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ABSTRACT

Differential equations of self-excited oscillations, arising in metal cutting process and metal
drilling process, are presented in this paper. The causes of these oscillations are delaying
forces, arising in metal treatment processes. The linear analysis of differential equations
of metal cutting process is performed and an area of asymptotically stability is chosen.
The non-linear analysis is performed by the theory of bifurcation. Solution of this differ-
ential equation is compared with results of numerical experiment. Differential equations of
dynamic of metal drilling process are presented.

1. INTRODUCTION

In the practice of metal treatment by cutting it is frequently necessary to deal
with oscillations of the cutting tool, taking into account details and units of the
machine tool. These oscillations are an obstacle on the way to increase the
productivity and quality of details treatment on a metal-cutting machines.
The most difficult is to eliminate and at the same time to investigate self-
excited oscillations. The frequency of self-excited oscillations can reach up to
5000 Hz and higher. The stability of the process of chip formation is one of
the main conditions, which should be satisfies by metal-cutting machine.

It is impossible to find the condition, when the self-excited oscillations don’t
arise. Linear analysis of differentials equations of self-excited oscillations is
performed in [6]. An area of asymptotically stability is determined. Nonlinear
analysis of differential equations is presented in [7]. Results of computational
experiment and comparison to the solution of differential equation of metal
cutting process are presented in this article.

Self-excited oscillation in metal drilling process decrease the accuracy and
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quality of processing detail, decline the productivity of the machine tool,
decrease the resistance of the tool, and break of the drill at deep drilling. We
suppose that cause of oscillation in metal drilling process is the same as in a
metal cutting process.

2. DYNAMICS OF CUTTING PROCESS

For the development of a theory of self excited oscillations at cutting it is
necessary to use conformity with the law of the accompanying deformations
of treated metal [3; 4]. Particularity of the process of cutting is related to
plastic properties of metal. The cutting force, acting to lathe tool, is delay
in relation to coordinates of lathe tool. The self-excited oscillations at metal
cutting are a result of delay of forces, which shake the system.

The reason of delay of forces at cutting of metal is the features of defor-
mation process [3]. The edge a of lathe tool A (Fig.1) does not constantly
participates in deformation of the main chip, but only incises the layer of
material and thus starts the deformation process. At small oscillation of the
system in direction = the oscillation of thickness of the chip and of the force
P periodically detain. The cutting force dependence on time [8].

An equation is given by

AP(t) = BAz(t — )
The friction force delay is related to cutting force:

AQ(t) = fFAP(t — mq).

Figure 1. The process of the chip formation.
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Equations of the small oscillation of dynamic systems are given by

b fB

T (t) + m—zma:(t) +wiz(t) = —m—ma:(t —Tp —TQ), (2.1)
() + L0+ (D) = (i~ ) (22)

where w? = ¢, /m,; m, and m, are masses, ¢, and c, — coefficients of elasticity.
The time of delay depends on the solution

l l
Tp = - R) TQ = %7 (23)
ve+ Y v+ Y +(T

there [, and g are the path of delay, vs — cutting speed, B = kb.ud** —
relative cutting force, & — the thickness of the chip, u — the power estimating
the characteristic of metals and the form of lathe tool, b, — the width of the
chip, k — relative pressure.

2.1. LINEAR ANALYSIS

After linearizing equation (2.1), we get a linear differential equation

z (t) + L (t) + w2a(t) + f—Ba:(t - M) =0. (2.4)

My My Us
A characteristic quasi-polynomial of the equation (2.4) is
P\) =X + a1\ + ay + ke e,

where iy = by /my; az = w?; ki = (fB)/ma; hg = (I, + 1g)/vs.

We will look at the distribution of radicals of equation (2.4) in the plane of
parameters k; and as using the method of D — expansion. We get equations
of remaining curves of D — expansion in the following parametrical forms:

b — Q10
{ ' sin(ohg)’ (2.5)
as =0 —aroctg (chg).

Taking o — 0, from (2.5) equations we define the return point with the
coordinates
. e . _ a1
Lim o> = ho' Jim k= ho
According to the experimental results [2; 3; 4] we can calculate the values
of the coefficient o; and time of delay hg, when vy =140 m/min, I,= 0.35
mm, lg = 0.32 mm, ¢, = 40000 N/mm, m,= 4.6410~3 Ns?/mm, b,=0.0118
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Ns/mm. Putting those values in the equations (2.5) we get D — expansion in
the plane parameters k; and a» (Fig. 2).

