MATHEMATICAL MODELLING AND ANALYSIS
VorLuME 7 NUMBER 1, 2002, pacEs 11-20
© 2002 Technika

THE TEMPLATE PROGRAMMING OF
PARALLEL ALGORITHMS

M. BARAVYKAITE! and R. SABLINSKAS?2

! Vilnius Gediminas Technical University

Saulétekio al. 11, 2040 Vilnius, Lithuania

2 Ommnitel

Vytenio 18, Vilnius, Lithuania

E-mail: Milda.Baravykaite@fmst.vtu.lt, ramas@vdu.lt

Received October 1, 2001

ABSTRACT

The parallel programming tools and packages are evolving rapidly. However the complexity
of parallel thinking does not allow to implement many algorithms for the end user. In
most cases only expert programmers risk to involve in parallel programming and program
debugging.

In this paper we extend the ideas from [3] of template programming for a certain class of
problems which could be solved by using general master-slave paradigm. The template is
suitable for solution of the coarse grain and middle grain granularity problem set. Actually,
it could be applied to solve any problem P, which is decomposable into a set of tasks
P = UlNzoti- The most effective application cases are obtained for the problems where all
t; are independent.

The template programming sets some requirements for the sequential version of the user
program:

1. The main program must comprise of several code blocks: data initialization, compu-
tation of one task ¢; and the processing of the result.

2. The user has to define the data structures: initial data, one task data, the result data.
These requirements do not require to rewrite the existing sequential code but to organize
it into some logical parts. After these requirements (and naming conventions) are fulfilled,
the parallel version of the code is obtained automatically by compiling and linking the code
with the Master-Slave Template library.

In this paper we introduce the idea of the template programming and describe the
layer structure of the Master-Slave Template library. We show how the user has to adjust
the sequential code to obtain a valid parallel version of the initial program. We also give
examples of the prime number search problem and the Mandelbrot set calculation problem.

12 M. Baravykaité, R.Sablinskas
1. INTRODUCTION

Unlike conventional programming, the template programming does not re-
quire from the user to know the parallel programming tools to create parallel
programs. Instead the user has to recognize his/her program type and to
choose the right template where some code pieces are inserted into a prede-
fined place.

In our paper we describe the Master-Slave Template library. It is designed
to work efficiently for the coarse grain granularity problems, i.e. the prob-
lems where computation time of a sub-problem is relatively large. Usually
it is used on heterogeneous computer clusters to solve the problems which
can not be solved by one computer in a moderate amount of time. Good
examples would be: calculation a set of inverses of the large matrices, calcu-
lation of fluid dynamics problems in various conditions or with various fluids,
a multi-dimensional function optimization. All the examples have a set of
sub-problems, which could be solved in parallel. The Master-Slave Template
library should not be used to solve an algorithm-specific problems like single
matrix inverse computation or implementation of a finite element schemes,
because the sequential algorithms of these problems have pretty complex pa-
rallel counterparts, which do not obey the simplified behavior scheme of the
master-slave algorithm.

The Master-Slave Template library is ready-to-use for the C language pro-
grammers, although the FORTRAN interface could be derived easily by any
user due to the code simplicity. The PVM or MPI packages are used as the
underlying message passing engines. The user is not required to know the
parallel programming techniques. On the other hand, PVM or MPI packages
should be installed correctly on the workstation cluster and the user must
have a general knowledge of them.

The Master-Slave Template library should be used by the user only when
the sequential version of the program has been tested and debugged. The
parallel version is obtained in one step ': the user must make adjustments
to his/her program to comply the requirements stated in the subsection 2.1.
After the adjustments are made, the new sequential version of the program
should be tested and debugged. The parallel version is obtained by linking
the code to the Master-Slave Template library.

