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ABSTRACT

The disadvantage of the pure application of numerical approaches, however, is the fact,
that the physicals laws behind are not so easy to visualize, the results art not so easy to
generalize, and the storage of the information requires mostly an extensive amount of data.
This paper would like to show at some examples the advantages of the combination of both
methods. The key part of this approach is the calculation of the heat transfer by the Fi-
nite Volume Method (FVM) and the approximation of the calculated data by the so-called
"simplified equations". These simplified equations were received by analytical solutions of
the basic heat conduction equation. The required adaptation of the numerical results was
done with properly adapted fitting algorithms on the basis of the elaborated analytical
solutions, a process which was leading to an enormous reduction of data. As a result it
became possible to describe the applied tasks by a few characteristic constants.

Another approach for an analytical solution with a numerical calculation process is the
determination of the so-called "properties of mixed magnitudes". As an example this prin-
ciple has been applied for the numerical calculation of electrical multi conductor containing
cables. This process allowed the prediction of the thermal behavior of any cable harness
with the required precision.
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1. INTRODUCTION

The task for the example taken here is to determine the induced heating up
of the electrical wire harness as a function of the electrical current and the
applied time. The main difficulties of many similar cases, like heat transfer,
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are due the following remarks:

e most equations cannot be solved analytically, due to heat dependence on
various constants,

e if the equations are, however, solved numerically, the calculation requires
too much time.

Finite difference and finite element methods for thermal analysis of elec-
trical cables were implemented by Hiranandani [2] and Tarasiewicz [5]. De-
velopments of such algorithms require a lot of time investments and for the
industry customers are not acceptable. Therefore there is a need to find
simpler and easy — implement methods with a good accuracy and reliabil-
ity ensuring results for engineering applications. This paper tends to present
such a method for thermal analysis of electrical wires and cables based on
analytical-numerical solutions of the heat transfer equation.

In the following sections the basic physical laws and its combination of
numerical and analytical methods will be given for the example of the heat
transfer in electrical cables for mobile application.

2. THE MATHEMATICAL MODEL

The basic equation describing the heat transfer has the following conservative
form:

oT
ot’
where: v(T) is the heat capacity (Ws/m>K), A(T) is the heat conductivity
(W/m K), p(T) is the heat generation (Joule’s) and heat losses (into environ-
ment) (W/m?), t is the time (s), T is the temperature (K).

For round wires the heat conduction equation may be separated into two
one dimensional parts due to the fact, that for practical applications the length
of it is big compared to the diameter and therefore the heat transfer in radial
direction is faster, than in axial direction.

For the treatment of the axial direction the heat conduction equation (2.1)
may be simplified to:

div (\(T) grad T) + p(T) = ~(T) (2.1)

T (MDY +p(r) = 4(1) o (22)

For the treatment of the radial direction we take into account the rotational
symmetry, therefore the heat conduction equation may be simplified to:

22 (A D) +p(1) = 4(1) O (23)

Both equations can be treated separately. The following example will be
restricted to the radial direction only.
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3. ANALYTICAL TREATMENT OF THE CONDUCTOR TEM-
PERATURE

3.1. Transient state regime for a non-insulated conductor

The first chosen example should be calculated is a conductor without isola-
tion (e.g. blank copper wire) in air. It can be shown, that the temperature
difference of the conductor in the radial direction is negligible. Therefore the
radial temperature decay in the conductor can be neglected, i.e. g—f =0, and

therefore one has
oT
T =~v(T)—.
p(T) =1(T) 5,

The term p(T') describes Joule’s heat generation and heat losses into envi-
ronment and it can be written as follows:

(3.1)

. 0 I? U A
p(T) :==pE — ary; = P(T)E - Oé(T)Z T, (3:2)
where a(T) is the surface heat dissipation factor (W/m?K), AT =T — Ty is
the temperature difference between surface and environment (K), pg is the
electrically generated heat (W/m?), qr is the temperature difference induced
heat dissipation through surface (W/m?), u is the circumference (m), A is the
cross-section (m?), I is the current (A4), O = ul is the surface (m?), V =14
is the volume (m?).
The problem is now that all four applied "constants" «(T'),v(T), \(T), and
p(T) are temperature dependant. The differential equation (3.1) can be solved
analytically, if the following simplifications are applied:

4 4

o(T) = (% +aT\7A_T)2 +50<%) ~ a,

Y(T) = (1 + ayAT),

PT) = po[L+ AT + B,(AT)* + .| » po(1 +,AT).  (3.3)

The solution of equation (3.1) with assumptions (3.2) and (3.3) results in
the differential equation:

dt — Yo(1 + ay,AT)dT A1+ a,AT)dT
~ pol? auAT ~aud :
o (1 n a,,AT) -l [1 + (a,, e IQ)AT]

Integration from ¢ = 0 till oo leads finally to the temperature increase with
time:

1
AT= ——F—— (1 — exp

auA
p07 +a7 —Qp

704’ - t
t) =AT(1- —
aud — (o, + ay)pol? ) ( <P 7') ’
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where the final conductor temperature AT after an infinite period of time is
given as:

. 1
AT = (3-4)
poT +a,—q,
and the conductor heating up time 7 :
;e aud — (a, + oz,,)poIz’ (3.5)

Yo A2
with u = 7d and 4 = nd? /4.

3.2. Steady state regime for an insulated conductor

Since for a metallic conductor the radial temperature decay can be neglected
the calculation of the temperature behaviour can be restricted to the temper-
ature drop in the insulation material and heat convection to the ambient.

For the steady state regime and no heat generation in the insulation the
following terms in the equation (2.3) becomes zero:

dT
= =0, p(T)=0. (3-6)

Using the assumption that the heat dissipation factor « into air, the heat
conductivity A of the isolation material, and the electrical resistivity p are
all constant, the conductor temperature can be calculated by integrating the
following equation:

T 1dT

a Trar 0 (37)

Taking into consideration boundary conditions given in the publication [4] we
get the solution of temperature distribution in a cylindrical insulated conduc-

tor:
42 (1 1. dy
AT = L ln®) 3.8
w2d%<ad2+2,\nd1) (38)

4. NUMERICAL TREATMENT OF THE CONDUCTOR TEM-
PERATURE

The numerical algorithm is described in detail in the publication [4]. Using the
implicit finite volume method, we obtain finite volume scheme approximated
by central differences. In time, differential equation (4.1) is written mplicitly.
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4.1. The mathematical model

We shall consider the partial differential equation:

L (PFE) ) =5 (4.1)

When constructing the numerical scheme we make several assumptions.
First, we assume that the heat conductivity of both conductor and insulation
is constant, since temperature drop inside of the cable is only 2-4%. Secondly,
we assume that the change of electrical resistance because of temperature
increase is a linear function. This assumption is correct for a reasonable
temperature range (20-150°C).

We have the following conditions:

1. Continuity conditions on surfaces r = r;, i = 1, N — 0.5 for the tempera-
ture and fluxes:

ATi(Tz',t) = ATH—I ('rz';t)a
\OATrat) | OATin (i) +
i Ir r—ry i+l or r=rq

2. Boundary conditions on surfaces r =rg and r = ry :

lim r); 0ATi(ro,t) =0,
r—0

or
“AN—— = a(d, AT)(Tn(rn,t) — Tenw) + e0(Ta(rn,t) — Ty -

87‘ r=rn

4.2. The finite volume method

Using the implicit finite volume method, we obtain the following numerical
scheme, where the integrals are approximated by central differences:

_7“1/2)\0.5
AT’l/Q

A7‘07“1/2’7(?.5

(arp - aTp) + L

(amp — aTy)
= Arori/2po, =0,

7‘171/2)\1'71/2

( Tz'+1/2)\z'+1/2
——— 1= 7T (ATR, — AT?) +
( i+1 v ) ATz'_l/Q

AT — AT
ATZ,+1/2 ( % z—l)

Aryriy?
A

(TR = Tenw) + B (TR)* = T4,,) +

(ATzn — ATZ-H_I) = Ar;rip;, 1.5<i<N,

7’N—1/2)\z’—1/2 4
T —_Tn
ATN_1/2 (( N) N—l)
7 (T)Ary
\ MY

) 1
(AT}V - ATin_l) = §TNATNpN, i=N.
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The Newton-Raphson iteration Method [2] is used to linearize the equations.

