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ABSTRACT

This paper deals with the stability analysis of multicomponent iterative methods for solving
elliptic problems. They are based on a general splitting method, which decomposes a
multidimensional parabolic problem into a system of one dimensional implicit problems.
Error estimates in the Lo norm are proved for the first method. For the stability analysis
of Seidel type iterative method we use a spectral method. Two dimensional and three
dimensional problems are investigated. Finally, we present results of numerical experiments.
Our goal is to investigate the dependence of convergence rates of multicomponent iterative
methods on the smoothness of the solution. Hence we solve a discrete problem, which
approximates the 3D Poisson’s problem. It is proved that the number of iterations depends
weakly on the number of grid points if the exact solution and the initial approximation
are smooth functions, both. The same problem is also solved by the Stability Correction
iterative method. The obtained results indicate a similar behavior.

1. INTRODUCTION

In this paper we continue analysis of multicomponent iterative methods, which
was started in [1; 4]. Let consider the system of linear equations

S Ay =/, (1.1)
a=1

which are usually obtained after approximation of elliptic PDE problems by
finite-difference or finite-element schemes.
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Iterative methods for solving systems of linear equations are investigated in
many papers. A particular interest is given for problems approximating ellip-
tic problems of PDE. Most efficient iterative methods are obtained by using
the splitting method. Splitting methods for elliptic problems are reviewed in
[5; 7; 8; 9]. In particular, [6; 7] present an alternating direction method, [5]
describes factorization schemes. The convergence rate of such algorithms can
be increased if optimal non-stationary iterative parameters are used for the
definition of each iteration, see e.g. [7].

The content of this paper is organized as follows. In Section 2, we investigate
the convergence of multicomponent iterative scheme in the L, norm. The
results of [1; 4] are generalized for this norm. The spectral stability of two
Seidel type multicomponent iterative schemes is investigated in Section 3. In
this section we also investigate the stability of 3D Seidel scheme, the analysis
is done using numerical experiments. Finally, in Section 4 we present results
of numerical experiments. The convergence rate of multicomponent iterative
scheme is investigated for a problem with a smooth solution. It is proved that
the convergence rate depends on the smoothness of the initial approximation
of the solution.

2. MULTICOMPONENT ALTERNATING DIRECTION
SCHEME

In this section we investigate the convergence of the multicomponent alternat-
ing direction (MAD) scheme

s+1 s

p
Yo 11
y+pAa(sya—§a)+ZAB§6:f, a=12...,p, (2.1
=1
s 1&s
y=-> Ya,
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where ?ja is the s-th iteration of y,. This iterative method was proposed in
[2]. The following theorem was proved in [1], see also [4].

Theorem 2.1. Iterative scheme (2.1) produces a sequence converging uncon-
ditionally to the solution of problem (1.1) and the convergence rate is estimated
as

1
QP(SZI)Sng(?j), qzmin(l-{-mpr, 1+

2Mp7'> ’ (22)
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where we use notation:

p
S s 1 s s s
Qp(y)=||r||2+p272 loll3, =) Aaba—f,
a=1

14
1613=" > 8@, 3= =y, — i,
a,B=1,a>6

and m and M are the spectral estimates of the operator A:

m = min m,, M = max M,.
1<a<p 1<a<p

The convergence of (2.1) is proved in a very special norm Q,(y), hence it
is important to estimate the convergence in the Lo norm. The main result of

this section is given in the following theorem.

Theorem 2.2. If operators A, commute, then the following error estimate in

the Ls norm

s 1

19 =yl < | —+p7 ) =5V QY ).
15 valid.

s
Proof. Let denote ,Z: § — y the error function. Using the equality
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and the definition of 78", we obtain the equality

Ap=— ZA( Zé<aﬁ>)+ﬁ.

P
Hence it follows from the equation given above that
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P -1

here B, = A™'A, = (E + A;lAB) . If operators Aa,aa = 1,...,p
B=1, B#a

commute, then ||B,|| < 1 and we obtain the estimates

s L= s(a
A7 IITII+EZZIIU( |

a=1 =1

s
el

IN

IN

1 s s
—lrl +V2 05 (2.4)

It follows from (2.2) that

||ﬁ||s((§)sc2p(z3))l/2, ||5||33pr((§)s@p(§>)1/2. (2.5)

We now combine inequalities (2.5) with (2.4) to obtain the required estimate
of the error. B

3. SEIDEL-TYPE ITERATIVE SCHEME

In this section we investigate the convergence rate of Seidel-type iterative
scheme:

s+1 s N

ya_ya - s+1 £ s — —_
f+ZAB Us+ > As¥s=f, a=1,2,...,p, (3.1)
B=1 B=a+1

S* 8§ S* S S
Y1 :y17 ya =0.5 (ya+ ya_l) .

We also consider a modified Seidel iterative scheme (3.1), when Zj’{ is com-
puted by a symmetrical formula:

Ui =05 (51 + f),,) . (3.2)

We note that a modification of Seidel multicomponent iterative scheme was
proposed in [3]. The stability analysis of this scheme proved that it is only
conditionally stable. A quasi-optimal iterative parameter is obtained in [3]
for 2D problem.

