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Abstract. The aim of this paper is to present finite difference method for numerical
solution of singularly perturbed linear differential equation with nonlocal boundary
condition. Initially, the nature of the solution of the presented problem for the nu-
merical solution is discussed. Subsequently, the difference scheme is established on
Bakhvalov-Shishkin mesh. Uniform convergence in the second-order is proven with
respect to the ε− perturbation parameter in the discrete maximum norm. Finally, an
example is provided to demonstrate the success of the presented numerical method.
Thus, it is shown that indicated numerical results support theoretical results.
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1 Introduction

In the present study, linear singularly perturbed problem with nonlocal bound-
ary condition is discussed as follows:

ε2u′′(x) + εa (x)u′ (x)− b(x)u(x) = f (x) , 0 < x < 1, (1.1)

u (0) = A, (1.2)

u(1)− γu(l1) = B, 0 < l1 < 1, (1.3)

where 0 < ε << 1 is a small perturbation parameter; A, B and |γ| < 1 are
given constants; a(x) ≥ 0, b (x) ≥ β > 0 and f (x) are assumed to be sufficiently

�
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smooth functions in [0, 1] . Furthermore, the solution of the problem (1.1)–(1.3)
is within general boundary layers at x = 0 and x = 1 points.

Problems such as the nonlocal singular perturbation problem (1.1)–(1.3),
are problems where the coefficients of the highest order derivative are a very
small positive parameters such as 0 < ε << 1. Solving this problems with
classical numerical methods may not be the right choice due to the difficulties
that may arise from the small perturbation parameter [18, 23, 24, 25, 26, 27].
These difficulties are quick and fairly irregular variations within thin transition
layers. These lead to unlimited number of derivatives in the solution of singular
perturbation problems. Therefore, it is important to choose the most suitable
numerical methods for singularly perturbed problems. These include finite
difference and finite element methods. Thus, in the present study, we wanted
to demonstrate that these difficulties can be overcome with the finite difference
method.

Studies conducted on singular perturbation problems commenced in the
1900s. These problems were known to be common in the fields of natural
sciences, engineering, medical sciences, fluid mechanics, aerodynamics, mag-
netic dynamics, diffusion theory, reaction diffusion, light emitting waves, elec-
tron plasma waves, communication networks, plasma dynamics, refined gas
dynamics, mass transport, plastics, chemical reactor theory, oceanography, me-
teorology, electricity current, ion acoustic waves plasma and several physical
modelling techniques (see, [2, 4, 9, 14, 15, 18, 24, 25, 26, 27]). Lately, singularly
perturbed problems, particularly with the nonlocal boundary condition and
boundary layers have been studied by several researchers (e.g., [1,7,8,10,11,12,
16, 17, 19, 20, 23] and the references therein). Bakhvalov used a special trans-
formation in numerical solution of boundary solid problems [5]. Bitsadze and
Samarskii obtained several generalizations for linear elliptic boundary value
problems [6]. Čiegis, studied numerical solution of the singular perturbation
problem with nonlinear boundary condition [13]. Different from the previous
studies in the literature and for the first time, this problem is solved with
the presented finite difference method on Bakhvalov-Shishkin mesh in order
to demonstrate that the difference scheme has second-order convergence and a
better result could be obtained. Especially, this method shows uniformly con-
vergent provided only that ε ≤ CN−1. Namely, Bakhvalov-Shishkin mesh gives
a stronger error bound for ε ≤ CN−1. Bakhvalov-Shishkin mesh is a modi-
fication of the Shishkin mesh described that incorporates idea by Bakhvalov.
But the original Bakhvalov mesh requires the solution of a nonlinear equation
to determine the transition point where the mesh switches from coarse to fine.
Instead, the transition points are as in the Shishkin mesh [21]. There are many
studies on the B-S (Bakhvalov-Shishkin) mesh: T. Linss has studied simple
upwind difference scheme on a B-S mesh [21]. Analysis of a Galerkin finite
element method on Bakhvalov-Shishkin mesh for a linear convection-diffusion
problem is investiagated by Linss [22]. Uniform second-order hybrid schemes
on Bakhvalov-Shishkin mesh are analyzed in [29]. Hybrid difference schemes
with variable weights on Bakhvalov-Shishkin mesh are examined to the deriva-
tive for quasi-linear singularly perturbed convection-diffusion boundary value
problems in [28]. Linear Galerkin finite element method on Bakhvalov-Shishkin
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mesh for singularly perturbed convection-diffusion problem is worked in [30].
The present study is structured as follows: Section 2 focused on the exact

