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ABSTRACT

In this work we introduce variational equation which natural Petrov-Galerkin approxi-
mation leads to Fedorenko Finite Superelement Method (FSEM). FSEM is considered as
Petrov-Galerkin approximation of the certain problem for traces of boundary-value problem
solution at the boundaries of some subdomains (superelements). Iterative methods of solu-
tion of the same problem are well known domain decomposition methods. Some numerical
results are presented.

1. INTRODUCTION

This paper considers some results on error analysis and applications of Fe-
dorenko Finite Superelement Method [2; 10; 11; 12]. Error analysis for one
variant of this method is presented in [7; 8]. Using the variational equation
constructed below and suitable Petrov-Galerkin approximation one can con-
sider a whole class of FSEM methods, not only the method introduced in
original works of Fedorenko and his colleagues. In this paper we consider
FSEM for Poisson equation in multiply-connected two-dimensional domain,
but all results can be generalized over equations with arbitrary positively
defined divergent second order elliptic operators.

FSEM belongs to the class of methods which reduce the initial boundary
value problem in whole domain to a number of boundary value problems in
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subdomains. Such methods (for example, domain decomposition methods)
are widely used and studied currently. They are naturally parallelizable and
can be effectively realized on computers with parallel or multiprocessor ar-
chitecture. The theoretical background for this methods is Poincare-Steklov
operator’s theory, which was introduced firstly in works of V. Agoshkov and
V. Lebedev as effective tool for analysis of domain-decomposition methods
(see review in [4]). This work also widely uses this formalism.

2. PROBLEM FORMULATION

We shall use conventional notations for functional spaces of smooth functions
and functions with distributional derivatives [1; 4; 6].

Let us consider the following Dirichlet boundary value problem for Poisson
equation in domain Q C R?. Find u € W3 (Q, —A) such that

—Au=f z€Q, (2.1)

ulaq = g,
where f € Lo(Q), g€ Wy/*(09),
W3 (Q,—A) = {u:ueW,(Q), —Au € Ly(Q)} .

Here we suppose that Q C R? is an open multiply-connected domain which
can be generated from open connected domain €}y C R2 by elimination of
some disjoint circles {S;} ("wells") US; C Qo, @ = Qo \ ‘U1Si' We denote

(2 =
by Ty = 0Qp, T'; = 8S5; the exterior and inner boundary of €, respectively.
Therefore, we have Q = QUT, T =900 =Ty U (uaﬁi). Boundary condition
(2

(2.2) defines the trace of the solution at the whole disconnected boundary of
0.

3. WEAK FORMULATIONS

3.1. Green’s formula

Green’s formula is the main tool for construction and analysis of weak for-
mulations of boundary-value problems. We will use the following variant of
Green’s formula in W3 (Q), which follows from abstract Green’s formula [6,
p.188]. Tt states that there exists the unequally defined operator

5§ WO, —A) = W, 2 (00),

such that a(u,v) = (=Au,v)q + (6u, )y, Yu € Wi (Q,—A), v € WH(Q),
W (Q,-A) = {u e W3 (Q): —Au € Ly(Q)}, a(u,v) = [Vu- VodQ. Here
o)
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v Wy () = W21/2(69) is a trace operator. If u € W3(Q) and boundary 69
is sufficiently smooth, then

ou ou
- %7 <6u7’yU>BQ - % Ud’)/

o0

ou

3.2. Classical weak equation

Classical weak formulation (2.1)—(2.2) is given by [6]. Find u € W4 (Q2) such
that

ulog = g, g€ Wy/*(99), (3.1)
a(u,v) = (f,v), YveWH(Q); f e La(Q). (3.2)

Problems (2.1)-(2.2) and (3.1)-(3.2) are equivalent [6, chapter 6]. Formulation
(3.1) — (3.2) is also valid if f € W, '(Q), but in this case it is not equivalent
to (2.1) — (2.2).

4. SUPERELEMENTS

Suppose that domain Qg is decomposed in K subdomains {Qq }5 | : Qp =
I:L:jlﬁo’k, ﬁ()’k =QorUTLok, Lok = Bﬁoﬁk, in such a way, that every S; is
an inner subdomain of €y, and every () ; contains no more then one "well"
S; and decomposition is regular. Let 0, = Q2NQg ;. Then Q = k§1ﬁk' We can

represent boundary 99, of domain Qj as 9Q = vo,1 U vk, 70,1;: o0 N oy,
i = 0N \ Y0,k We shall say that Qj, are superelements. Since all subdomains
are polygons, they have outer normals almost everywhere.