3.1. Spectral stability analysis of 2D scheme

To apply the discrete von Neumann stability criteria to problem (3.1), we
write the global error as a series:

N-1N-1
éa = Z Z da,jk sin(jmez,) sin(kras), a=1,2,

=1

kol

j=1
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Substituting this expansion into (3.1), we obtain the equation for coefficients

s+1 s
djr= Q2 djx - (3.3)

where dj; is the column vector of spectral coefficients and ()5 is the stability
matrix of scheme (3.1)

1 —T>\k
1+ 71X 1+7);
Q2 =
05(1 —T>\j) 0.5(1+T>\j) +T2>\j>\k

(].+T/\j)(].+7')\k) (1+T/\j)(1+7')\k)

Now we consider the necessary conditions for the stability of scheme (3.1).
The eigenvalues of the amplification matrix (- satisfy the quadratic equation

2_<1+ 0.5(1 - 72) ) 05
a (IT4+7X) A +7A) L+7X

Theorem 3.1. All eigenvalues of stability matriz Q> satisfy inequalities
lgjr| <1, 1<j,k<N-1
unconditionally for any values of parameters T and h.

Proof. Application of the Hurwitz criterion gives that |g;x| < 1 is satisfied if
and only if

05 _, |y, 050-m) |_ . 05
147X ’ (T+72)(1+7A) L+7N\

Simple computations prove that both inequalities are satisfied unconditionally.
The theorem is proved. W

Now we will investigate the stability of the modified Seidel iterative scheme
S

(3.1)-(3.2). In this case, coeflicients d;;, satisfy the following equation

0.5 0.5 — T\
s+1 1 +T>\j 1 +T>\j s
djr= djr -
0.5(1—7'/\]') 0.5(1+T)\j)+7'2/\j/\k

(].+T/\j)(].+7')\k) (].+T/\j)(].+7'/\k)
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The eigenvalues of this amplification matrix satisfy the quadratic equation

q2 _ (1 _ ( 0.57'()\]‘ + /\k) > 0.5T()\j + /\k) _0. (34)

14+ 7)1+ 7A) (T4+7X)2(1 4+ TA)

Theorem 3.2. All eigenvalues of stability matriz of modified Seidel-type ite-
rative scheme satisfy inequalities

el <1, 1<jk<N-1
unconditionally for any values of parameters T and h.

The proof of the theorem is obtained by applying the Hurwitz criterion for
(3.4).

3.2. Spectral stability analysis of 3D iterative scheme
Let consider the model problem
3
Z Ay = (Nj + Mg + Ap) sin(jmaq) sin(knas) sin(lres) , (3.5)
a=1
which has the exact solution

y = sin(jmzy) sin(kras) sin(lrws) .

The solution of 3D scheme (3.1) - (3.2) can be represented as

Yo = ;la sin(jmay ) sin(kraws) sin(lres), a=1,2,3,

where d,, a = 1,2, 3, are computed explicitly

s s a—1 3 3
s+1 1 da + dafl s+1 8
da:1+T>\a< 5 — E T)\B dp — E T/\gdg-l- E 7'/\5).
B=1 B=a+1 B=1

8 8 S
Here we take dop=d,. We estimate the error of the sth iteration d, by the

following formula
s s
e = max
1<a<3

da

Our goal is to investigate numerically the dependence of the convergence rate
of the iterative scheme (3.1)—(3.2) on m and M, i.e. spectral estimates of
the matrix A. Numerical experiments proved that such modification of Seidel
iterative scheme is more efficient than the initial version of Seidel scheme (3.1).
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Table 1.
The optimal value of 7 as a function of m and M.

m M 0 S(To)
10 4000 0.00209 148
10 16000 0.00105 294
10 64000 0.00052 551
10 16000 0.00105 294
40 16000 0.00052 149
90 16000 0.00034 102

In Tab. 1 we present optimal values of 7 and numbers of iterations S(7o)
for different spectral intervals. We used ¢ = 10~* in these experiments.
It follows from results presented in Tab. 1 that

4. NUMERICAL EXAMPLES

In this section we will present results of numerical experiments. We apply the
MAD iterative scheme (2.1) to the following problem

3
Z Aay = f) (x1i7$2j7$3k) € W, (41)
a=1

Y(@a,iv1) = 2y(Tai) + Y(Ta,i-1)
h? ’

Aay:_

where y is a grid function, defined on the uniform grid wy, with (N + 1) x
(N +1) x (N + 1) grid points, covering the cube [0,1] x [0,1] x [0,1]. The
exact solution y satisfies the boundary condition y = 0.

