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ABSTRACT

The asymptotic behavior of the solution of a parabolic dynamical boundary-value problem
in a periodically perforated domain is analyzed. The perforations, which are identical and
periodically distributed, are of size . In the perforated domain we consider a heat equation,
with a Dirichlet condition on the exterior boundary and a dynamical boundary condition on
the surface of the holes. The limit equation, as € — 0, is a heat equation with extra-terms
coming from the influence of the non-homogeneous dynamical boundary condition.
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1. INTRODUCTION AND FORMULATION OF THE PROBLEM

The aim of this paper is to study the asymptotic behavior of the solution of
a parabolic dynamical boundary-value problem in a periodically perforated
domain. Such problems, although not too widely considered in the literature,
are very natural in many mathematical models as partially saturated flows in
porous media, heat transfer in a solid in contact with a moving fluid, diffusion
phenomena in porous media (see [2] and [4] and the references therein).

Let Q be a fixed bounded open subset in RY and let us perforate it by
holes. As a result, we obtain an open set 2°, which will be referred to as
being the perforated domain; € represents a small parameter, related to the
characteristic size of the perforations. We shall deal with the case in which the
perforations (holes) are identical and periodically distributed and their size is
of the order of €. In the perforated domain we consider a heat equation, with
a Dirichlet condition on the exterior boundary and a dynamical boundary
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condition on the surface of the holes.
Our main motivation is to study the asymptotic behavior, as € — 0, of the
solution u® of the following dynamical boundary-value problem:

{ g
= f(tw), i O x (0T),
) (1.1)

u(0,z) = u%(z), in QF,
u®(0,z) = v°(z), on OF¢,
u® =0, on 9N x (0,T).

\

Here, f € L?(0,T,L*(Q)), g € L*(0,T, H}(?)), u® € L?(2), v° € L*(0F?),
[0,T] is the time interval of interest and OF® is the boundary of the holes.
Also, let us notice that in the second equation of (1.1) the contribution of the
dynamical part of our boundary condition on the surface of the holes and the
contribution of the external force acting on the surface of the perforations are
well-balanced by the presence of the parameter e.

We shall prove in Section 4 that there exists an extension % of uf into all
Q x (0,T) such that Y strongly in L%(0,7; L%(Q)) and u is the unique
solution of some boundary value problem for PDE (the macromodel).

The plan of the paper is the following one: in Section 2 we introduce some
useful notations and assumptions. In Section 3 we give the main convergence
result of this paper, i. e. the macromodel. For obtaining this macromodel, we
need some preliminary results, which are given in Section 4. The last section
is devoted to the proof of some a priori estimates, independent of ¢, for the
solution of the micromodel and to the proof of the convergence result.

The method we follow in this paper is the so-called energy method of L.
Tartar (see, for instance, [15; 20]). Using the same method, problems similar
to this one have been considered by many authors. Among others, let us
mention the papers of D. Cioranescu and P. Donato [6; 7], C. Conca and P.
Donato [12], C. Conca, J.I. Diaz and C. Timofte [11], C. Conca, F. Murat
and C. Timofte [13]. The homogenization of Laplace and Poisson equations
in perforated domains with holes of the same size as the period and with
homogeneous Dirichlet conditions on the surface of the holes and on the ex-
terior boundary of the domain was treated in [6]. The same problem, but
with homogeneous Neumann boundary conditions on the holes, was treated
in [9]. For the non-homogeneous case, we can refer to [12]. The homoge-
nization of the Poisson equation (or even a more general elliptic equation)
with non-homogeneous Fourier boundary conditions on surface of the holes
has been treated in [6; 7].

Apart from the energy method, in the last three decades several alternative
methods have been developed for studying such problems. Among them, let us
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mention the I'-convergence of integral functionals, originated in [14] (see, also,
[18]), the theory of two-scale convergence ([1; 22]), the method of two-scale
asymptotic expansion and, also, averaging methods ([3; 19]).

2. NOTATION AND ASSUMPTIONS

Let © be a bounded connected open set in RN (N > 2), with boundary 9Q
of class C? and let [0,7] be the time interval of interest.