2. THE MASTER-SLAVE TEMPLATE LIBRARY IMPLEMEN-
TATION

The main purpose of the template programming is to save the user from
creation of the parallel algorithms from scratch. The template programming
and other semi-automatic tools for parallel programming hide the fact that
the user is doing a parallel programming at all. To achieve this, we organize

!The additional testing and debugging may be needed in case the user does not follow
the recommendations described in section 2.1

The Template Programming of Parallel Algorithms 13

the Master-Slave Template library into a set of independent layers. The figure
Fig. 1 describes the layer structure of a program. Each layer consists of a set
of procedures which either implement the layer logic, or serves as an interface
that do the transformation of names and/or parameters. In this section we
describe the layer construction in detail.

The User program

The User interface layer

The MS
template< | The Master-Slave template logic
library
The communication layer The User program
PVM/MPI communication PVM/MPI communication
primitives primitives
a) The template programming b) Conventional programming

Figure 1. The layer structure of a program.

2.1. The User Program

We assume that the user already has implemented the sequential version of
his/her algorithm. This sequential version will be the starting point for all the
code reorganization needed to run the program in parallel. The reorganization
step is the only action required from the user, so it is critical to conform all
the requirements stated for this layer in this section to obtain a valid code for
parallel version of the algorithm.

The program structure. We require that the user code comprise of several
parts:

1. The data initialization part.

2. The computational process initialization part.

3. The computation loop which uses the following procedures:
(a) Take a non-completed task ¢; from the task pool,
(b) Process the task ¢; and return the result r;,
(¢) Add up the result r; to the totals.

4. The result output part.

We shortly describe each part.

The data initialization part consists of a procedure M_prepare_job_pool
which may be invoked once during the program runtime. The procedure
initializes and returns one argument which is an initial data structure created
during the data initialization step (e.g. some parameters read from the initial
data file).

14 M. Baravykaité, R.Sablinskas

The computational process initialization part consists of a procedure named
S_initialize which is invoked for each computation process and is used to
initialize the data structures needed for the computation process, i.e. allocate
memory for temporary structures, assign initial values etc. The procedure
has one input parameter which is an initial data structure prepared by the
previous procedure (M_prepare_job_pool). We emphasize, that all the data
needed for computational process initialization must be passed by initial data
structure or generated inside the procedure (no global variables allowed to
read the value from).

The procedure that takes a non-processed task ¢; from the task pool is called
M_take_piece_from_pool. It returns a structure of data which fully describes
a task to be performed by the computation procedure. This procedure is called
every time, when the data portion is needed, it returns 1 if it was successful
to get a new task or returns 0 if the task list is empty. The task list could be
either saved explicitly (like finite number of data records) or could be defined
as a set of criteria (like accuracy achieved, iterations made, value combinations
performed etc.).

The computation procedure named S_compute takes the task definition
structure and performs computations over it. The output of this procedure is
another structure, which contains the result data.

The procedure that processes the result M_add_to_result takes the result
data structure from the output of the previous procedure and adds it up to
the totals.

The output procedure M_print_result prints out the total results.

To summarize the above, the structure of the user’s main program in C will
look like:

int main()

{
struct t_init_data id;
struct t_data t;
struct t_result res;

M_prepare_job_pool(&id) ;
if (! S_initialize(id)) return 0;
while (M_take_piece_from_pool(&t))
{
S_compute(t, &res);
M_add_to_result(res);
}
M_print_result();
return 1;

}
The data structures. We require that the user describe three data structures:

t_init_data — the initial data, prepared by M_prepare_job_pool;

The Template Programming of Parallel Algorithms 15

t_data — the task definition data, which uniquely describes each task;.

t_result — the result data, that contains one task computation results.
The definition of these types should be separated into a header file named
i_defs.h. No additional information is allowed in this file (such as global
variables or other data types)

The global variables. We recommend that the programmer avoid the usage
of the global variables. Just because the initial sequential code is split among
different processes in the parallel version, it means that the global variables (if
used) have their scope limited to the code part which belongs to one process.
For an unexperienced user it is hard to tell whether a global variable will be
visible for a particular piece of code or not, so the recommendation is do not
use the global variables, but exchange them by the means of data structures,
defined in the previous subsection. Of course it is not convenient in all cases.