We must emphasize that in the real cutting process only positive values of
parameters as and k; are important. From the separated areas of D — expan-
sion we are interested in the area Dy of asymptotically stability and areas D5
which describe self excited oscillations arising during process of cutting.

k1.103, 1/s2
A
9,0
o D2
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Figure 2. D — expansion in the plane of parameters k1 and as.
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Figure 3. Comparison of functions y(t) & 0.011(0.12sin 6237t —
1.336 cos 6237t) and x(t) ~ 0,011 cos 6237t with the results of numerical ex-
periments, when vs = 140 m/min, s =0.6 mm, b. = 1.4 mm.

Lemma 2.1. The inequality Re A < 0 is valid for all of the radicals of quasi-
polynomial in the area Do ( Fig. 2.), i.e. the area. Dq is the area of asymp-
totically stability.

Theorem 2.1. Let’s ki,o1 € Dy,hg > 0,a2 > 0. Then the state of zero
equilibrium of equation (2.3) is asymptotically stable.

Lemma 2.2. Then, a; > 0,0 = 0 and ky > kig quasi-polynomial has a
couple of complex joint radicals with the positive real part while real parts of
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Figure 4. The principle scheme of drilling machine.
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Figure 5. Change of thickness of drill chip during 1/m of a turn of the drill.

other radicals are negative.

The proof of Lemma 2.1 and Lemma 2.2 are presented in [7].

2.2. NONLINEAR ANALYSIS

We investigate differential equations by the method of theory of bifurcation.
System of differential equations with delay, depending on solution, is given by

T (1) +ay  (t) + azz(t) + ki (e)z(t — 7, — 1) = 0, (2.6)
Y () + By Y () + Box(t) + kax(t — 7)) = 0. (2.7)

Let assume that kq(¢) depends linearly on a small parameter € and
k1(e) = ko + €.

We change time
t=(1+¢c)r
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and get a system of differential equations

z (1) + arz(r)(l + ¢) + axz(1) (I + )
= —[(1 +¢)%(k1 +&)z(T — hg + W1)]

Y (1) + Biy(r) (L + ) + Boy(r) (I + )
= —[(1+0)* (k2 +)y(r = hy + W2)].

We will expand all functions in power series by &
x(1) = Ecos oot + E22 (1) + E323(T) + - - (2.8)
y(r) = Eyr(1) + Ea(7) + Eys(r) + -

C:€2CQ+€4C4+"'
e=Eby+ &b+ (2.9)

We will expand the functions (7 — hg + W) and y(7 — hy, + W>) by the series
of Taylor:

(1 —hg+W)=x(r —h)+z (1 — hy) W
+%ih—h0W2+~- (2.10)

y(r —hy + Wa) = y(r — hp)+ y (1 — hyp)Ws
+%Qﬁ—h@W§+~- (2.11)

After expansion of right and left parts into series in accordance with £ and
after sorting coefficients for the same powers of £, we get the sequence of
linear nonhomogeneous differential equations with the period 27/0q. From
this equations we can find coefficients ¢ and bs. The calculation of them is
presented in [7].

From (2.9) we obtain, that

€ 1
« =4/ — +0(e), th N ——
¢ ’/b2+ (€), then 1 T e

We get the periodical solution of system of differential equations (2.6) — (2.7):

We solve the system of differential equations (2.1) and (2.2) by the Runge-
Kutta method. Results of the computational experiment are presented in
Fig.3 .
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3. DYNAMIC OF DRILLING PROCESS

The principle scheme of the drilling machine is presented in Fig. 4. There are
two distinct oscillatory systems in drilling machine:

e Spindle with gear of the drive of rotation (oscillator (),
e The whole spindle unit (oscillator s).

We shall show the origin of excitation, which takes place at drilling, assum-
ing that drill is absolutely stiff. Change of magnitude of torque M, is result of
change of feed s and speed of feed sq in drilling process. Analogical change of
angular speed of drills ¢ changes axial cutting force P,. The possible reason of
inhibition of oscillations is the delaying forces. The time of delay equal to the
duration of rotation of the drill by m-th part of full angle (m-cutting edges
of the drill). In the case of deep drilling, one of run of elastic wave along the
whole length of a drill plays the main role in inhibition oscillations.

In the case of non oscillating mode drilling, both axial components of cutting
force P, and torque M, are the functions of two independents variables, i.e.
cutting speed vo = Qr (here r is the radius of the drill) and speed of feed
so- In this case the speed of feed s¢ is related to vy and sg by the following
equation:

so = s/ 2m.

The increment of feed speed can vary independently to both the increment
of cutting speed v = rp|,—; and feed s.