Let Y =[0,11[x ... x [0,In[ be the representative cell in RN and F an open
subset of Y with boundary OF of class C?, such that F C Y.

We shall denote by F'(e,k) the translated image of eF' by the vector ekl,
k € ZN, kl = (kily,. .., knIN).

F(e,k) =ekl + F).
Also, we shall denote by F* the set of all the holes contained in Q. So

Fe = | J{F(e,k) | F(e,k) C Q}.
keEK

Let Q° = Q\ F=. (see Figure 1).

o O O O

o O O O

o O O O

o O O O O
Y

Figure 1. Definition of the regions.

Hence, ¢ is a periodically perforated domain with holes of the same size as
the period. Let us remark that the holes do not intersect the boundary 9f2.
We shall use the following notations:

= Y
Y*=Y\F, =11
Y]

Also, we shall denote by x° the characteristic function of the domain Q°.
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Let us introduce the following usual function spaces and norms:
H = 12(@), ()0 = [ uvds, [ulf, = (w,u)a,
Q

T
H=L0.73H), (wo)ax = | @O,00)ads, Jullyr = @ u)ar,
0
V= Hl(Q), (U,U)V = (UJU)Q + (vua VU)Q,

T
YV =L2(0,T;V), (u,v)y = / (u(t), u(t)) vt
0

3. THE CONVERGENCE RESULT

As we shall see in Section 4, for f € L*(0,T,L*(?)), g € L*(0,T, Hy()),
u® € L2(Q2) and v° € L?(OF¢), there exists a unique solution u* of the problem
(1.1).

The main result of this paper is the following one:

Theorem 3.1. Let u° be the unique solution of the problem (1.1). Then, there

exists an extension U of u® into all Q x (0,T) such that %= u strongly in
H and u is the unique solution of the following system (the macromodel):

|Y*| |8F|> ou |Y*| |8F| .
+—— ) = - V(QVu) = f+——g9, inQx(0,T),
( v ) e YOV E T ©.7)

u=0, on 0Q x (0,T),

u(0,z) = u%(z), inQ,

(3.1)

where Q = (g;;) is the classical homogenized matriz whose entries are defined
as
Y| 1 In;
%ij = 5710 — 7o Y
YOV YTy Oy

in terms of the functions n;, solutions of the system

—-An; =0, in Y™,
0(n; —y;)/0n =0, on OF, (3.2)
n; 18 Y — periodic,
here y; being local coordinates in Y*.
Thus, in the limit, when ¢ — 0, we get a classical constant coefficient

heat equation, with a Dirichlet boundary condition, with a non-homogeneous
right-hand term and with a constant (due to the periodicity) extra-term in
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front of the time derivative, coming from the well-balanced contribution of
the dynamical part of our boundary condition on the surface of the holes.

Remark 8.1. The weak formulation of the problem (3.1) is:
Find u € L?(0,T; H3 () N C([0,T]; L*()), u(0) = u°, such that

v ) (,, %)
(B2 (0, 22) 4+ (@vu,v
<|Y| 7T )\t ) o, @V VDo

= %(ﬂ Plar + %(g,w)m, (3.3)
for any ¢ € D = C§°((0,T) x ), or, equivalently:
_|Y*| /T( o ¥'(s)ds + (1(0), ), ¥(0) —@ T( o1 (s)d
) \J, Pevises Ul ¥a ] /), (wPav(s)ds
T
- w0900 00) + [ (@, Vol vierds
* T P T

= ||};||‘/0 (f;QO)Q@b(S)dS‘i' % ; (97(‘0)9 ¢(s)ds, (3_4)

for any ¢ € Hg(Q), ¢ € C([0,T]), $(T) = 0, %(0) # 0.

Remark 3.2. There is one and only one solution of the weak macromodel
problem.

4. PRELIMINARY RESULTS

4.1. The Existence Result

In order to obtain the existence and the uniqueness of a solution of problem
(1.1), we shall make use of the following general result for abstract parabolic
equations, due to J.L. Lions (see [5] and [16]).