Our goal is to investigate the dependence of the convergence rate on the
smoothness of the initial approximation. First, we solve (4.1) with the exact
solution given by

y(z1, 0, x3) = sin(mwzy ) sin(wzs) sin(wxg)e(””1+’”2+””3)2 . (4.2)

In Tab. 2 we present sample results obtained using MAD iterative method.
The first column lists the parameter 7, the second, third and fourth columns
show the numbers of iterations, required to reduce the error, measured in the
Lo norm, on the (N + 1) x (N +1) x (N + 1) grid by a factor 1/e. Functions
Yo = 0 are taken as initial approximations. The accuracy of iterations was
taken ¢ = 1074



8 V.N. Abrashin, R. C’iegis, V. Pakeniené, N.G. Zhadajeva

Table 2.
Convergence analysis of MAD scheme for a smooth solution.

T N =10 N =20 N =40 N =80
0.025 61 113 167 205
0.010 34 47 68 83
0.005 63 62 62 63
0.0025 121 120 120 120

We see that convergence rate of MAD iterative scheme depends very slightly
on the number of grid points. This fact can be explained by taking into
account the fact that the solution of (4.1) and the initial approximation both
are smooth functions, and the iterative method is unconditional stable. Hence
only low frequency modes of spectral representation of y are important in the
analysis, since the total energy of high frequency range modes is below the
specified accuracy €. A similar property is valid for the other unconditionally
stable iterative schemes. For example, let consider the stabilization correction
(SC) iterative method (see, e.g. [5]):

s+1/3 S

T Ay Aoy + Ay =
+2/3 _ ,s+1/3

yst2/3 st/ A, (ys+2/3 _ ?j) -0,
s+1 _ ,,5+2/3

i Ty +A3 (ys—i-l_?j) =0.

In Tab. 3 we present results obtained using SC iterative method for the
same problem (4.1)—(4.2).

Table 3.
Convergence analysis of SC iterative scheme for a smooth solution.

T N =10 N =20 N =40 N =80
0.025 56 113 144 151
0.010 34 35 36 37
0.005 63 63 63 63
0.0025 121 120 120 121

The observed convergence rate of MAD iterative method becomes close to
one established in Theorem 2.1 when we take a non-smooth initial approxi-
mation of the solution. We now choose the exact solution y = 0 and consider

the case with the initial approximation g(} = 1 on the interior points of the
grid. The results are presented in Tab. 4.

Now the spectral representation of the initial global error includes all modes,
but high frequency modes still are decreasing sufficiently fastly.
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Table 4.
Convergence analysis of MAD iterative scheme for a non-smooth initial approximation.

T N =10 N =20 N =40 N =80
0.015 41 130 422 1705
0.010 36 87 282 910
0.005 66 66 142 456
0.0025 261 258 256 256

Is the last example we added to the initial approximation three high order
modes

g(}ijk =1+ sin(7z1 ) sin(wxz) sin(7xs)
+sin((N — D)zzy ) sin((IV — 1)wzs) sin((N — 1)7zs)
+ sin (X2t ma) sin(N — 1)7as) sin((N — 1)7was)
+ sin (X2 72y ) sin (2L 7)) sin((N — 1)) .
In Tab. 5 we present results obtained with MAD iterative method.
Table 5.

Convergence analysis of MAD iterative scheme for
a perturbed non-smooth initial approximation.

T N =10 N =20 N =40
0.020 97 405 1628
0.010 50 204 816
0.005 66 104 409
0.0025 128 126 206

CONCLUSIONS

The results of numerical experiments prove that iterative methods converge
faster for systems of linear equations which approximate elliptic boundary-
value problems. Such a property is valid for iterative methods which are
unconditionally stable. In this case the high order modes of the error do not
influence the convergence of the iterative method, assuming that the total
energy of these modes is below the specified error tolerance. It is well known
that for smooth functions high order modes decrease very fastly.
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Zeidelio tipo daugiakomponentinio itercinio metodo stabilumo
analizé

V.N. Abraginas, R. Ciegis, V. Pakeniené, N.G. Zadajeva

Siame straipsnyje tesiama daugiakomponentiniy iteraciniy metody stabilumo analizé, pra-
déta ankstesniuose autoriy darbuose. Irodytas vienos schemos sprendinio konvergavimas
Lo normoje. Spektriniu metodu iStirtas dviejy Zeidelio tipo iteraciniy schemy stabilumas
dvimaciu atveju, jrodyta, kad dvimaciu atveju abi schemos yra nesalygiskai stabilios. Tri-
magcio uzdavinio spektrinio stabilumo analizé atlikta skaitiskai. Irodyta, kad modifikuotoji
schema pasizymi didesniu konvergavimo greiciu.

Paskutiniame skyriuje pateikti skai¢iavimo eksperimento rezultatai. Buvo sprendziamas
trimatis Puasono uzdavinys, aproksimuotas standartine baigtiniy skirtumy schema. Istirta
iteraciniy metody konvergavimo greic¢io priklausomybé nuo sprendinio ir pradinio artinio
glodumo. Parodyta, kad baigtiniy skirtumy schemoms konvergavimo greitis gali silpnai
priklausyti nuo diskreciojo tinklo mazgy skaiciaus, jei pradiné paklaida yra glodi funkcija.
Daugiakomponentiniai iteraciniai metodai palyginti su stabilizuojancios pataisos metodu,
kuris irgi yra nesalygiskai stabilus.