5. SELECTION OF THE "SIMPLIFIED EQUATIONS" FOR DA-
TA REDUCTION

The key point of this section is the data reduction of the received numerical
calculated values. This is performed by fitting the calculated values with the
so-called "Simplified Equations" in the temperature range of interest. The
following values are calculated and saved as functions of the current:

1. e Final temperature difference of the conductor AT(I) for I < I,.
e Heating up time of the conductor ¢(I) for I > I,.
2. Voltage drop per length (field strength) in the conductor E(I).

As a result of this procedure, the three so-called "Simplified Equations" are
elaborated, which describe the thermo-electrical behaviour sufficiently precise
in the current range of interest.

For I < I the final temperature difference is given by:
AT(I < Iy) = al +bI?; (5.1)

the heating up time is given by:

_[2
and the voltage drop per length (field strength) is defined as:
E =1IR=1IRy(1+ a,AT + B,(AT?)), (5.3)

where Ry is the resistance of the wire (£2), o, is the linear temperature coef-
ficient of copper resistance (1/K), 8, is the square temperature coefficient of
copper resistance (1/K?).

Determination of the "Characteristic Wire Values" by Fitting

The "Simplified Equations” contain the following four so-called "Character-
istic Wire Values" Iy, a,b, 7, which together describe the thermo—electrical
behaviour of each conductor sufficiently precise in the current range of inter-
est. These values are obtained by fitting the "Simplified Equations" (5.1—(5.3)
with the numerical results (see [4]).

6. MULTI WIRE CABLE

The calculation of the single wires is the basis for the calculation of multi
wire cables. Hereby the formulas for a single wire core may be used for
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the calculation of a multi-wire core. The main problem is, however, that
this core consists of non-homogeneous material, which cannot be described
analytically nor easily calculated by numerical methods. The solution of this
special problem, which is explained in this section in detail, was to consider
the non-homogeneous cable core as "quasi-homogeneous" and to apply the
same solutions, which were used for the single wire cable already.

By applying this assumption, the calculation problem will be reduced to
the elaboration of the thermo-electrical properties, called here: "Mixed Con-
stants", of the quasi-homogeneous cable core. The subject of this section is
to discuss the possible approaches and their range of validity.

6.1. Analytical Solution

6.1.1. Assumption of a homogeneous conductor

In analogy to a single isolated conductor (see Fig.la) a multi-isolated cable
conductor (see Fig.1b) will be considered as an isolated "mixed" conductor in
the frame of this section.

Wire

Binding Tape

Single Conductor

a)

Figure 1. Isolated single (a) and isolated multi cable conducting core (b) .

Isolated single conducting core (isolated wire equation (3.8)) with only an
additionally term describing the temperature drop in the conductor is de-
scribed by:

~ p 1 1 d2
AT:—(— | —), 6.1
7\ady A dy (6.1)
for an isolated mixed conducting core (consisting of several isolated wires)
this formula transforms to the expression:

AT:%(@+%111(1+%)+£), (6.2)

here Ay, A\r are the heat conductivity of isolation and of mixed conductor
(W/mK), di,ds are diameter of conductor and of isolation (m), D is the
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n
diameter of the cable without isolation (m), I is the current (4), p = Y p,
1

describes the electrical power per length E I, i.e. a sum of all single wires
(W/m), S is the thickness of isolation (m).