Further in this section we describe the specifics of the usage of global vari-
ables in parallel version of the program. The parallel project is in fact many
copies (program instances) of the same code. No matter the process (or an
active instance of a program) is called Master or Slave, it has the code of all
parts of the program, including global variables. Except that the slave pro-
cess uses one part of the code, the master process uses another. We must also
recall that although the two slave processes use the same part of the code,
they can not share the values of the global variables.

To help the user to restrict the scope of global variables we recommend to
split the initial sequential code into two parts or modules. One module should
contain the procedures owned by the master process, the other - owned by the
slave process. It is also recommended to separate the part of the code which is
used by both processes (utility procedures). In our case the procedures owned
by the master process are:

M_prepare_job_pool(&id);

M_take_piece_from pool(&t);

M_add_to_result(res);

M_print_result();

The procedures owned by the slave process are:

S_initialize(id);

S_compute(t,&res);

The global variable definition must be done in each module separately, no
name duplicates allowed. It is also recommended do not use global variables
in other modules if present. In cases some variables are needed by both pro-
cesses master and slave, we have to decide either to exchange them with the
initial or the task data structures (t_init_data or t_data), or to initial-
ize/compute/maintain the variables separately in each process.

Testing. After the user adjusts the sequential code to conform the require-
ments, the testing is made by compiling and running of the program in the
sequential mode. In case of success, the user simply switches to another di-
rectory and compiles/runs the parallel version of the same program. All the

16 M. Baravykaité, R.Sablinskas

possible result discrepancies could appear due to global variable misuse, which
could be debugged by inserting some variable print sentences in either of the
module’s procedure.

2.2. The User interface layer

The purpose of the user interface layer is to transparently connect the user
layer procedures to the Master-Slave Template library. In this section we de-
scribe the structure and implementation of the user interface layer procedures.

The user interface layer consists of a parser and a set of interface procedures:

u_master_prepare_job_pool,
u_master_take_piece_from_pool,
u_master_add_result_to_total,
u_master_print_result,
u_slave_initialize,
u_slave_compute.

The interface procedures use the code generated by parser to transform the
user data structures. They also call for the user layer procedures to perform
the logic defined by the user. The user interface procedures are invoked by
the Master-Slave Template logic layer procedures.

The parser analyzes the user data structures defined in the user layer in
the file i_defs.h and prepares a source code for data transformation needed
to pack and send data among processes. It recognizes the basic data types of
the C language and multi-dimensional arrays of standard types. The current
version of the parser does not support the structure in the structure types.
The parser analyzes each variable in the user data structure and assigns it
to one of the data vectors (of different data type) which are packed and sent
from one process to another later on.

2.3. The Master-Slave Template logic layer

The main goals of this layer is to create the master and the slave processes on
the parallel machine, to organize the work flow of the master-slave algorithm
and to exchange the data among the processes. This layer consists of two
procedures [3]: Master, Slave. These procedures invoke the user interface
layer procedures to perform the logic of the program and the communication
layer procedures to pack and exchange the data (see the figure Fig. 2).

The implementation of both procedures is rather simple: there is a loop of
actions. Each action is either a set of instructions that perform module logic,
or invocation of the user interface or communication layer procedures. There
is a possibility to control the sequence of actions, so the Master-Slave behavior
logic is easily adjustable to sophisticated needs. This layer also implements
the fault tolerance features of the master-slave algorithm: the task list is
stored and repeated task processing is forced in case of communication failure
or other kind of the slave process loss.

The Template Programming of Parallel Algorithms 17

The User layer A User procedures

The User interface layer { Interface procedures A

The Master-Slave

>
template logic layer Master Slave‘

A

<

The communication
layer

PVM/MPI package \'

Interface procedures

Figure 2. The Master-Slave template logic layer operations.