P, :Pz(so+As,vo+v,so+s),

M, :Mw(so-l-As,vo-l-v,so-l-s).

Here As —increment of thickness of the chip, ¢(z,t),= — increment of angular
speed of rotation of drill end. The thickness of the chip, cut by each edge at
given moment of time, depending on trace on surface, formed by previous
edge h seconds earlier (Fig. 5), therefore

27l

As =m[s(t) = s(t = W), where h =~ ], ..

In the case of vibrating mode of drilling, the increments of cutting forces in
the dependence of sq, s, vy are equal

dP, = kAs + ks + kv(l,t),
dM, = nAs +ns +nv(l, t),
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where

= (22, = (), h= (),

ny = (BM@)O, ny = (agﬁp)o, s = (aé\fw)o‘

The equation of oscillation of oscillator s at drilling is given by:
M s +c1 8 M5 = —dP,,

where M, is the mass of the whole spindle unit of the machine tool, concen-
trated at x = [; ¢;, \; — coefficients of stiff and elasticity.

Let p(z,t) be an increment of an angle of a turn of cross section of the
drill located on distance z from the attachment point. Equation of rotation
vibration of the drill is given by:

o 9% Py
a2~ Yo T Pasar

(3.1)

where a = G/p,b = n/p,n — coefficient of internal friction, G — magnitude of
shift, p — density of the material.

The boundary condition is obtained assuming that the drill attached to the
oscillator ¢ stiffly. The oscillator ¢ is characterized by the moment of inertia,
with respect to the rotation axis oo', and coefficients cs, A2. Thus we have the
condition:

; (3-2)

z=0

IE(GQO 6—80)

% Dy
Oz "0t ) lu=o (I ey “2“")

2012 ot

where I — polar moment of cross section of the drill. The second boundary
condition at x = [ is obtained from equality of moments on the end of drill:

= —dM,| _,. (3.3)

r=l

Differencing equations (3.1), (3.2), (3.3) with respect to ¢ and substituting

v .
p = — we get the equation for v:
r

8%v 9%v 93v

22 = "oz tPomar (3-4)
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with the boundary conditions:

I ov ov? 1 0%v ¢y Ov
ye Gl ) | I G- b wer ) | IR )
1 8%v sv kim k3
e + 615 +s+ N [s(t) —s(t—h)+ )\—lv(l,t)] =0, (3.6)
I/ _Ov o>
?( oz +"axat) -
d d
=2 (n, [s(t) — s(t — h) + n2d—j + ngv]) . (3.7)

There w; and ws are frequencies of the oscillator s and p(0,t),6 = (¢ +
k2)/A1,h = 27r[vg. The linear analysis of model (3.4) — (3.7) is conducted
in [5].

We suppose, differently then it is stated in [5], that a particularity of plastic
properties of metal is the cause of the self-excited oscillation in drilling process.
Our future work is to make a linear and nonlinear analysis of differential
equations of metal drilling process by the theory of bifurcation.

4. CONCLUSIONS

1. The delaying forces have influence on excitation of oscillation in metal
cutting process and metal drilling process.

2. The system of differential equations has the stable periodical solution or
asymptotically stable solution when the parameters have real values.

3. Results of computational experiment of metal cutting process correspond
with theoretical solution of system differential equation (2.1) — (2.2). When
coefficients a, as, 81 and (B2 have different values, we can find conditions,
when the self-excited oscillations don’t arise in metal cutting process.
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Metaly pjovimo procesy tyrimas
J. Januténiené, G. Pridotkas, R. DidZziokas

Straipsnyje nagrinéjami autosvyravimai atsirandantys metaly pjovimo bei metaly grezimo
procesuose. Pateiktos susizadinanc¢iy autosvyravimy dinamikos lygtys. Straipsnyje trumpai
apraSytas metaly grezimo procesas, uzraSytos autosvyravimy dinamikos lygtys, suformu-
luotos krastinés salygos. Autosvyravimy susizadinimo priezastis — véluojanciy jégy atsi-
radimas. Straipsnyje atlikta metaly pjovimo proceso metu susizadinanciy autosvyravimy
dinamikos lyg¢iy suvélavimu, priklausanc¢iu nuo ieskomos funkcijos, tiesiné analizé. I§skirta
asimptotinio stabilumo sritis. Netiesiné iy lyg¢iy analizé atlikta bifurkacijy teorijos metodu
ir gauta asimptotinio sprendinio iSraiSka. Gautas sprendinys palygintas su skaitinio ekspe-
rimento rezultatais.