Theorem 4.1. Let H be a Hilbert space, with scalar product (,) and norm
| . |. We shall identify H with its dual. Let V be another Hilbert space, with
norm || . ||. Suppose that VC H, with continuous and dense embedding, such
that VCHCV'. Let0 < T < oo and a : VX V= R be a continuous and coercive
bilinear form. For every f € L*(0,T;V') and uo € H, there erists a unique

function u such that w € L*(0,T; V)N C([0,T]; H), (fl—qz € L?(0,T; V') and

<f71§<t),v> +a(u(t),v) = (f(),0), ae. te[0,T], weV,

u(0) = upg .

(4.1)
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Here, (, ) denotes the duality between V' and V. Also, one has the estimates:

”U”Lz(o,T;V) < C(||f||L2(0,T;V’) + [luollg),
' du

ot
with constants C' depending on T .

< Clllullz2,75v) + 1)
L2(0,T;V")

In our case, we choose H = L?(Q°) x L2, (99Q°),
V = { (w1, u2) € Hho(@) x HLLZ(09) /us = (1)}

1
a(u,v) = =) Vuy - Vurdz, ug = (u®,0°),

where u = (u1,u2), v = (v1,v2). In what follows, we shall use the standard
Sobolev spaces Hjq, (2°) and Hj,(0€2), for r > 0, which are closed subspaces
of H™(9°) and H"(09Q°), respectively, and the subscript 92 means that, re-
spectively, traces or functions in 9€2°, vanish on this part of the boundary of
Q¢. Let us notice that, in fact, we can consider the given v° as an element of
L24(99°).

So, we get immediately from Theorem 4.1 the existence of a unique solution
of the problem (1.1),

4 () € I2((0,T); V)

(u®,7(u)) € L*(0,T; V) n C([0,T]; H), 7

with the initial conditions from (1.1).
The weak formulation of our problem is the following one:

Find (uf,7(u)) € L2(0,, V)NC((0, T} H), (7)) € L2((0,T); V),

(0 (0), 4(u)(0)) = (u,0°), such tha

(G0N wa)) + 3 [ v Vote =2 [ potos [ (oo
(4.2)

Qe
for any (v,y(v)) € V.

1
Note that here, in H},(Q¢), we take the scalar product — [,,. Vu - Vodz.
€

If we suppose that we have a better regularity of the data, we can get a more
regular solution ([16]). More precisely, if the initial data «® € H2(Q)NH (),
v = u® |gre and f € CY([0,T),L3(R)), g € C([0,T], H}(Q)), our solu-
tion satisfies u® € C([0,T); H*(Q°) N H}o,(Q°)) N CH([0,T]; L*(Q¥)) , u§ €
C((0,T); H}q(92)). For such regular solutions, the weak formulation of the



Parabolic Problems with Dynamical Boundary Conditions 343
system (1.1) is the following one:

Find u® € C([0,T]; H* () N Hjo (7)) NC* ([0, TT; L*(2)), u*(0) = u® |q-
such that

8<p) Oy
- us’_ +(VUE;V<P) € —€ (uga_
( Ot ) qe r ant Ot ) ope 1
= (fa SO)QE,T_}_E(gJ(p)f)FE,T ) (43)

for any ¢ € D, or, in the other possible form

- / (4 0) e ' (3)dd5 — (u (0), ) e 1(0) + / (Vo V) (s)ds

T

e / (4 0) pre ' (3)d5 — & (1" (0), ) e 9(0)
OT T

- / (f, @) (s)ds + ¢ / (0, @) ppe V(s) ds, (4.4)
0 0

for any ¢ € H[})Q(Qs)a 1/) € Coo([oaT])a ":[)(T) =0, ¢(0) # 0.

4.2. A Convergence Result

For obtaining the macromodel, we have to pass to the limit, with ¢ — 0, in
some surface integrals on the boundary of the holes. For doing this, we shall
make use of a convergence result based on a technique introduced by M. Van-
ninathan ([21]), which transforms surface integrals into volume integrals. This
method was also used for the elliptic case in [7] and [§].

