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ABSTRACT

The distribution of electromagnetic fields, forces and temperatures induced by a three-phase
axially-symmetric system of electric current in a conducting cylinder of a finite length has
been calculated. An original method was used to calculate the radial and axial components
of the magnetic fields and the mean values of electromagnetic forces, as well as the azimuthal
component of the electric field and of the mean curl of the electromagnetic forces. For
finding the source term in the temperature equation we applied an approximation of the
heat transport problem based on the finite-difference method. Such a procedure allows
one to calculate the distribution of temperatures inside the cylinder depending on that of
currents in the wires.

1. THE MATHEMATICAL MODEL

Let the cylindrical domain Q = {(r,2)|0 < r < a,0 < z < Z} contains
conducting material, where a, Z are radius and length of the cylinder. On the
internal surface of the cylinder » = a there are arranged N discrete circular
wires (conductors) L; = {(r,z)|r = a,z = z;} through which alternating
current flows with density

Ji = jocos(wt + (i —1)8), i =1, N,
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where jp is the amplitude, w = 27 f is the angular frequency, f is the frequency
of alternating current, 6 is the phase (usually § = 60°, f = 50H z) and ¢ is the
time. For the calculation of the electromagnetic fields the averaging method

. . 2T
over the time interval — = ? was used.
w

Most of works devoted to investigation of the influence of alternating current
on the distribution of electromagnetic forces deal with the infinity long induc-
tor. Quasi-stationary magnetic field is calculated using the form of Bessel’s
functions and complex number with the factor exp(iwt), where i = /=1 [1]
—[7]. In the present work which employs elliptical integrals, the calculations
are performed using only the real form of numbers and assuming the time
dependence as cos(wt). This makes it possible to consider alternating current
connections of various type, with phase shifts # and various arrangements of
the conductors.

The azimuthal components Ay, Ey of the vector potential A and of the
electric field E are determined from Maxwell’s equations

0B
divB = 0; rotE:—E; rotH =j5; B =uH

in the following form:

0A

6= _8—:; AAy = —pjg,
where B = rotA and H, B, j¢, 1 are the vectors of magnetic field intensity,
induction, the vector of external current density and the coefficient of magnetic
permeability of the medium; A is the Laplace operator.

Applying the Biot-Savar law we arrive at the following form of the azimuthal
component of the vector potential created by the alternating current in each
conductor L;:

A¢,z(t7 ) ) A /Li \/((Z_Zi)2+(r_a’)2),

where dl is an element of the circular line. Evaluating line integrals in closed
form we have

Aglt,r,2) = ELA(r, ) cos(wt + (i = 1)), (L.1)

where

Ai(r,z) = g[(k% - kz)K(kz) - %E(kz)]:

ki =2v/ar/ei, ci = at 7 + (- 2)%,
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= d . TR .
K(k) = [, 4 is the total elliptical integral of first kind, E(k) =
1 —k2sin?¢
/2 /T = k2 sin® &d¢ is the total elliptical integral of second kind. This in-
tegrals can be calculated with the accuracy of four decimal places in the
following form [1]:

K (k) = 1.3863 + 0.1120k + 0.0725k% — (0.5 + 0.1213k + 0.0289%%) In k,
E(k) =1+ 0.4630k + 0.1078%> — (0.2453k + 0.0412k>) In £,

where & = 1 — k2. Assuming the vectorial components of magnetic field in-
duction as
8A¢ 1 8
———, B,=-—(rA
9z’ °  ror (rdy)

we arrive at the following form of such components created by the alternating
current in conductor L; :

B, =

Brilt,r,2) = ’;—jOB{(r, 2 cos(wt + (i — 1)8),
" (1.2)
B, (t,r,z) = l;—ifo (r, z) cos(wt + (i — 1)0),
where
Bi(r2) = /1=~ |5k {"a fr’;rzi((zz __Z))2 ~ K (k)
z _ L I it Gt MY
Bi(r,2) = (K (ki) + P Zi)QE(kl)] .

