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ABSTRACT

In the present study the model of plastic deformation of porous powder materials (PPM)
is described and numerically simulated. This model enables prediction of change of funda-
mental technological parameters of PPM in plastic deformation conditions, i.e. porosity,
pore size, specific surface and mechanical properties. Porous media is described by unit cells
consisting of eight powder particles. The parameters of unit cell (the distance between the
centers of particles, the angles of the array and the dimensions of interparticle connections)
form the model of porous material and define its technological characteristics. The model
takes into account the effect of deforming anisotropy on PPM properties. Calculations are
performed in nonorthogonal coordinates connected with unit cell. In the case of uniaxial
straining obtained numerical results have shown good agreement with the experimental
results.
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1. INTRODUCTION

The development of science and engineering highlights the problem of cre-
ation of new technologies which produce porous materials with improved per-
formance. A number of technologies for making porous materials are based
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on using plastic deformations. In this process prognosis of performance by
mathematical modelling is an important aspect which leads to economy of
the resources during technological experiments. The early investigation of the
mechanical behavior of granular materials was carried out by Coulomb [2].
Drucker and Prager [4] and Shield [10] have applied the theory of elastic—
plastic solid for describing the mechanics of granular materials. There are a
number of the studies [6; 9] in which phenomenological approach are used,
but in these investigations the main structural parameters of the porous ma-
terial: the dimensions of the particles, the angles of the array of particles,
the dimensions of the interparticle contacts, etc., are not considered. The
discrete—contact theories which are based on the dependence of the process of
plastic deformation on the structural parameters of the porous material, are
developed in the papers [3; 5; 7; 13; 14].

The present report is devoted to mathematical investigation of the processes
of plastic deformation of porous powder materials and to the definition of
change of their fundamental technological parameters.

The generalized discrete-contact model of PPM which describes the in-
terrelation between their structure and physic-mechanical parameters of the
stressed-strain state in the process of pressing is suggested. The structure of
a porous body is represented as a certain regular array of powder particles of
spherical shape. The object of mathematical investigation is an elementary
cell. It represents a parallelepiped made by eight powder particles contacting
with one another (Fig. 1). At each point of the elementary cell, the laws of
the classical mechanics are satisfied. The parameters of the elementary cell

Figure 1. The model of the elementary cell.

correspond to the basic parameters of the PPM structure: the dimensions of
the sides a; (1 = 1,2, 3) correspond to the distances between the centers of the
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particles, the corners in the sides ©; (i = 1,2,3), to the angles of the array
of particles, the dimensions of the interparticle contacts z; (i = 1,2, 3), to the
dimensions of contact necks.
Using the parameters of the model, it is possible to calculate structural
properties of PPM such as porosity, specific surface and the size of pores [15].
The geometric calculations yield the following expression for the porosity
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where V; is the volume of the elementary cell, V}, is the volume of the powder
particles in the elementary cell, ay and ag are the volumetric and surface fac-
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tors of the shape, D is the diameter of a powder particle and D; = 2 (S#)

ay
is the effective diameter of a powder particle, where S.4; (i = 1,2, 3) is the area
of the contact lying in the direction of the i-th axis, Sar;(i = 1,2,3) is the
area of the powder material on the i-th side of the elementary cell.

2. MATHEMATICAL MODEL

The investigations are done in a nonorthogonal coordinate system (1,2,3) con-
nected with the elementary cell (Fig. 1). The orientation of this coordinate
system relative to the main axes of the stress tensor is defined by the gener-
alized Lame coefficients which determine all the geometric properties of the
nonorthogonal coordinate system and are to be found from the relation

where €;(i = 1,2, 3) and €,(a = z,y, z) are the basic vectors of the nonorthog-
onal coordinate system and of the external Cartesian coordinate system, re-
spectively.
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Using the theory of tensor calculus [1], for the nonorthogonal coordinate
system we can write a metric tensor

9ij = Z hiahja.
(o7
A contravariant metric tensor ¢*™ is defined from the equation
> 9" gm; =6,
m

where (5;? is the Kronecker delta.