6.1.2. Calculation of a quasi-homogeneous conductor (Model 1).

The next step is the transformation of an isolated mixed conducting core
(consisting of several isolated wires) into a structure, which can be analytically
or numerically calculated easily. The way proposed here is the conversion of
the round isolated wires into a square ones with the same conductor-, isola-
tion-, and air cross section, as before (see Fig. 2).

N
0]
I

b)
Figure 2. Transformation of isolated round conductors (a) in squares of same area (b).

This structure can be now calculated easily as a thermal serial-parallel
switched model of similarly covered areas. In order to simplify the calculation,
the whole solid material was separated from the air and combined in three
blocks. The influence of the much less heat conducting air will be considered
later with the so-called "Filling Factor".

a) b)
Figure 3. Determination of the mixed area conductivity: (a) assembly, (b) circuitry.

For long (compared to their thickness) wires, the whole material can be
treated two-dimensionally with a so-called "area conductivity" Al which has
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the dimension W/ K and which is proportional to the known heat conductivity
l

A. The heat conductance G is given by G = 2% and for each block given in
Y

Fig.3 we obtain

GoN, Gre=Ml Gy= ol G5z i’
b—a b

The serial connection of blocks 1 and 2, and a parallel to 3 leads to the
following heat conduction in y-direction

G1G2
=—— +Gj3.
G1+G2+ s

Finally we obtain a "Mixed Material Equation" of the following form

1 a
o (). o
24b_1 b

where the heat conductances are replaced by their heat conductivities. Here
A is the radial thermal mixed conductivity (W/m - K), a is the length of heat
conductor 1 (mm), b is the length of mixed heat conductors 1 and 2 (mm).

6.1.3. Calculation of the relationship b/a (Model 1).

The next step is to determine the relationship of b/a which is calculated from
the area a? of the material 1 (which may be the cross section of the conductor)
and the whole area b? of the materials 1 and 2 (which may be the cross section
of the conductor and the isolator). Since the conductor consists of single wire
veins with air in between, the real conduction cross section a? has still to
be multiplied with the so-called filling factor f, which is the relationship of
the real conducting cross section to the cross section to be determined by its
measured diameter: A; = a?f. The cross section of the conductor and the
isolator together results in:

A
71+A2=b2,

from which finally b/a can be calculated, whereby the areas A» and A; may
be replaced by the diameters of the conductor d and core leads 6 :

(6.4)
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6.1.4. Thinning model (Model 2).

The Model 1 described in section (6.1.2) by the equation (6.3) is only valid
for materials with similar heat conductivity. If one partner diverts as far
as air compared to copper it is not applicable any more. In this case the
assumption is made, that the conductor consists of two different conducting
materials, which are switched in parallel as follows: G = G, + G .

Figure 4. Volume change due to empty spaces, in accordance with the filling factor f or
F.

In accordance with Fig.4 the heat conductivities can be calculated as fol-
lows:
b—c

b 7
where X\ is the mixed heat conductivity (W/mK), A\,, Ap are heat conduc-
tivity of area a® and b?, respectively (W/mK), a,b are virtual length of all
conductors and of mixed conductor (mm), c is the virtual length c/b of b
(mm). Replacing a square element by two rectangular elements with dif-
ferent heat conductivity, (see Fig.4) leads to the mixed heat conductivity:

G=), Ga:/\a%; Gy =X,

A=Agf + )\b% . Using the filling factor f = % for the air between veins in

a wire, and F' = for the air between wires in a cable gives the thinning
equations: A = A f + (1= f) = Af, A= XF + (1 — F) = )\, F.