For a given function h € L?(9F), following [4], let us denote

_ |oF]

Ch =
Y|

Mar(h),

where Mpp(h) is the mean value of h over OF. Also, let up, = 6Cp. In
Y-
vl

. |OF| |OF| .
particular C; = — and p; = ———, since 0 =
[Y*| Y|

For h € L*(OF), we define the measure 5 by

Giveh = [ 1(Z)plaio, for any ¢ € HY(®).
8F¢ &

In [3] it was proved that

U5, — pp, strongly in H=(Q), (4.5)
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with pp = ©C},. Moreover, if h is constant and the boundary of F' is smooth
(of class C?), the above convergence takes place strongly in W ~=1°°(1).

In the general case, when h € L?(0F), it was proved in [4] (Corollary 4.2)
that, if {w®} is a sequence such that w® € H{(Q) and w® — w weakly in
Hg(Q), then the corresponding linear form u§ defined on H'(2¢) satisfies:

<pi,w‘|€95> — uh/ wd.
Q

4.3. An Extension Lemma

Since the solution u® of the problem (1.1) is defined only in Q2°, we need to
extend it to the whole €. For finding a suitable extension u® into all €2, we
shall use the following well-known extension lemma ([9]):

Lemma 4.1. (i) Any function ¢ € H'(Y*) can be extended to a function o
in HY(Y'), such that

|v 4|, <clvelly.,

(ii) Any function ©° € H'(QF), Pipq = 0 can be extended to a function (;E in
HL(Q), such that

o

<ClIVetlie
Q

where C' is a constant independent of €.

5. A PRIORI ESTIMATES. PROOF OF THE CONVERGENCE
RESULT

In this section we shall prove the convergence result given by Theorem 3.1,
for the solution of the problem (1.1). This solution being defined on 0, we
need to extend it to the whole 2, in order to be able to state a convergence
result. For doing this, we shall need some accurate estimates for the solution
u®, independent of €.

In what follows, we shall denote by C different constants which are inde-
pendent of e.

Proof. [Proof of Theorem 3.1.] We shall prove first the convergence result
given by Theorem 3.1 for regular initial data and so, for regular solutions ug,.
Then, by performing a classical regularization process of our initial data, we
shall be able to prove immediately the convergence result for the general case.

Step 1. Regular data. Let us consider first the case in which our data is
regular. In fact, let u0 € H2(Q) N Hg (), v = u? |sq- such that

(u |qe,02) = (u° |, v°) in L?(0°) x L3q(09F).
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Also, let f, € C1([0,T], L*()), g, € C*([0,T], H}(Q)) such that f, — f in
L2(0,T,L?*()) and g, — g in L?(0,T, H} (2)).

For such regular data, for any n, we know that there exists a unique solution
(us,v(us)) of the problem (1.1), such that

u;, € C([0, T); H*(Q°) N Hpe(Q)) N C* ([0, T]; L* (7)),
(u,)e € C((0,T); Hzn(2°)).
In this step, working only with regular solutions w;,, we shall omit to write
explicitly the index n.
For the special geometry of our problem, we can use the following well-
known lemma, due to C. Conca ([10]):
Lemma 5.1. There exists a positive constant C, independent of €, such that
1
lvllge < ClellVullge + &2 [[ollpe), (5.1)
for any v € H'(QF), v =0 on 09Q.

The next proposition gives us some classical energy estimates for such a
regular solution.

Proposition 5.1. For the system (1.1), the following classical parabolic esti-
mates hold:

2 2 2
sup e o,1) (105 llge + € lull5p:) + [[VUillge 7 < C,
€12 €12 2
||Ut||Qa,T +e ||ut||an,T + SUp 4e(0,7) [l ”Hén(QE <C.