It follows from Ohm’s law for the electricity-conducting media that the az-
imuthal components jg of the vector of induced current density are given as
08A¢

ot,
and hence from every conductor L; electric current with the density current
with density

Jj = oE, where o is the electrical conductivity. Therefore j, = 0 Ey = —

WHTJo
™

Jo.i(t,r,2) = Ai(r, 2) sin(wt + (i = 1)6) (1.3)

is induced. From (1.1) — (1.3) we obtain the total magnetic field, the vector
potential and the induced current density

N N N N
B, = ZBT‘,iaBZ = ZBz7i7A¢ = ZA¢,iaj¢ = Zj¢,i- (14)
i=1 i=1 i=1

i=1
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If t = 0 then from (1.4) one can evaluate the momentary values of the above
quantities. Having calculated the vector of electromagnetic force (Lorenz’s
force) F = j x B we can write the momentary value of the radial and axial
components as

F,=B.js, F.=—DBj,. (1.5)
From (1.5) it follows that

Fr(t,r,z):(/;—ﬁ) ow ’]zl S, 2)es(t) .

1 2
Etr2) = (M) 0w 3 i . 2)estr),
2 ig=1

where

es(t) = cos(wt + (1 — 1)) sin(wt + (j — 1)8),

r z A A aAl a’s ra

ol ;(r,2) = Bi A + 4,50 = ap +alf,
04;

af j(r,z) = =BjAj = A iS5, =a;% + a5,

2s 2 O(AA ) o 8A 0A,;
ai7j = 057, 04” = 05(14 a A W),

e O(MAY)  AA 04; . 0A
aih]- = 05 67" + ” 5 ai,j = 05(14] a A W)

Note, that symmetrical and anti-symmetrical parts of coefficients « are satis-
fied by the relationships
zZs __ zs rs __ rs zZa __ zZa ra __ ra
Qij = Qs Xy = X Qi = —QG, Q5 = —QG,.
Since es(t) = 0.5sin (2wt+ (i+j—2)f) +0.5sin (A(j —i)), the average quantity
in the time interval 27/w of this expression is 0.5 sin ((j —4)6). Therefore, the
radial and axial components of averaged force vector can be written as

< F, >= 05(’”0) owSh,; < F, >= 05(’”0) owS%,  (L.7)
27
where
N N—-1 N—k
Sy = Z ((j —9)0)a;i; =2 s1n(k0)2 i
k=1 i=1
N N-1 N—k
Sk = Z sin((j —i)f)aj; =2 sin(k6) G

i,j=1 k=1 i=1
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Having calculated the azimuthal component of the rotor of force vector F'

OF, OF. a(Bz.]d>) a(BTJCﬁ)
= F = - Q] =
F=rotF, fo 0z or 0z * or
we analogously obtain its average value as
—0.5(10)? 550
< fo>= 0.5( 27T) owSy, (1.8)
where
N N—-1 N—k
Sk =Y sin((i—if)ad; =2 sin(ke) 3 ol
i,j=1 k=1 i=1
O(BfA;)  O(BrA;j) s a
i 2) = AT LA _ oo
s s 10
01— gt 0A; 0A;  0A; 0A;

i it or 0z 0z Or '

The function f is employed when we compute the motion of liquids according
to the Navier-Stocks equation. It is readily seen that
ooy 0%,

0z or b

2. THE HEAT TRANSFER EQUATION

The axially-symmetric stationary distribution of temperature field in a con-
ducting cylinder 2 is described by the equation of heat conduction in cylin-
drical coordinates

(O R R R EON

where < j2 > is averaging value of j7 (the source function), A is the heat
conductivity, T' = T'(r, z) is the steady-state distribution of temperature in
conductive medium.

Using (1.3)-(1.4) and the expression

sin (wt + (j — 1)6) sin (wt + (i — 1))
= —0.5cos (2wt + (i + j — 2)8) + 0.5cos (8(j — i)
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we obtain _
HJoowW Q
<j2>=0 5( ) S, 2.2
Jd’ 2 N ( )
where
N N-1 N—k N
59 = Z cos ((j — z)ﬁ)agj =2 cos(kf) Z o+ Za?l,
i,j=1 k=1 i=1 i=1

Oégj = Oéj?i = AZA]

Calculating the derivatives in formulae (1.6) gives

04i _ 1 a® + 1% + (2 — 2)? a? —r?—(z—2)" o

or C_i[(l_ r2 )K(k’)+((a—r)2 +(z—zi)2+r_2)E(k’)]’
0A; .
0z —Bi.