In turn, the components of the local stress tensor ¢ in the nonorthogonal
coordinate system are expressed in terms of the values of the main components
and Lame coeflicients

i i
o¥ = E hyhl oq,
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here hi, = 3 ¢"™hmq represent differential parameters of 1-st order.

The model is based on the assumption (used in the majority of the discrete—
contact theories of the plasticity of porous materials) that the process of
plastic deformation of PPM is almost completely localized in the zone of
interparticle contacts [6; 11; 12]. The laws of plastic deformation of material
are governed by the form of the plasticity function of this material. To find
the condition of plasticity, we shall analyze the stressed—strain state of the
powder material in the regions of the interparticle contacts of the elementary
cell.

Let us consider the section of the elementary cell divided by the planes
drawn in parallel with j-th coordinate plane of the nonorthogonal coordinate
system and passing through the center of the contact located in the direction
of the k axis. For example, in the direction of axis 1 these sections have the
form, which is presented in Fig. 2. Their areas are equal to

S5 = Set;0; + (1= 8)Sw;(k, 5 =1,2,3).

In order to calculate the local stress tensor in the regions of the interparticle
contact, we will write the equations of the balance of forces in the indicated
sections.

The condition of the transition of the powder material in the regions of
interparticle contact to the state of plastic deformation is determined on the
basis of Mises’s plasticity criterion. According to this criterion, the intensity
of the local stresses in the region of the k-th contact is equal to
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Figure 2. The sections of the elementary cell passing through the center of the contact
located in the direction of the £k = 1 axis .

where 6? represents the local value of the stress tensor averaged over the
region of the k-th contact, 7 is the powder material yield limit. Taking into
account the fact that the localization of deformations is in the interparticle
contacts, the total energy of shear plastic deformations in the elementary cell

is determined by the sum (over all the contacts) of the intensities:
j = Z Jk = 37'%.
k

Having substituted the values of the components of the local stress tensor
in the regions of interparticle contacts into the latter equality, we obtain the
plasticity condition expressed in terms of the components of the stress tensor
in the main axes

ZAagUaUﬁ =12, (2.1)
a?ﬂ
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Using the theory of plasticity and assuming that the function of plasticity
is the plastic potential [8], we shall represent the components of the strain
tensor in the main axes in the following form:

deq =24\ Aapog, (2.2)
B

where d) is an indefinite multiplier eliminated in calculations.

The changes in the geometric parameters of the elementary cell are deter-
mined by the magnitude of deformation. In this case, it is convenient to use a
new nonorthogonal coordinate system connected with the deformed cell. By
means of simple transformations we obtain the Lame coefficients for the new
nonorthogonal coordinate system after deformation in the form

hia(l + d[:‘a)
(Za(hia)2(1 + dEa)2)

The dimensions of the sides of the elementary cell after deformation are

hy = 75 (2.3)

@ = a (bl +ds0)?) 7 (1= 1,2,3). (2.4)
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The angles of the array take on the values

Ea hjahka(l + d&‘a)2
1/2
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and the subscripts (i, 7, k) take on the values (1,2,3), (2,3,1), (3,1,2).

We assume that during plastic deformation the powder material is incom-
pressible and the particles are strained without destructions and ruptures.
According to the definition of the increment of deformations, we obtain the
law governing the change in the powder material areas on the sides of the
elementary cell [15]

O} = arccos (2.5)

dSMj [/0 gjj GSM] j .
= 0V > W hjadea(j =1,2,3). 2.
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The values of the derivative %

25 will be determined approximately. Let
us assume that the surface of a powder particle is described by the smooth
enough function S, = Sp(2) . Let Sp(2) = Set+bz+cz? , where S, is the area
of the section of the interparticle contact. Let us determine the coefficients b

and ¢ from the conditions:
Sp'z:a/2 =S,
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where S; is the area of the maximal section of the powder particle
a/2
/ Sp(2)dz = 0.5V,
0