solution of the problem provided in (1.1)–(1.3) and several asymptotic evalu-
ations on the fourth-order derivatives of the exact solution. In Section 3, the
difference scheme is constructed as hybrid scheme. Subsequently, the structure
of the Bakhvalov-Shishkin mesh is introduced. In Section 4, the second-order
uniform convergence of the difference scheme is obtained according to ε. The
present study is finalized with the conclusion section. Henceforth, C and C0 are
positive constants independent of ε and the mesh parameter in the following
sections.

2 Certain properties of the continuous problem

This section focuses on some properties of the solution u(x) of the problem
(1.1)–(1.3), which will be essential in the further sections of the study.

Lemma 1. Given that a(x), b(x) and f(x) ∈ C3[0, 1]. Then, the solution of
the problem (1.1)–(1.3) fulfills the following inequalities:

|u (x)| ≤ C0, (2.1)∣∣∣u(k) (x)
∣∣∣≤C {1+

1

εk

(
e−

µ1x
ε +e−

µ2(1−x)
ε

)}
, 0 < x < 1, k=1, 2, 3, (2.2)

where

C0 = |A|+ (1− |γ|)−1
[
|B|+ |γ|(|A|+ β−1‖f‖∞)

]
+ β−1‖f‖∞, |γ| < 1,

µ1 =
1

2

(√
a2(0) + 4b(0) + a(0)

)
, µ2 =

1

2

(√
a2(1) + 4b(0)− a(1)

)
.

Proof. Once maximum principle for (1.1) is used, we obtain that

|u (x)| ≤ |A|+ |u (1) |+ β−1‖f‖∞. (2.3)

Next, from boundary condition (1.3), we attain

|u (1)| ≤ |B|+ |γ||u (l1) |. (2.4)

If x = l1 is written in inequality (2.3), the following inequality is found

|u (l1)| ≤ |A|+ |u (1) |+ β−1‖f‖∞. (2.5)

By setting (2.5) in inequality (2.4), we get

|u (1)| ≤ (1− |γ|)−1
[
|B|+ |γ|(|A|+ β−1‖f‖∞)

]
. (2.6)

Then by setting (2.6) in inequality (2.3), we have

|u (x)| ≤ |A|+ (1− |γ|)−1
[
|B|+ |γ|(|A|+ β−1‖f‖∞)

]
+ β−1‖f‖∞,

where

C0 = |A|+ (1− |γ|)−1
[
|B|+ |γ|(|A|+ β−1‖f‖∞)

]
+ β−1‖f‖∞,

Math. Model. Anal., 25(2):257–270, 2020.
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and this prove the inequality (2.1).
The proof of inequality (2.2) is almost identical to that of [1, 9] for k = 1 as

|u′ (x)| ≤ C
{

1 +
1

ε

(
e−

µ1x
ε + e−

µ2(1−x)
ε

)}
, 0 < x < 1, k = 1.

Now, we obtain inequality (2.2) for k = 2. The proof of (2.2) for k = 3 is
obtained in the same way. Let us begin by taking the derivative of equation
(1.1) two times,

ε2v′′(x) + εa (x) v′ (x)− b(x)v(x) = G (x) ,

v (0) = u′′(0), v (1) = u′′(1),

where

u′′(x) = v (x) , (2.7)

G(x) = f ′′(x)− 2εa′(x)u′′ (x)− (εa′′(x)− 2b′)u′ + b′′(x)u(x), (2.8)

and also, from (1.1) we get

u′′(0) ≤ C

ε2
, u′′(1) ≤ C

ε2
.