In order to formulate the boundary-value problem for equation (2.1), the
boundary conditions are written in the form:

oT oT
AW = a(Ta - T|r:a): T|z:0 =Ty, %

r=a

_or

= =0, (2.3)

r=0

z=

where T, is the given constant external temperature, « is the heat exchange
coefficient. Introducing dimensionless values

T-T7, . r
, r=—5 2=,

T =
T, a a

we arrive at the following form of the boundary-value problem for Poisson’s
equation in cylindrical coordinates (the symbol "tilde" is omitted):

IB(BT) o°T

——(r— — +Kprq=0
ror\ or + 022 + A ’
(2.4)
oT oT oT
N =—BiT|— T|.—g =0, — = A =0
or lr=1 i Tlr=1, Tlz=o T Oz l:=t Orlr=0 ’
here K (ujowa)QU is the heat sources parameter, Bi aa is the Biot
W. = — = —
T = "2n)2)T, P ’ )

Z
number, [ = 1= 0.551%.
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3. THE FINITE-DIFFERENCE SCHEME

Considering a uniform grid (n, x n.) :
hy ) . o
wp =< (re,25)|r = 5 + (i —1hi, zj =G —1he, i=1,n,, j=Ln.,

with the steps hi, he we can approximate boundary-value problem (2.4) with
the following finite-difference scheme of the second approximation order [4]:

7iv0.5(Tiv1,5 — Tij) +ricos(Tij —Ticaj)
T‘Zh%
Tij1 — 2T + Tij
h3
Tir =0, Tin.s1=Tin., i=1n,,
Tn415+Tn,

+

+KTqi,j :077/: 17”7‘7 .7 :27n27 (31)

an+17j — T, \J

hl = —Bi ) ) .7 = 27”27
where 1195 =1 £ 0.5h, T = T(r4,25), ¢i,; = q(ri,2;). Since rg5 = 0 the
symmetry condition % |r:0 = 0 is satisfied exactly.

4. THE NUMERICAL METHOD

The finite difference scheme (3.1) is solved with the over relaxation method
in the following form:

() _ . 7= (n—1)
T = Q.17 + (1 - )T, (4.1)

(%]

where n = 1,2,3, ... is the iteration number, (), is the relaxation parameter,

(n—1) (n)
rivoslipy j +ricosTi_q 1
i= i ]Tih% 2 J + hg (Tl(,?Jrl) + Tz(,;b)fl) + KTqu'iI

/[(ri+o.5r;gi—0.5) " thz]

is the n-th approximation by Seidel iteration technique,

1 —Bihi1/2,_(n-1) (n—1) (n—1) (n)
netld T T4 Bihy 2 med 0 TEnedl T Tine 0 Tl ’

7. =0, i=1,n, j=2,n..
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AA

Figure 1. Momentary components Figure 2. Momentary components
By € (—10.7,14.5). B, € (—22.9,22.3).

It is difficult to find theoretically the optimal value of the relaxation parameter
Q9" in cylindrical coordinates hence we apply the quantity taken from the
approximation of Poisson’s equation in the Descartes coordinates:

Qort — (4.2)

2
1+/1-m

where 19 = 0.5(cos(w/n,) + cos(m/n.)). For instance, if n, = 10, n. =
20, = 2, then it follows from (4.2) that Q2”" = 1.6, but numerical experiments
show that optimal value of w in such a grid is Q, = 1.5 (approximately 200
iterations) if 2, = 1 (Seidel iterations), then we need n = 2000) iterations.

5. NUMERICAL RESULTS

As the basis for the calculations six circular conductors (N = 6) are chosen,
which are arranged axially at the points z; = 0.2, 2o = 0.4, 23 = 0.6, z4 =
0.8, z5 = 1.0, zg = 1.2. The results of numerical experiments for < F, >,
< F.>,< fs >, < js > in the dimensionless form 0.55%,0.55%,0.55%,0.55%
and T were obtained with the help of the computer program MAPLE in
the case of electrical current with different phases § = x/3,27/3,m, and
=2, hy = hs =0.1.

The approximate value of T" is computed for Bi = 0.1. The numerical re-
sults essentially depend on the value of Biot number. For example, we have
for Thar = max(T; ;) the following quantity: Ties = 0.92(Bi = 1), Thew =
2.5(Bi = 0.1), Tynae = 3.2(Bi = 0). The distributions of temperature T} ; are
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curl of Torces

AT~ potential

N
haGEA

Figure 3. Momentary components Figure 4. Distribution < rotyF >¢€
Ag € (—3.0,2.6). (=17.1,236.0).

Torces of Fz

source of heat

22\

Distribution of source Figure 6. Distribution < F. >¢€

Figure 5.
(—39.4,3.7).

terms ¢ € (0,5.0).

obtained for K7 = 1, but for every K7 # 1 we have T} ; = KTT},J..

The numerical results show that the force fields induced by alternating
current as well as the heat source are concentrated on the cylinder’s surface
in the vicinity of the circular electrodes and that the conducting material is
heated best on the cylindrical surface after the last electrode. The results
depend on the arrangement of electrodes and on the phase shift.