5. VARIATIONAL EQUATION IN THE TRACE SPACES

5.1. Poincare-Steklov operator

Let the operator G : VV21/2 (0Q) — W3 (Q) is such that

Gy =u,
ulon = ¢, € W,*(09), (5.1)
a(u,v) =0, Yov € W;(Q). (5.2)

It is well-known that G is a linear continuous operator, e.g. Yey,c2 € R

Glerpr + e2p2) = 1G(p1) + 2G(92); ||G<P||W21(Q) <C ||80||W21/2(8Q) )
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where C' > 0 is independent from ¢.

We define the following Poincare-Steklov operator:
PwWy2(00) = Wy /2(09), Po = 6Gyp. If solution u = Gy € W2(1Q), then
Py = 0Gp/0ori. Tt follows from Green’s formula that Vi, ps € W21/2 (0Q) :

(Pp1,p2) = {¢1, Pps) . We will denote operators G and P corresponding to
domain Q2 as G, and P.

5.2. Variational equation

Let’s consider the following Hilbert space H:

K K
H O%),  (vdg =D (ks vidoa  Ilillg = /(g
k=1 k=1

Let H be a subspace of H:

H = {/LEﬁZ Vi,j € {1,...,K}suchthat'yij :aﬂiﬁagj ;éw,

Kilyi; = fhjly;; almost everywhere}.

Also we consider the Hilbert space

K
X = H W2 0%),  lullz = 3 ez o,
k=
and it’s subspaces
X = {,u €X: JeWHQ), u, = ’U|3Qk},

Xy = {,UEX: dv e W%(Q), js :’U|3Qk}.

Let X' = H W2_1/2(89k) be a dual space to X. Since W2 2(09y) C
k=

Lo (0Q) C W2 1/2(89k) we have X ¢ H € X'. Notice that X' = X’. In the

spaces VV2 ?(8€,) and X' we use standard dual norms. Now we consider
Poincare-Steklov operators P, and a bilinear form

K
E Pk/»“w Vk a0y,
k=1

defined for all s, € X. The following lemma, is valid.
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Lemma 5.1. Form b(-,-) is a continuous symmetric positively defined bilinear
form in Xo x Xo, e.g. Vp,v € Xo = |b(p, V)] < callullx, IVl x, ;s Yo € Xo:

2
ey [l < bk, ).

Now we can formulate the following problem: find ¢ € X such that

where F' (1) is a continuous linear functional on X, F' € X'.
It follows from Lax-Milgramm lemma that this problem has the unique
solution. Finally, we can prove the following theorem.

Theorem 5.1. Let F(¢) = —b($,4), ¥ € X; ¢ = {Prhie, = {vloa iy €
X, F € X', where v = {vx }<_| is such a function that

—A’Uk = f mn Qk, 'Uk|BQk = W|3Qk, k= I,K,
and w € W3(Q), wlaq = g is any function satisfying (2.2). Then solution

u = {up}l., € W) (Q) of the problem (2.1) — (2.2) in superelement Qy is
giwen by up = Gro +vi, k=1, K.

Suppose that in (5.3) the functional F € X' = X' belongs to H = H' ¢ X'.

K

Then F(¢) = (F,¢p) = Y. [ Fi¢pdl and we can reformulate the problem
k=10Qy

(5.3) in the following way. Find ¢ € X, such that

where Hj is subspace of H, which consists of functions, vanishing on 7y, =
00, NON. In this case the bilinear form b(-,-) is defined in X x Hp and it is
not symmetric.

6. APPROXIMATIONS

Finite Superelement Method is a Petrov-Galerkin approximation of (5.4).
Petrov-Galerkin approximations of abstract and boundary-value problems are
considered in [3; 5].