Now, let us take v(x) as follows:

v(x) = v1(x) + v2(x), (2.9)

where v1(x) and v2(x) are the solutions of the following problems:

Lv1(x) = G(x), v1(0) = 0, v1(1) = 0, (2.10)

Lv2(x) = 0, v1(0) = u′′(0), v1(1) = u′′(1), (2.11)

From (2.8), (2.10) and [1], we have

|v1(x)| ≤ C. (2.12)

We can give the solution of (2.11) in the form

v2(x) = p0(x) + q0(x) +Rε(x), (2.13)

where the functions p0(x), q0(x) and Rε(x) are, respectively, the solutions of
(2.21), (2.22) and (2.23) from [1]. Also, we see that these solutions have the
following estimations:∣∣∣p(m)

0 (x)
∣∣∣ ≤ C

εm+1
e−

µ1x
ε ,

∣∣∣q(m)
0 (x)

∣∣∣ ≤ C

εm+1
e−

µ2(1−x)
ε , m = 0, 1, 2,

and |Rε(x)| ≤ C. From (2.7), (2.9), (2.12) and (2.13) the following inequality
clearly leads to (2.2) for k = 2.

|u′′(x)| = |v(x)| ≤ |v1(x)|+ |v2(x)| ≤ |p0(x)|+ |q0(x)|+ |Rε(x)|

≤ C

ε
e−

µ1x
ε +

C

ε
e−

µ2(1−x)
ε + C ≤ C

ε2
e−

µ1x
ε +

C

ε2
e−

µ2(1−x)
ε + C

≤ C
{

1 +
1

ε2

(
e−

µ1x
ε + e−

µ2(1−x)
ε

)}
, 0 < x < 1, k = 2.

All these estimations conclude our proof. ut
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3 The construction of difference scheme and mesh

In this section, the discretization of the problem (1.1)–(1.3) using finite differ-
ence method on Bakhvalov-Shishkin mesh is presented.

3.1 Bakhvalov-Shishkin mesh

The interval [0, 1] is divided into the three subintervals [0, σ1], [σ1, 1− σ2] and
[1− σ2, 1] . Here σ1 and σ2 are referred as the transition points and are written
as follows:

σ1= min

{
1

4
, µ−1

1 ε lnN

}
, σ2= min

{
1

4
, µ−1

2 ε lnN

}
.

Assumption 1: We shall assume throughout the paper that ε ≤ CN−1 as is
generally the case in practice, where, N is a positive even integer.
The mesh points ω̄N = {xi}Ni=0 are introduced through a set of the equalities:

xi =


−µ−1

1 ε ln
[
1− 4(1−N−1) iN

]
, i = 0, ..., N4 ;

σ1 + (i− N
4 )h, h = 2(1−σ2−σ1)

N , i = N
4 + 1, ..., 3N

4 ;
1 + µ−1

2 ε ln
[
1− 4(1−N−1)(1− i

N )
]
, i = 3N

4 , ..., N ;

3.2 The construction of the difference scheme

Here the following finite differences for any mesh function gi = g(xi) are pre-
sented on ω̄N as:

gx̄,i =
gi − gi−1

hi
, gx,i =

gi+1 − gi
hi+1

, g0
x,i

=
gx,i + gx̄,i

2
,

gx̂,i =
gi+1 − gi

~i
, gx̄x̂,i =

gx,i − gx̄,i
~i

, ~i =
hi + hi+1

2
, hi = xi − xi−1,

‖g‖∞ ≡ ‖g‖∞,ω̄N := max
06i6N

|gi| .

Now, the difference scheme for the problem (1.1) should be constructed.
The following exact relation is obtained through the use of the interpolating

quadrature formulas on subintervals [xi−1, xi+1] [2]. Initially, the equation (1.1)
is integrated over (xi−1, xi+1) as

~−1
i

∫ xi+1

xi−1

Lu(x)ϕi(x)dx = ~−1
i

∫ xi+1

xi−1

f(x)ϕi(x)dx, i=1, . . . ,
N

4
, i=

3N

4
, . . . , N−1.

If the above equality is arranged, it gives

~−1
i

∫ xi+1

xi−1

[
ε2u′′(x)+εa (x)u′ (x)−b(x)u(x)

]
ϕi(x)dx=~−1

i

∫ xi+1

xi−1

f(x)ϕi(x)dx.

From here, the following equality is obtained by implementing partial integra-
tion and then by using the formula (2.2) of [3]:

~−1
i ε2

∫ xi+1

xi−1

u′(x)ϕ′i(x)dx+ ~−1
i εai

∫ xi+1

xi−1

u′ (x)ϕi(x)dx− biui = fi −R1
i .