Proof. Let us multiply the first equation (1.1) by u®. We have

|

1d .
2 112 £112 € €
lullge + €55 lu®|l5pe + VUS| = futdr +¢ gu®do .
2dt
Qs OF¢

DN | =
U

t

Using the Cauchy—Schwartz and Young’s inequalities, we get

d 2 d 2 2
e+ 25 T e + 2V
2 2
< 2| fllgs lufllge +ellgllape +ellullape - (5.2)
From the trace theorem it follows that

ellu ()5 < Cllu*(0)llge + &> [V (0)lIge)-



346 C. Timofte

So
ellu ()5 < C. (5.3)

Also
ellgll5p: < C. (5.4)

Now, using Poincaré’s and Young’s inequalities, from (5.2), (5.4), we get
d €12 d e(12 €2 N2
7 1 llge + e lwllop: +[IVullg: < € +ellwliape. -
Integrating in time and using Gronwall’s lemma, we finally obtain
lullgpe 7 < Ce™ 3. (5.5)
Moreover, taking the supremum on (0,7), from (5.2)—(5.5) we get
sup g (0,1 (105 [l5e + € U5 ) + [Vl |G 7 < C.

Let us multiply now the first equation (1.1) by ui. We have:

t t t
/ / (u§)2+/ Vus-Vu§+5/ / (uf)?
0 € 0 JQs 0 JOFe
¢ ¢
=/ fu§+6/ / gug -
o Jas o Jor:

Using Young’s inequality and evaluating the supremum over (0,7'), we get:

2 2 2
||u§”QE,T te ”uinaps,T +8UD 4e(0,71) 1wl (e
Bﬂ( )
T
(12 2 2
P e A

But
2
ellgllzpe < C-

So, assuming the boundedness of our data u°, f and g (u°, f, g # 0), we
obtain:

2 2 2
||u§||Q€,T +e ”Uinaps,T + SUp 4e(0,T) ||UE||H}m(Qs <C.
In fact, one has [|[u®|,, < C. R

Using Lemma, 4.1 and classical parabolic estimates, for such a regular solu-
tion, one gets
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Theorem 5.1. There exists an extension u® of the solution u® of problem
(1.1) into Q, such that

OVuE
ot

ou®

ot

el g + Ve, + <C, (5.6)

Q.

lo

Q

for any t <T. Here, C depends on the data and on T.

Proof. The proof follows immediately from the extension lemma, and classical
parabolic estimates. l

Let us introduce the vector £ = x¢ V'Zﬁ . Recall that 6 is the weak-% limit
in L*(9) of x°.

Lemma 5.2. There exist a function u € V (u will be the unique solution of
the limit system (3.1)) and a function & € H such that, at least after extraction
of a subsequence, we have the following convergences:

uf — u weakly in V and strongly in H, (5.7)
ouf  Ou :
T weakly in H, (5.8)
X°uf — Qu weakly in H, (5.9)
£ = X Vuf = & weakly in H, (5.10)
ouf ) |OF] <8u >
€ P = — =, , forallp € D.  (5.11)
( ot 8F<,T Y] \ ot QT

Proof. [Proof of Lemma 5.2] (5.7) and (5.8) are direct consequences of the
estimates given by Proposition 5.1 and Theorem 5.1. (5.9) follows immediately
from the fact that u® — u strongly in H and x* — 6, weakly-% in L>®(0Q).
Also, (5.10) follows from our a priori estimates. Indeed, we have [|£°||g ;- < C,
and hence, up to a sequence, there exists £ € H such that £&& — £ weakly in H.
It remains to prove (5.11).

Let us consider a test function ¢ € D. It is easy to see that choosing h =1
and taking w® = ufypy, from (4.5) we get

— OF
6/ uCprdo = (i, ufpyjae ) —>u1/us0tdx= u/ upide,
oFe Q Y| Jao

which, integrating in time and using Lebesgue’s convergence theorem, gives
exactly (5.11). W

Now, let us come back to the first step of the proof of Theorem 3.1. It
remains only to obtain the limit equation (3.1) satisfied by w and £. Let
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¢ € D. We have:

/ ufpdr = / XEuE ppda —>0/ wpidr = Y |/ucptdx7 (5.12)
e Q Q Y1 Ja

Vu*Vedr = / xEVuE - Vodz — / &-Vdz, (5.13)
Q= Q Q

. oF
£ / gpdo = (Ui, gp) = m / gpdz = IoF| / gpdz. (5.14)
ore Q Yl Ja

fodx = / )ffcpdx—)@/ fodr = v |/f<pdx. (5.15)
Qe Q Q Yl Jo

So, all the terms in (4.3) pass to the limit, as € — 0, and, therefore, we get

¥ |6F|>( 390) ¥ OF|
- + 5o U, o, + EJVQO = f,QO s +o 9,9 ’
(|Y| 71 ) \“ 0t ), TG VPar = g (- Oartpr (0:0dar

(5.16)
for any ¢ € D. But exactly as in the elliptical case (see [7]), we have
Ou
& = qija—a:j (5.17)

and, finally, putting together (5.11) — (5.17) and having in mind that the
solution of the macromodel is unique, the entire sequence of solutions of the
microscopic model converges as necessary. So, we get (3.1). Passing to the
limit with ¢ — 0 in (4.4), we get immediately the initial condition of (3.1)
and since boundary conditions of (3.1) are obviously satisfied, the proof of
Theorem 3.1 for regular solutions is complete.

Step 2. The general case; density arguments. Let us prove now the conver-
gence result given by Theorem 3.1 for the general case, in which the initial data
(u®,0%) € L*() x L3,(09Q°) and f € L?(0,T, L*(Q)), g € L*(0, T, H5 ().

For doing this, let us consider, as already mentioned, % € H?(Q)NH{ (Q),
v? = ul |g0- such that (ud |ge,00) — (40 |qe,v0) in L2(QF) x L%, (09°).
Also, let f,, € C*([0,T], L%(2)), gn € C1([0,T], H}(Q)) such that f, — f in
L?(0,T,L?*(2)) and g, — g in L?(0,T, H}(2)).

For any n, we know that

uy, € C([0, T); H*(Q°) N Hpo(2%)) N CH([0, T; L*()),
(up)e € C((0,T); Hpo (2°)).

Also, we know that all the results given by Proposition 5.1, Lemma 4.1 and

Lemma 5.2 hold. So, the extension uf, converges strongly in ‘H or weakly in
V to .
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The weak formulation for u,, given by (3.4) is:

Find w, € C([0,T]; H*(Q) N H}(Q)) N C* ([0, T); L*(Q)), un(0) = u? such
that:

|OF|
Y1

'f;' / () ¥/ () ds — 'l’:" (4n(0), ) $(0) =

< [ 615~ o 0,00, 90000 + [ (@, Vel w61

_ Y ’ .
Y] / (frs )atb(s)ds + T |y| (gn,w)9¢( )ds, (5.18)

for any ¢ € Hg(Q), ¥ € C([0,T]), ¥(T) =0, $(0) # 0.
Now by taklng subsequences, if necessary, using classical energy estimates

for || u® — uE |, we can pass to the limit in (5.18), with n — co. We get

* T
_||’;|| (/0 (u,go)QW(s)ds—}—(uo,go)gzb(O)) 'ff" (u,0)q ¥'(5) ds

T
'ﬁﬂ'( 0,0), $(0) + / (QVu, Vo) t(s) ds
- |Y*|/T(f V)aw(s) ds+— s)ds
vl o g :

for any ¢ € H}(Q), v € C=([0,T)), ¥(T) = 0, (0) # 0 and also
u(0) = «°, in Q.

So, we have exactly the weak formulation (3.4) of the homogenized problem
and this ends the proof of the theorem. H
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Paraboliniai uZdaviniai su dinaminémis krastinémis sglygomis per-
foruotoje terpéje

C. Timofte

Nagrinéjamas parabolinis uZzdavinys su dinaminémis kra§tinémis salygomis periodiskai per-
foruotoje srityje. Analizuojamos §io uzdavinio sprendinio asimptotinés savybeés, kai mazas
parametras yra perforacijos dydis, i§ mikromodelio i§vedamos matematinio makromodelio
lygtys ir papildomosios salygos.