6.1.5. Combination of the models

Assuming the application of the Model 1 is more suited for isolation material
and the Model 2 is more suited for air between the conductor, the two equa-
tions can be combined as follows. In this case the heat conductivity A of the
mixed material without air can be replaced by the heat conductivity AF' of
the mixed material with air. In case the conductor material has much higher
heat conductivity than the isolation material, the equation may be simplified
even further, e.g. for A\; f >> A2 F' we obtain

b—c

1 1 1

F.o e . [f N
\@+m‘1 s 5‘\/;

A=XMF |1+ (6.5)
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6.2. Electrical load of conductors in standstill air

6.2.1. Realization of Practical Measurements

In the same way as performed for single isolated wires the results of this partic-
ular calculation had to be controlled by high precision automatic measurement
equipment at room temperature. In order to compare the current dependence
on the temperature calculated with the formulas the current was increased
and decreased in about 10 steps and the temperature measured at each step
after reaching the steady state. The temperature values were received with
two independent principles:

1. Via electrical temperature dependant resistance of the conductor material.
2. Via thermo-couples (for control).

6.2.2. Matching of measured results with numerical results.

0 -
% —e— Experiment 4
‘ Theory ‘ . 60 —o— Theory j
80 7
x 70 el v 50
< <
s e = /
© °
2 e 5 w
- oy g o
g 1 g a
0
30 e 20 ,/é
pod
20
= 10
10 Fo® [
o P o Lo
0 1 2 3 4 5 6 7 8 00 05 10 15 20 25 30 35 40 45
Current in A Current in A

Figure 5. Experimental versus theoretical results of different cable bundle size: (a) cable
bundle consist of 10 wires, and (c) cable bundle consists of 40 wires.

An important step is also here the fitting of the calculated results with the
measured results (Fig. 5) by the variation of the material data to tune the
calculation procedure (see section 6) in order to prove the general validity of
the applied mixture calculation for physical properties. It turned out, that
the systematic differences between calculated and measured results can be
compensated by proper application of the elaborated equations and a small
correction factor if necessary. In the Fig. 5 the temperature behaviour of
different size of cable bundles calculated by the method are presented. The-
oretical data are compared with experiment results. In all cases (Fig.5 a,b,c)
there exists a disagreement between both results. This is explained by the
difficulty to calculate precise the heat conductivity coefficient of the cable
bundle. In reality it is very difficult to model properly the cable bundle, that
coincides geometrically the real model. Thus, this non-identity between the
two models causes the error in the heat conductivity coefficient. Also, the
radiation is the reason of the errors, since for large diameters of cable bundles
up to 30% of heat is dissipated by the radiation. Therefore it is also very
important to determine correctly the emissive coefficient too.
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7. CONCLUSIONS

The advantage of combining both analytical and numerical calculation meth-
ods is the possibility to reduce analytically not solvable problems to equations,
which describe the required task within a limited range of parameters suffi-
ciently precise. It is only necessary to control the validity of this simplification
carefully by measurement results. In most cases the systematic errors can be
compensated.

For some investigated cases the proposed "Simplified Equations", "Char-
acteristic Wire Values", and "Mixed Materials Equations" described the sit-
uation sufficiently precise and therefore they can be fed in a computerized
design tool for the fast calculation of multi wire cable dimensions.
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Kai kuriy fizikos uZdaviniy sprendimas analitiniais-skaitiniais meto-
dais bei $iy metody derinio pranafumai

H.D. Liess, A. Ilgevitius

Darbe nagrinéjamas analitinis metodas, temperaturos pasiskirstymo elektros laiduose bei jy
pluoStuose uZdaviniams spresti. Analitinis metodas yra pritaikytas Silumos laidumo koefi-
cientams paskaiCiuoti daugiasluoksnéje medziagoje — elektros laidy pluoste.Temperaturos
pasiskirstymui atskirame elektros laidininke paskaiiuoti yra pritaikytas baigtiniy turiy
metodas. Turint tikslias atskiro laidininko temperaturos vertes, toliau laidy pluosto tem-
peratury vertes galima skaiCiuoti analiti§kai, jvedus proporcingumo koeficientus Silumos
laidumo dydZiui rasti. Tokia procedura duoda galimybe gauti efektyvy algoritma, skirta
spresti Silumos perneSsimo uZzdavinius atskiruose laiduose tiek jy pluo§tuose su skirtingais
skerspjuviais.