Math. Model. Anal., 25(2):257–270, 2020.
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Finally, we propose the following difference scheme for approximating (1.1)–
(1.3):

ε2ux̄x̂,i + εaiux,i − biui = fi −R1
i , i = 1, ...,

N

4
, i =

3N

4
, ..., N − 1,

and the reminder term

R1
i = −ε

2

2

∫ xi+1

xi−1

ϕi(x)u′′′(x)dx− εai
hi+1

∫ xi+1

xi

(xi+1 − x)u′′(x)dx, (3.1)

where the functions ϕi(x) are in the form:

ϕi(x) =


(x− xi−1)2

~ihi
, xi−1 < x < xi,

(xi+1 − x)2

~ihi+1
, xi < x < xi+1.

Secondly, Equation (1.1) is integrated over (xi−1, xi+1) as

h−1

∫ xi+1

xi−1

Lu(x)ψi(x)dx = h−1

∫ xi+1

xi−1

f(x)ψi(x)dx, i =
N

4
+ 1, . . . ,

3N

4
− 1,

h−1

xi+1∫
xi−1

[
ε2u′′(x) + εa (x)u′ (x)− b(x)u(x)

]
ψi(x)dx = h−1

xi+1∫
xi−1

f(x)ψi(x)dx.

Here, applying partial integration in the first expression of the left integral, we
get

h−1ε2

∫ xi+1

xi−1

u′(x)ψ′i(x)dx+ h−1εai

∫ xi+1

xi−1

u′ (x)ψi(x)dx− biui = fi −R2
i ,

and from here it follows that

h−1

∫ xi

xi−1

(
ε2u′(x)ψ′i(x) + εaiu

′ (x)ψi(x)
)
dx

+

∫ xi+1

xi

(
ε2u′(x)ψ′i(x) + εaiu

′ (x)ψi(x)
)
dx = biui + fi −R2

i ,

we use the formula (2.2) of [3] in (3.2) and propose the following difference
scheme:

ε2ux̄x,i + εaiux,i − biui = fi −R2
i , i =

N

4
+ 1, . . . ,

3N

4
− 1, (3.2)

where reminder term R2
i

R2
i = −ε

2

2

∫ xi+1

xi−1

ψi(x)u′′′(x)dx− εai
h

∫ xi+1

xi

(xi+1 − x)u′′(x)dx, (3.3)
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and the functions ψi(x) take the form

ψi(x) =

−
(x− xi−1

h

)2
, xi−1 < x < xi,(xi+1 − x

h

)2
, xi < x < xi+1.

Here, it is necessary to define an approximation for the second boundary condi-
tion (1.3). The following equation is written using the interpolation quadrature
formula with respect to xN0

and xN0+1:

u(x) =
x− xN0+1

xN0 − xN0+1
u(xN0) +

x− xN0

xN0+1 − xN0

u(xN0+1) + r0,

where, reminder term r0

r0 =
1

2
f ′′(ξ)(x− xN0

)(x− xN0+1), ξ ∈ (xN0
, l1). (3.4)

Once reminder terms R1
i and R2

i and r0 are neglected from (3.1), (3.3) and
(3.4), it is possible to propose the following difference schemes for the problem
(1.1)–(1.3):

ε2yx̄x̂,i + εaiyx,i − biyi = fi, i = 1, . . . ,
N

4
, i =

3N

4
, ...N, (3.5)

ε2yx̄x,i + εaiyx,i − biyi = fi, i =
N

4
+ 1, . . . ,

3N

4
− 1,

y0 = A,

yN − γ
[
l1 − xN0+1

xN0 − xN0+1
y(xN0

) +
l1 − xN0

xN0+1 − xN0

y(xN0+1)

]
= B, (3.6)

where xN0 is the mesh point nearest to l1.

4 Uniform error estimates

With respect to the examination of the presented method for the problem (1.1)–
(1.3), this section provides the following discrete problem and its solution:

ε2zx̄x̂,i + εaizx,i − bizi = R1
i , i = 0, . . . ,

N

4
, i =

3N

4
, . . . , N, (4.1)

ε2zx̄x,i + εaizx,i − bizi = R2
i , i =

N

4
+ 1, . . . ,

3N

4
− 1,

z0 = 0, zN − γ
[
l1 − xN0+1

xN0 − xN0+1
z(xN0

) +
l1 − xN0

xN0+1 − xN0

z(xN0+1)

]
= r0, (4.2)

where, R1
i , R

2
i and r0 are given by (3.1), (3.3) and (3.4) respectively.