2.4. The Communication layer

The communication layer is an interface layer, its goal is to hide the communi-
cation primitives of the MPI [4] or PVM [2] packages. We define an interface
for each MPI or PVM procedure which may have been used in conventional
programming. The communication layer procedure list includes data packing,
unpacking, message probing and the parallel program finalizing. Each proce-
dure invokes either the PVM or MPI communication primitives depending on
the active global setting.

3. THE APPLICATION EXAMPLES AND COMPUTATION RE-
SULTS

In this section we present two application examples and the computational
results on the homogeneous computer cluster of 7 IBM machines RS6000
running AIX operating system.

3.1. The prime number search problem

The problem definition. Find all prime numbers in [0,..., M], assume the
primes from [0, ...,V M] are already known.
The task list. The task list is obtained by dividing the [v/M,..., M] into

K intervals: {¢;,i =1,2,...,K}, wheret; : (\/M +m(i—1),vM +mi] and

m = [M}—m-l The task list is not stored explicitly, it is generated during

the program run-time.

The computation procedure. We made two sets of experiments. In the first
set we use the sieve of Eratosthenes for each of the interval ¢;. In the second
set we used the Trial Division method.

Implementation. The procedure M_prepare_job_pool reads the initial data
from the data file. It prepares the data structure:

struct t_init_data{ long int M, K; }.

The procedure S_initialize allocates the slave data structures and com-
putes the primes from [0, ...,/ M]. The procedure M_take_piece_from_pool

18 M. Baravykaité, R.Sablinskas

tracks the interval being processed and announces whether the last job has
been submitted. It prepares the description of one job (the interval ¢;):

struct t_data{ long int i; }.

The procedure S_calculate performs the prime number search in the re-
quested interval. It returns the number of the primes found:

struct t_result{ long int plu; }.

The procedure M_add_to_result accumulates the result.

Table 1.
The prime number search in [0; 10°] using The Sieve of Eratosthenes algorithm.
Processors, p Time, T} Speedup, Sp = % Efficiency, Fp = %
P

1 834.37 1.00 1.00
2 455.51 1.83 0.91
3 296.96 2.81 0.94
4 221.03 3.77 0.94
5 178.66 4.67 0.93
6 153.02 5.45 0.91
7 129.66 6.43 0.92

Table 2.

The prime number search in [0; 10%] using the Trial Division algorithm.

Processors, p Time, T, Speedup, Sp Efficiency, E)

1 1492.42 1.00 1.00
2 753.75 1.98 0.99
3 523.66 2.85 0.95
4 401.18 3.72 0.93
5 317.54 4.70 0.94
6 253.81 5.88 0.98
7 213.81 6.98 0.99

The parameter K should be selected K > p. The bigger value of K the
better load balancing is achieved. On the other hand, each task ¢; should
be complex enough to consume up to several seconds of a processor time for
the algorithm to be efficient. We used K = 100 in all computations of this
problem.

The computational results are shown in Tab. 1 and Tab. 2. For both com-
putational methods we obtain good speedup and efficiency values.

3.2. The calculation of the Mandelbrot set

The problem definition. Search the N x M points for the Mandelbrot set in
the rectangle A = [z1,zN] X [y1,ym] (we use A = [—2,1.25] x [-1.25,1.25] in
our computations).

The task list. The task list is obtained by dividing the second coordinate of
Ainto K parts: {tx,k=1,2,..., K}, where

The Template Programming of Parallel Algorithms 19

ty, = {(a:n,iym) :n=1,...,.Nym=(k—-1) {%] +1,...,k {%]},
and x, = 21 + F2(n — 1), ym = y1 + L5724 (i — 1). The task list is not
stored explicitly, it is generated during the program runtime.
The computation procedure. Each point a = (z,4y) of the area A is tested by
the iteration loop z;+1 — 27 +a, zo = 0, until the loop counter ¢ reaches value
of 5000 or condition |z¢| > 2 is satisfied.
Implementation. The procedure M_prepare_job_pool reads the initial data
from the data file. It initializes the data structure:

struct t_init_data { int N, M, K; }.

