtained from the field experiments
conducted at the Lithuanian Institute of Agriculture, the initial, boundary and
measured values of soil temperatures from different fields were placed to the
input files. A typical identification exercise proceeds as follows. Parameters
i, 3, and required accuracy € were defined at the beginning of calculation.
The initial parameter values 3, were chosen depending on soil type [6], and
the initial value of the regularization parameter v = 40 was chosen empirically,
from computer experiments using recommendations in [8]. Soil temperature
dynamic at soil surface is approximated by function [5]

W(t) = Ty + To cos(w(t — tm)),

where Ty, is a daily temperature average, T,, — amplitude of daily temperature,
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Figure 3. Calculated and measured soil temperature profiles at three soil
depths: 20cm, 50cm, 100cm.

. . . 2T
ty — the time of daily temperature maximum, w = —.

Typical soil moisture profile fluctuations are described as follows:
w(t,x) = wp + (by + b sin(27rt))e*0'1“”2,

where wy is the soil moisture profile minimal value at ¢ = 0.
In the case of heterogeneous measurements the elements of matrix T' can
be chosen as inversely proportional to variances of measured values:

=041, i=1,..,n

When the measurements covariance matrix is known then the weights can be
chosen as inversely proportional to the covariations. Finally, it is also possible
to recalculate the weights values on each iteration by replacing them by their
new estimates [2].

A typical set of initial parameters values for a chosen soil type is as follows:

By = (0.3;—468;11.2;4.36;0.02), e =0.5, v =40.
A particular example of the convergence of proposed algorithm as well as

the final parameter values are presented in Fig.2. Fig. 3 shows identifi-
cation results in terms of calculated and measured soil profiles. To make
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modelling results more visual the graph covers only the 3 days period (72h).
The calculated dynamics of soil temperature is shown at three typical depths:
20cm, 50cm, 100cm. Identified model demonstrates a typical daily tempera-
ture course of soil temperatures at different depth and calculated values are
in a good agreement with measurements.
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Baigtiniy skirtumy metodo agroekologinio modelio parametry
identifikacijai programiné realizacija

N. Juscenko, V. Denisov

Straipsnyje nagrinéjami autoriy pasiulytos baigtiniy skirtumy schemos, skirtos agroekolo-
giniy modeliy parametry identifikacijai, algoritminés ir programinés realizacijos ypatumai.
Metodo taikymas iliustruojamas sprendziant Silumos perne§imo dirvoZemyje parametrinés
identifikacijos uzduotj. Pateikta algoritmo schema ir pagristas programiniy priemoniy
pasirinkimas algoritmo realizacijai. Uzdavinio pradinés ir krastinés salygos bei identifikaci-
jos kriterijus formuluojami naudojant duomeny bazéje sukauptus Lietuvos Zemdirbystés
instituto lauko bandymy duomenis. Pateikti atvirkstinio ir tiesioginio uzdaviniy sprendimo
rezultatai.