Figs. 1-10 show typical results of calculations: the magnetic field and the
distribution of heat sources rises to a maximum on the surface of the cylinder.
Considering the momentary values of B,, B., Ay for different phases 6 and
distributions zj = [z1, 22, 23, 24, 25, 26] Of electrical current in the conductors,
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CurT of Torces, r=0.95 sorce of heat, Q1=0.95

Figure 7. Distribution roty F' for r = Figure 8. Distribution of source
0.95. terms for r = 0.95.

Tenpararure Tenp. i stribution z=nz

Figure 9. Distribution of tempera- Figure 10. Distribution 7' for z =
ture (Tmaz = 1.2). 1.9.

the following results are found valid:

1.0 = n/3,z5 = [0.2,0.4,0.6,0.8,1.0,1.2] ( the conductors are connected
normally one after another), B, € (—10.7,14.5), B, € (—22.9,22.3),
A¢ € (-3.0,2.6);

2.0 =2n/3,2zj =[0.2,0.6,1.0,0.4,0.8,1.2] (the conductors are connected to
each other skipping one of them), B, € (—9.2,18.0), B, € (—13.0,23.5),
Ay € (—2.5,3.0);

3.0 =m,2j =10.2,0.8,0.4,1.0,0.6, 1.2] (the conductors are connected to each
other skipping two of them), B, € (—=10.6,25.5), B, € (—24.8,24.8), 4, €
(—4.3,4.3).

Calculations of the dimensionless values of < fy >,q,< F,. >, < F, >,T gave

the following results (Bi = 0.1) :

1.0 =n/3,2j =[0.2,0.4,0.6,0.8,1.0, 1.2] (the conductors are connected nor-
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mally one after another), < f, >€ (-7.1,236.0), ¢ € (0,5.6), < F, >€
(—28.4,28.4), < F, >€ (—39.4,3.8), Tynas = 1.6;

2.0 =7/3,zj =1[0.2,0.6,1.0,0.4,0.8,1.2] (the conductors are connected to
each other skipping one of them), < fs, >€ (—43.0,20.0), ¢ € (0,1.3),
< F, >€ (=12.5,12.5), < F. >€ (=11.5,10.8), Traz = 0.2;

3.0 = 2x/3,zj = [0.2,0.4,0.6,0.8,1.0,1.2] (the conductors are connected
normally one after another), < f4 >€ (—0.3,126.0), ¢ € (0,2.3), < F, >€
(—8.4,11.3), < F, >€ (=16.7,1.0), Tnaz = 0.3;

4.0 = m,zj = [0.2,0.6,0.4,0.8,1.0,1.2] (the conductors are connected skip-
ping one of them), < fs >= 0, ¢ € (0,5.0), < F, >=< F, >= 0,
Tnaz = 0.5;

5.0 = m,zj =10.2,1.2,0.4,1.0,0.6,0.8] (the conductors are connected sym-
metrically in pairs the first the sixth, the second with the fifth,the third
with the fourth), < fy >=0,¢ € (0,8.8), < F, >=< F, >=0, Tz = 2.0;

6.0 = m zj =[0.2,0.4,0.6,0.8,1.0,1.2] (the conductors are connected nor-
mally one after another), < f, >=0, ¢ € (0,1.8), < F, >=< F, >=0,
Traz = 0.2.

As can be seen, in the 5! variant (two-phase current) we obtain the highest
temperature (four times higher than in the 4" variant and ten times high
than in the 6" variant), although the averaged forces cancel.
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Elektromagnetiniy lauky, jéguy ir temperaturos skai¢iavimas baig-
tiniame cilindre

A. Buikis, H. Kalis

Apskaiciuojamas elektromagnetiniy lauky, jégy ir temperatury pasiskirstymas trifazes elek-
tros srovés asinéje simetrinéje sistemoje baigtiniame cilindre. Panaudotas originalus meto-
das apskaiCiuojant radialineg ir asing komponentes, vidurkines elektromagnetiniy jégy reik-
8mes, elektrinio lauko azimutine komponente ir elektromagnetiniy jégy rotoriy. Tem-
peraturos Saltinio nustatymui, naudojama 8ilumos laidumo uzdavinio aproksimacija baigti-
niy skirtumy metodu. Tokia procedura leidZia skaic¢iuoti temperaturos pasiskirstyma cilin-
dro viduje, priklausomai nuo sroviy jo pavir§iuje.