For the approximation of the problem (5.4) one should choose the finite
dimensional subspace Xy ; which is a span of function system {gogf)}ﬁil C Xo,
and the finite dimensional subspace Hy j, which is a span of function system
{1/),(;) N | C Hy. We find the approximate solution ¢, € Xp  of the problem
(5.4) as the following linear combination:

N
on = Zaupﬁf) (6.1)
i=1



46 M. Galanin, E. Savenkov

satisfying the conditions:

b(on, ¥n) = F(¥r), Vin € Hop. (6.2)

Choosing different subspaces Xo j and Hy j one can get different variants
of FSEM. In all cases the algorithm implementation is given by:
1. For every function <p§f) compute and store the following functions:
ul) = Gl = (Gl

HELZ) = PQOE;) = {PMPE;,)k}szl = {Bux)k/ank}f:y

To compute ugj) one should solve in each Qj the boundary value problem

with the boundary condition, defined by function <p§f).
2. After solving problem (6.2), we get approximate solution ¢y, of the problem

(5.4). Then the approximate solution of the boundary value problem (3.1)-
N .
(3.2) is given by up = > aiugl).

i=1

We consider two variants of X, and Hyp.

6.1. Fedorenko FSEM

K
On kL_JlBQk we consider the set of nodes M), consisting of vertices of polygons
Q. For every node M; € M) we define a basis function <p§f) € Xp,p in the
following way: <p§f)(Mj) = J;;. At exterior bounds of superelements <p§f) is

a linear function, which vanishes at inner bounds ("wells"). Function ’(/J,(;) is
defined as characteristic function of w;. If we choose X j and Hy j as shown
above, we get the first order Fedorenko FSEM.

=

Figure 1. Domain and superelements.

6.2. Bubnov-Galerkin FSEM

Bubnov-Galerkin FSEM corresponds to the case when <p§f) = 1/12“ (systems
of test and trial functions are equal). Basis functions gogf) are defined as
presented above.
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7. BUBNOV-GALERKIN FSEM ERROR ANALYSIS

It is well known that the error analysis of Bubnov-Galerkin approximations
leads to the analysis of the interpolation errors of the solution ¢ by finite
dimensional subspace Xg ;. According to Sea lemma [1, p.109] we obtain:

le—¢nllx <M inf |lo—¢ullx <llp—0@llx, M=c/c1. (7.1)
YREVR

Here ¢y, is the solution of (6.2) with w,(;) = gogf) and ¢ € Xy, is the interpo-
lating element of the exact solution ¢ in Xo p.

Now we can estimate || — ||y in the case of polynomial interpolation.
Additionally we suppose that u € W) (Q) N C?(2). In this case i-th basis
function <p§f) € Xo,p, is defined as interpolating polynomial of arbitrary func-
tion from ¢ € Xj, which is equal to one in i-th node and is equal to zero in
all other nodes.

Let I = [a,b] C R. We consider VV21/2 (I) space on I with norm

2
p\r) — oy
ey =Wl + [ [ET=E0E oy ) = [ (@)
I I I

Let € CL(I) N W,/*(I). Tt follows from (7.1) that
||<P||§Vzl/z([) <lllz, i + PP, a= Igg;(l@'(f)l, 1| =[b— al.
Suppose that ¢ € C3(I). Then we obtain
2 1 2 3 2 2 2 2 1
el < 307 + a7 lI7 = oI + 1) (7.2)

Now we consider the domain Q C R? and its regular decomposition in K
polygons Qi, k = 1, K. Let Qp = R* \ Q. Let 7;; be a common edge of
subdomains €2; and €5, 7,7 =0, K, ¢ < 5. We denote the set of all such pairs
by J. Functional space X can be defined as follows:

Yi,j }'

= ||uk||iv21/z(%j), where summation is
i

Vi = Hi

X = {M:{p’k}kKl eX: V(i,j)eJ w

We shall denote ||/,Lk||$/vl/2(89k)
2

done through all pairs (i, j) € J, such that 7; ; € 0Q. Then we obtain

K
2 2 2
il = 3 lelysrs oy =2 3 Ml - (73)
k=1 i,jeJ
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K
At the kul(?Qk we consider the set of nodes M;,. We assume that every edge

7i,; has the same number of nodes L + 1 > 2 and two of this nodes always
correspond to the vertices of v; ;. Interpolating element of ¢ € X at every
edge v;; is defined as ordinary interpolating polynom of ¢ over L + 1

nodes at ; ;. Here we assume that ¢ € WQ1 / *(09y) is continuous function
and ¢, ; € C*(v;,;). Combining (7.3) and (7.2), we reduce the estimates for
Il — @l x to the error estimates of ordinary polynomial interpolation at +; ;.