The procedure S_initialize allocates the slave data structures. The proce-
dure M_take_piece_from_pool tracks the ¢; being processed and announces
whether the last job has been submitted. It prepares the description of one
job:

struct t_data{ int k; }.

The procedure S_calculate performs the search of the Mandelbrot points.
It returns the the point map:

struct t_result{ char color[1000%50]; }.

The procedure M_add_to_result accumulates the result into a file.

Table 3.
The Mandelbrot set search problem for N = 1000, M = 1000, K = 20.

Processors, p Time, T}, Speedup, S, Efficiency, E,

1 173.28 1.0 1.00
2 91.20 1.9 0.95
3 61.88 2.8 0.93
4 50.96 3.4 0.85
5 41.26 4.2 0.84
6 34.66 5.0 0.83
7 29.87 5.8 0.82

The computational results are shown in the Tab. 3. We note that efficiency
in this example is lower due to the big amount of the result data which has
to be passed from Slave process to the Master.

4. CONCLUSIONS

From the numerical results we conclude, that the Master-Slave Template li-
brary is efficient for a set of problems, where the initial problem is decom-
posable into a set of tasks. The tasks should be selected in such a way, that
the execution time of one task is considerably bigger than the communica-
tion time needed for data exchange. The one-step parallelization procedure is
convenient for the user of the library.

20 M. Baravykaité, R.Sablinskas

REFERENCES

[1] T.L. Freeman and C. Phillips. Parallel Numerical Algorithms. Prentice Hall, New York,
London, Toronto, Sydney, Tokyo, Singapore, 1991.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam. PVM:
Parallel Virtual Machine. The MIT Press, Cambridge, 1993.

[3] R.Sablinskas. Investigation of algorithms for distributed memory parallel computers.
Vytautas Magnus University, 1999.

[4] M. Snir, S. Otto, S. Huss-Lederman, D. Walket and J. Dongarra. MPI:The Complete
Reference. The MIT Press, 1996.

Programuy iSlygiagretinimas, panaudojant programinius Sablonus
R. Sablinskas, M. Baravykaité

Straipsnyje prapleciamos [3] idéjos apie uZzdaviniy, kuriuos galima spresti Seimininkas —
darbininkai tipo algoritmais, lygiagreciyjy programy konstravima, panaudojant pusiau au-
tomatinio programy islygiagretinimo jrankius (Seimininkas — darbininkai (SD) biblioteka).
SD biblioteka naudotina stambaus ir vidutinio gridétumo uzdaviniams. Ji gali biti taikoma,
bet kokiam uzdaviniui P, kurj galima i8skaidyti j uzduotis P = UlNzoti. Efektyviausia SD
biblioteka taikyti, kai visos uzduotys ¢; yra nepriklausomos.

Straipsnyje parodoma, kad lygiagretusis algoritmas yra sukuriamas automatiniu budu,
panaudojant SD biblioteka, su salyga, kad vartotojo programa tenkina tokius reikalavimus:

1. Pagrindine programa turi sudaryti duomeny inicializavimo, vienos uzduoties t¢; skai-
¢iavimo ir rezultaty apdorojimo blokai.

2. Vartotojas turi apibrézti pradiniy duomeny, vienos uzduoties duomeny ir rezultaty
strukturas.

Pertvarkius programa, kad tenkinty 8iuos reikalavimus, lygiagrecioji programos versija
gaunama kompiliavimo metu.

Straipsnyje pristatomos pusiau automatinio i§lygiagretinimo idéjos, kuriant nepriklau-
somus programinius sluoksnius/lygius.

Pateikiami pirminiy skaiciy radimo ir Mandelbrot aibés skai¢iavimo programy pavyzdziai.