Lemma 2. If zi is the solution to (4.1)–(4.2), then the estimate becomes:

‖z‖∞,ω̄N ≤ C
(
‖R1‖∞,ωN + ‖R2‖∞,ωN + |r0|

)
,

holds.

Math. Model. Anal., 25(2):257–270, 2020.
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Proof. Once the maximum principle is used for (4.1)–(4.2), we deduce

|zi| ≤ |zN |+ β−1
[
‖R1‖∞,ωN + ‖R2‖∞,ωN

]
, (4.3)

|zN | ≤ |r0|+ |γ||zN0
|,

where |γ| ≤ k < 1. For i = N0 in the Equation (4.3), it yield:

|zN0
| ≤ |zN |+ β−1

[
‖R1‖∞,ωN + ‖R2‖∞,ωN

]
. (4.4)

As a result, from (4.3)–(4.4), we obtain

|zi| ≤ (1− k)−1
{
|r0|+ kβ−1

[
‖R1‖∞,ωN + ‖R2‖∞,ωN

]}
+β−1

[
‖R1‖∞,ωN + ‖R2‖∞,ωN

]
.

And conclusively, from here, we obtain Lemma 2. ut

Lemma 3. Based on the assumptions of Lemma 1 and Lemma 2, the solution
of the problem (1.1)–(1.3) fulfills the following estimates for the reminder terms
R1
i , R

2
i and r0 :

‖R1‖∞,ωN ≤ CN−2, ‖R2‖∞,ωN ≤ CN−2, |r0| ≤ CN−2.

Proof. The remainder terms R1
i , R

2
i and r0 are evaluated for the subintervals

[0, σ1], [σ1, 1− σ2] and [1− σ2, 1] on Bakhvalov-Shishkin mesh.
1) The remainder term R1

i is evaluated for xi ∈ [0, σ1] , σ1 ≤ 1/4:

xi−1 = −µ−1
1 ε ln

[
1− 4(1−N−1)

(i− 1)

N

]
, i = 1, . . . ,

N

4
, (4.5)

hi = −µ−1
1 ε ln

[
1− 4(1−N−1)

i

N

]
+ µ−1

1 ε ln

[
1− 4(1−N−1)

(i− 1)

N

]
. (4.6)

Applying the mean value theorem in (4.6), we obtain that

hi = µ−1
1 ε

4(1−N−1)N−1

1− 4i1(1−N−1)N−1
≤ CN−1. (4.7)

Thus, from (3.1) and (4.5)–(4.7), we can write

∣∣R1
i

∣∣ ≤ C{ε2

∫ xi

xi−1

|u′′′(x)| (xi−1 − x)2

~ihi
dx

}
+ C

{∫ xi+1

xi

[
ε2|u′′′(x)| (xi+1 − x)2

~ihi+1
+ εh−1

i+1|u
′′(x)|(xi+1 − x)

]
dx

}
≤C
{
ε2

∫ xi+1

xi−1

|1 +
1

ε3
(e−

µ1(x)
ε + e−

µ2(1−x)
ε )|dx

}
+ C

{
ε

∫ xi+1

xi

|1 +
1

ε2
(e−

µ1(x)
ε + e−

µ2(1−x)
ε )|dx

}
. (4.8)
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Since

e−
µ1(xi−1)

ε − e−
µ1(xi+1)

ε =eln[1−(1−N−1)
4(i−1)
N ] − eln[1−(1−N−1)

4(i+1)
N ]

≤8
(
1−N−1

)
N−1 ≤ CN−2,

the following estimations are obtained in a similar manner:

e−
µ2(1−xi+1)

ε − e−
µ2(1−xi−1)

ε ≤ CN−2,

e−
µ1(xi)

ε − e−
µ1(xi+1)

ε ≤ CN−2, e−
µ2(1−xi+1)

ε − e−
µ2(1−xi)

ε ≤ CN−2.

It then follows from (4.8), we come to conclusion as∣∣R1
i

∣∣ ≤ CN−2, i = 1, . . . , N/4.