Let M; ; be a set of nodes which belong to edge 7; ;. At edge ;,; we consider
some coordinate system Os with the origin at one of the vertices of v; ;. Let
{0 =s0, $1,.-.,8L-1, St = |7:,j|} be coordinates of nodes from M; ;. By ¢; ;
and ¢; ; we denote the restrictions of ¢ and ¢ on v;;. Then interpolation
errors obey the following inequalities [9]

Yi,j

QL+1 HL+1i,j | |L+1
(L+1)! g

P (1)

srgavxll%j - @il <

- Q41,6
max |¢; ; — ¢; ;| < + = i) "5 angr s = max
SEYi,j ? > SEVi.;

Finally, combining (7.2), (7.3) and (7.4) we obtain

L 1,2, 1
le =il <2 3 P Ghil 1. (75)
i,jEJ

Here ap41,5,; depend on the domain 0 decomposition.

From the well known properties of polynomial interpolation it follows that
most interesting cases are L = 1 and L = 2. It also follows that the traces of
the solution at the boundaries of superelements should be sufficiently smooth
functions. But inside superelements the solution can have singularities or
large gradients. Suitable way of interpolation also depends on superelement,
geometry, type and location of singularities. In general case at every edge ; ;
one can use different kind of interpolation. Taking into account the continuity
of operators G}, we obtain that the convergence of ¢, to ¢ in X leads to the
convergence of up, to u in Wi (Q).

It is interesting to study the dependence of error estimates on distance
between "well" and superelement boundary. We consider the boundary value
problem for the Laplace equation in the square domain with one "well" in the
center of the square. We assume that edges of the square have length [ and
are parallel to the coordinate axes, the "well" has radius 7. and it is situated
at the origin of coordinates. We will use the following function as an exact
solution of the model problem:

u(r, ) =ue +1n (%) , (7.6)

where (r, ) are polar coordinates in Oxy. This function satisfies the Laplace
equation in Q and it is equal to u. at the boundary of the "well".
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Figure 2. Errors of the solution in H2.

We decompose domain €2 into superelements with lines which are parallel to
the coordinate axes. Let distance between this lines is equal to H = [ /(2N +1),
N > 1. So every superelement is a square with length of edge equal to H. The
"well" is situated in the central superelement. Total number of superelements
is equal to K = (2N + 1)2. We will use the Bubnov-Galerkin approximations
to solve this problem.

Since we know the exact solution (7.6) and error estimate (7.5), we can
obtain error estimates as a function of H. Estimates (7.5) in this case (L =1,
Y1y = H) give

1
o — enll% < 412H? (§H + 1) maxagm’]_. (7.7)

Yi,j

Taking into account that edges v; ; are parallel to coordinate axes, using the
formula for the exact solution (7.6) and symmetry of the domain, we obtain

#2(s)] <

max s , ; = Max max <
’ z€[—1/2;+1/2]

Vi Yi,j S€%ij ox? 2

Pu(x,y) ‘ 4

y=H/2

Finally, we have: ||¢ — cph||§( < 64151—22 (3H + 1) . Thus it follows that error
is decreasing when distance between "well" and superelement boundary is
increasing.

Analysis of numerical tests show (see Fig.2) ||¢ — (thiI ~ T

The obtained strong error dependence on the distance between "well" and
superelement boundary proves the importance of a priori analysis of the initial
boundary value problem and its singularities.
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Fedorenko baigtiniy elementy metodas kaip Galerkino metodo
aproksimacija

M. Galanin, E. Savenkov

Pateikta vienos variacinés lygties Petrovo-Galerkino aproksimacija, kuri veda j Fedorenko
baigtiniy elementy metoda. Jis nagrinéjamas kaip tam tikro uzdavinio Petrovo-Galerkino
aproksimacija krastiniy uzdaviniy sprendiniy pédsakams kai kuriy sri¢iy (superelementy)
kraStuose. Tokiy uzdaviniy iteraciniai sprendimo metodai yra gerai Zinomi kaip srities
dekompozicijos metodai. Pateikti skaitiniy eksperimenty rezultatai.