Using these conditions we obtain b and ¢

4[3V, = a($1 +28)] _ —12[2V, — a(Si + Sat)]

a2 ’ a3

To find the values of 2 M,’ we shall consider various ways of isolation of an
elementary cell (see Flg 3)

e
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Figure 3. Schemes of the elementary cell containing on its surface a) interparticle contacts
and b) maximum sections of a powder particle.
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Let interparticle contacts be present on its surface. Then the value of
85, (z)|

corresponds to —o- Equation (2.6) is the following

) A/ qli .
dSets _ 4 Vo Z 5 [3Vh — a;(S1j + 28eij)] D hihjadea, j=1,2,3. (2.7)
Setj (Sctj) a; p

Similarly, for the case where there are maximum sections of a powder particle
on the side of the cell, the value g Mi corresponds to 85 (z) |2—a/2 and equation

(2.6) is the following

dSi; _4 Vov ¢’

Slj - (51])2 2

J
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Thus, the system of equations (1.1)—(1.3), (2.1)—(2.8) allows one to deter-
mine the laws governing the transition of PPM to a plastic deformation state
and to calculate changes in their basic properties on deformation.
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3. NUMERICAL EXPERIMENTS AND CONCLUSIONS

For numerical investigation, not limiting the generality, we consider uniaxial
compression. In this case, the lateral surfaces of the samples are not loaded,
which ensures a stressed state in which only the component o, of the stress
tensor differs from zero (provided there is no friction on the loaded surface).
In this case, the condition of plasticity (2.1) takes on the following form:

2

2 _
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The law of flow associated with the function of plasticity (2.2) is

A(IZ
AZZ ’

de, = de,

Using the model, the calculations were carried out for samples of bronze pow-
der with the initial porosity P = 39%.
In Table 1 parameters used in computations are presented.

Table 1.
Parameters used in computations.

Dimension of side of elementary cell

in direction of k — azis ag(mm) 1.x 1074
Dimension of interparticle contact

in direction of k — azxis zr(mm) 2.5 x 1076
Volumetric factor of share ay 1.0

Sur face factor of share as 1.0

Radius of particle R(mm) 0.5 x 1074
Uniaxial compression o, (PA) 50.0 = 300 x 10~
Powder material yield limit T 285.0 x 106
Modulus of elasticity of bronze E 19.62 x 1010

Let us present some results of numerical experiments. In Fig. 4, the depen-
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Figure 4. The dependence of the porosity and uniaxial compression on the
degree of axial compression deformation.
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dence of the porosity and axial compression on the degree of axial compression
deformation is shown. In Fig. 5 the results of investigations of the depen-
dence of the porosity on the magnitude of axial compression deformation for
various angles in the elementary cell are given. Fig. 6 illustrates the influence
of the degree of axial compression deformation upon the sizes of pores and
the specific surface. The analysis of the results also shows that in the plane
containing the deformation axis there is a substantial change in the shape of
particles and pores, no changes are observed in the plane perpendicular to the
axis. The theoretical data are confirmed by results of experimental investiga-
tions. The relative deviation of the theoretical results from the practical data
does not exceed 10%.
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Figure 5. The dependence of the porosity on the degree of axial compression deformation
for various corners in the elementary cell.
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Figure 6. The dependence of the sizes of pores and the specific surface on
the degree of axial compression deformation.
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Plastisky deformacijy modeliavimas poringose milteliy medZiagose
G. Zayats, R. Kusin, V. Kapcevich

Siame darbe apraSomos ir nagrinéjamos plastiSkos poringy milteliy medZziagos (PPM) de-
formacijos, atlieckamas skaitinis jy modeliavimas. Sis modelis leidZia prognozuoti PPM
technologiniy parametry kitimg plastiniy deformacijy savybése. Poringosios medZiagos
vienetiné lastelé apraSoma aStuoniomis milteliy dalelémis. Sios vienos medZiagos lastelés
parametrai formuoja poringosios terpés modelj ir apibrézia jo technologines charakteristikas.
I 81 modelj jtraukti PPM savybiy neizotropiniai efektai. Skai¢iavimai atlikti neortogonalioje
koordinaciy sistemoje susietoje su vienetine lastele. Gauti skaitiniai rezultatai neaSinéms
itampoms rodo gera atitikima eksperimentiniams matavimams.