2) The remainder term R2
i is evaluated for xi ∈ [σ1, 1− σ2] :

xi = σ1 + (i−N/4)h, i = N/4 + 1, . . . , 3N/4, (4.9)

where

h = 2(1− σ2 − σ1)/N. (4.10)

It then follows from (3.3), (4.9) and (4.10), we have

∣∣R2
i

∣∣ ≤ C{ε2

∫ xi+1

xi−1

|u′′′(x)|dx+ ε

∫ xi+1

xi

|u′′(x)|dx

}

≤ C
{
µ−1

1

[
e

−µ1xi−1
ε − e

−µ1xi+1
ε

]
− µ−1

2

[
e

−µ2(1−xi+1)

ε − e
−µ2(1−xi−1)

ε

]}
≤ CN−2, i = N/4 + 1, . . . , 3N/4− 1,

where

e−
µ1(xi−1)

ε − e−
µ1(xi+1)

ε ≤ 1

N2
e

−µ1(i−1−N
4

)h

ε

(
1− e

−2µ1h
ε

)
≤ CN−2.

and similarly

e−
µ2(1−xi+1)

ε − e−
µ2(1−xi−1)

ε ≤ CN−2.

3) The remainder term R1
i is evaluated for xi ∈ [1− σ2, 1]:

xi−1 = 1 + µ−1
2 ε ln

[
1− 4(1−N−1)(1− i− 1

N
)

]
, i =

3N

4
, . . . , N, (4.11)

hi=µ
−1
2 ε

{
ln[1−4(1−N−1)(1− i

N
)]− ln[1− 4(1−N−1)(1− i− 1

N
)]

}
. (4.12)

By applying the mean value theorem in (4.12), we obtain

hi ≤ CN−1. (4.13)
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Using the inequality (4.13), we have

~i ≤ CN−1. (4.14)

Thus, from (3.1) and (4.11)–(4.14), we can write∣∣R1
i

∣∣ ≤ CN−2, i = 3N/4, . . . , N,

where

e−
µ1(xi−1)

ε − e−
µ1(xi+1)

ε =e−µ1(1+µ−1
2 ε ln[1−4(1−N−1)(1− i−1

N )])

− e−µ1(1+µ−1
2 ε ln[1−4(1−N−1)(1− i+1

N ]) ≤ CN−2.

4) Now, we estimate the remainder term r0. In the following estimation,
xN0

is the mesh point nearest to l1. Also, we assume that l1 ∈ [2α−1ε| ln ε|,
1 − 2α−1ε| ln ε|], α ≥ 0, and the second derivative of f(x) is bounded. So, we
obtain from (3.4),

|r0| ≤ C {|f ′′(ξ)(x− xN0
)(x− xN0+1)|}

≤ C {(x− xN0
)(x− xN0+1)} ≤ C

{
h2
}
≤ CN−2, ξ ∈ (xN0

, l1) .

These estimations complete the proof of Lemma 3. ut

We can state the convergence result of this study the following Theorem 1.

Theorem 1. Let u (x) be the solution of the problem (1.1)–(1.3) and y be the
solution of (3.5)–(3.6). Then, the following uniform error estimate satisfies

‖y − u‖∞,ω̄N ≤ CN
−2.

Proof. This follows immediately by mixing previous lemmas. ut

5 Algorithm and numerical results

This section focuses on the demonstration of the following procedure for the dif-
ference scheme (3.5)–(3.6). Moreover, the effectiveness of the presented method
is confirmed by applying it to a linear problem (1.1)–(1.3). Initially, the algo-
rithm for the solution of the difference scheme (3.5)–(3.6) is provided:(

ε2

~hi

)
yi−1 −

(
ε2

~hi+1
+

ε2

~hi
+

εai
hi+1

+ bi

)
yi +

(
ε2

~hi+1
+

εai
hi+1

)
yi+1 = −fi,

i = 1, . . . , N/4, i = 3N/4, . . . , N − 1;(
ε2

h2

)
yi−1−

(
2ε2

h2
+
εai
h

+bi

)
yi+

(
ε2

h2
+
εai
h

)
yi+1=−fi, i=

N

4
+1, . . . ,

3N

4
−1;

α1 = 0, β1 = 0,

αi+1 =
Bi

Ci −Aiαi
, βi+1 =

Fi +Aiβi
Ci −Aiαi

, i = 1, . . . , N − 1,

yi = αi+1yi+1+βi+1, i = N − 1, . . . , 1.
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This algorithm is stable due to Ai > 0, Bi > 0, Ci > Ai +Bi, i = 1, 2, . . . , N.
Subsequently, the following problem is taken into consideration in order to

prove that the presented method is working:

ε2u′′ (x) + ε(1 + cos(πx))u′(x)− (1 + sin(πx/2))u(x) = f(x), 0 < x < 1,

u′(0) = 0, u(1)− 0.5u(0.5) = 0.5.

The exact solution of the problem is

u(x) =
(1−e1−x)(1+cos(πx)+d)

2ε (1− e xdε )

(−1 + e
d
2ε )(−2− 2e

d
2ε ) + e1+cos(πx)+d

4ε

+ sin(πx)2,

where d =
√

5 + 2 cos(πx) + cos(πx)2 + 4 sin(πx/2). The ε-uniform conver-
gence rates are calculated using the following expression:

PN = ln
(
eN/e2N

)
/ln 2.

The error estimates are also denoted by

eNε =
∥∥yε,N − uε,N∥∥∞,ω̄N , eN = max

ε
eNε .

As presented in Table 1, when the ε is small, the solution changes fastly in the
boundary layer regions.

Table 1. Errors eN and rates of convergence pN for test problem.

ε|N 16 32 64 128 256 512 1024

2−15 0.1303665 0.0379424 0.0101458 0.0026100 0.0006577 0.0001630 0.0000395
1.78 1.90 1.95 1.98 2.01 2.04

2−16 0.1303729 0.0379483 0.0101519 0.0026147 0.0006609 0.0001650 0.0000406
1.78 1.90 1.95 1.98 2.00 2.02

2−17 0.1303761 0.0379513 0.0101549 0.0026171 0.0006625 0.0001660 0.0000412
1.78 1.90 1.95 1.98 1.99 2.01

2−18 0.1303777 0.0379528 0.0101564 0.0026183 0.0006633 0.0001666 0.0000415
1.78 1.90 1.95 1.98 1.99 2.00

2−19 0.1303785 0.0379535 0.0101572 0.0026189 0.0006637 0.0001668 0.0000417
1.78 1.90 1.95 1.98 1.99 2.00

2−20 0.1303789 0.0379539 0.0101575 0.0026192 0.0006639 0.0001669 0.0000418
1.78 1.90 1.95 1.98 1.99 1.99

2−21 0.1303791 0.0379541 0.0101577 0.0026193 0.0006640 0.0001670 0.0000418
1.78 1.90 1.95 1.98 1.99 1.99

eN 0.1303791 0.0379541 0.0101577 0.0026193 0.0006640 0.0001670 0.0000418
pN 1.78 1.90 1.95 1.98 1.99 1.99

When N = 32, 64, . . . , 1024 takes increasing values, it is observed in table
that the convergence rate pN is of the second-order. The exact solution and
approximate solution curves are determined to be almost same, as presented
in Figure 1. Therefore, it is possible to conclude that convergence is achieved.
As indicated in Figure 2, errors in boundary layer regions with respect to the
examination of the presented method for the problem (1.1)–(1.3), are maximum
due to the irregularity caused by the sudden and rapid change of the solution
in these regions around x = 0 and x = 1 for the different values of ε. Therefore,
the numerical results indicated that the proposed scheme is working effectively.
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Figure 1. Comparison of the exact
and approximate solutions of test
problem for N = 128, ε = 2−15.

Figure 2. Error distribution of test
problem for N = 128, ε = 2−15,
ε = 2−17, ε = 2−19, ε = 2−21.

6 Conclusions

In this study, we offered an effective finite difference method for solving second-
order linear singularly perturbed nonlocal boundary value problem. Uniform
convergence in the second-order was proven with respect to the ε− perturba-
tion parameter in the discrete maximum norm of the difference scheme. As
a result, it was possible to conclude that the finite difference method, taken
into consideration for the solution of problems that are not easy to solve with
every numerical method and that have both nonlocal and singular perturbation
properties, was very effective and convenient on nonuniform meshes (Shishkin,
Bakhvalov, Bakhvalov-Shishkin etc.). The present study findings demonstrate
that it would be possible to conduct further studies on delayed and partial
differential equations, which contain more complex nonlocal conditions. Fur-
thermore, it could be suggested that a study on the increase in the convergence
rate to three or higher orders would be possible.
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