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ABSTRACT

The multiscale solution of the Klein-Gordon equations in the linear theory of (two-phase)
materials with microstructure is defined by using a family of wavelets based on the harmonic
wavelets. The connection coefficients are explicitly computed and characterized by a set of
differential equations. Thus the propagation is considered as a superposition of wavelets
at different scale of approximation, depending both on the physical parameters and on the
connection coefficients of each scale. The coarse level concerns with the basic harmonic trend
while the small details, arising at more refined levels, describe small oscillations around the
harmonic zero-scale approximation.

Key words: Harmonic Wavelets, Connection Coefficients, Multiscale, Klein-Gordon Equa-
tions.

1. INTRODUCTION

The evolution of a localized initial profile in the linear theory of (two-phase)
materials with microstructure [9; 12] is investigated by using a family of
wavelets based on the so-called harmonic wavelets [2; 6; 10; 11]. The propa-
gation is studied by decomposing the wave solution of the hyperbolic system
into fundamental wavelets: each one corresponding to a scale approximation.
During the time evolution some non trivial secondary oscillations in the wave
propagation appear through the composite materials (like in the nonlinear
wave propagation [5]). Thus the wave propagation is investigated at each
scale, by showing that “minor" details in the solution, which are neglectable
at the initial time, and on the coarse level approximation, have a significant
influence on the evolution, on a long (time) range and refined scales. The
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multiscale (or multiresolution) approach is a kind of approximation method
that at each (scale) step increases the “resolution" of the solution, so that at
each scale more new details are added to the solution. The main hypothesis on
solid mixtures is that the microstructure of a multi-component material is de-
scribed by using a continuous medium, whose particles simultaneously, at each
geometric point of the domain, interact with each other. In particular, the
material with the microstructure is described by the microstructural theory
of the second order linear theory of two-phase mixture [5; 9; 12]. The two in-
teracting materials permit finite deformations and displacement ufca) not only
infinitely small. As a strain tensor is taken the linear symmetric Cauchy-Green

strain tensor, in the deformation gradient u;; = ik,...=1,2,3),
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and for the stress, the asymmetric Piola-Kirchoff stress tensor t;; = B

where the quadratic potential is given by [12]

A

WD) = S ) + nalel)? + 2us(e)

+ A3(e82,9 ) + b(ul™ —ud)?

here A, u are the Lamé elastic constants, « = 1,2 and § = 3 — . Numbers 1
and 2 refer to the material 1 and 2 respectively, of the two phase composite
material, while number 3 corresponds to their product.

The interaction model is taken in a such a way that the basic shear force
interaction for solid mixtures is the outcome of the relative motions of phases.
The representative volume contains the particle-granules of both phases with
different mechanical properties, and each separate phase is characterized by
its physical parameters. The interaction between phases is linear and reflects
the interaction between mechanical fields of both phases of the mixture.

Under the above hypotheses and assuming that the plane wave runs in the
direction of the z-axis, so that there are only two independent variables: x
and the time ¢, the basic equations, for the (composite) medium in absence
of external forces, are [12]:

2, (a) 2, (a) 2,,(9)
62y %u ' b (u(a) _uw)) =0, (1.1)

Papp ~GaTgpm T B2

where p, is the partial density of the two-phase mixture, u(® is the par-
tial displacement. Constants aq,as,b are physical constants, that, in case of
longitudinal (plane wave) propagation, are related to Lamé constants by the
definitions [12]

Ao = Ao + 2Uq, a3 = A3 + 2us3.
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The multiscale solution of (1.1) will be expressed with respect to a wavelet
basis, defined by a suitable modification of the harmonic wavelets [11]. Har-
monic wavelets are finitely defined orthogonal basis, infinitely differentiable
functions, band-limited in the Fourier domain. They are complex wavelets
that seems to be very suitable for studying oscillations processes [2; 6; 10].

The solution of (1.1) is searched as a wavelet series by fixing a finite up-
per limit N < oo (the scale approximation), in the series expansion. The
(wavelet) coefficients of the series are determined as solution of suitable ordi-
nary differential equations. The construction of these equations follows from
the explicit computation of the connection coefficients. Due to both the local-
ization and compression properties of wavelets, the wavelet coefficients play
a fundamental role in the analysis of the problem. They can be considered
as the essential parameters characterizing the phenomenon at different scales
of approximation [2; 3; 4]. In wave propagation, very often, the approximate
solution is expressed in terms of functions which are significant only at a given
resolution, and, some time, also the exact solution (like e.g. the D’Alembert
solution of the wave equation) shows two fundamental characteristic features
of wavelets: the dilation (multiscale) and the translation properties. We will
see that the wavelet solution of the Klein-Gordon equations at the level of
resolution N = O differs from that one of higher resolution V =1 for the ex-
istence of small amplitude waves. However, even if the details are neglectable
at the initial time, after a sufficiently long time range they have significant
values and give rise to subharmonic resonance as it happens in the nonlinear
waves propagation [5].

2. HARMONIC WAVELETS

Let us consider, as wavelet basis, the complex valued functions [2; 6]

antl_g ) .
o (@) = 9—n/2 s;ﬂ e~ 2mis(e—k/2") = 4 ¢ [0,1], (2.1)
0, elsewhere ,
ontl_q
with n,k € NUO. The functions 2-7/2 Y e=27is(z=k/2") are the peri-
s=2"

odic harmonic wavelets, defined in [10] as a suitable generalization [7] of the
harmonic wavelets [11]

e4mz _ e?nzz

= —F. 2.2
Yo = (22)

Functions (2.2), might be roughly considered as members of the Gaussian
based wavelet family or better in the DOG (Difference of Gaussians) wavelets

family [1]. Comparing with the Morlet wavelets (see e.g. [1; 7]),

Y7 (z) = 9—n/2,~1/4 2mifo(z—k/2") o—a® /2 . fo>0,
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Figure 1. Real (thick line) and imaginary (thin line) part of the periodic
harmonic wavelets %9 (z),%} (z), %2 (z) ] (z) (first column, from top to
bottom) and their corresponding first derivative (second column) and second

derivatives (third column), in the interval [0, 1].

the Fourier transform of each harmonic wavelet (2.2) is a band limited func-
tion (box function in the Fourier domain) while the Fourier transform of the
Morlet wavelets are shifted Gaussian. Harmonic wavelets are closely related,
in their definition, to the Shannon wavelets (see e.g. [8]), or sinc-function
based wavelets, which are band limited (box functions in the Fourier domain)

too, but they are only real functions in the z-domain.
Functions (2.1); are differentiable functions so that we assume

dy} () _ -t
- _92 n/2+1

dx sgn

Py (x) et

imse

—2mis(z—k/2™)
Y

Z Tk _9-n/2+2 > (7.‘.8)26—27ris(z—k/2")’

2
dz s=on

for the first and second derivatives, respectively (see, Fig. 1).
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2.1. CONNECTION COEFFICIENTS
Let f(x),g(x) be functions with compact support on the unit interval [0, 1];

we assume as scalar product: ( / f(z da: where the bar stands

for the complex conjugate. Wavelets (2 1) are orthogonal functions in the
sense that (¢Y7,¢p') = 6™ . From the definition (2.1) and the equations
(2.3), there easily follow the linear connection coefficients ([2; 6; 10]),

i = (0 @0 @) = - (4 @9 @)

2n+1 1 2m+1 1

_g-(mbmy/241 g ms/ 2mil(r—s)z—(h/2™ ~k/2")] gy

§=2m  p=2m 0

1
and since / e2™MT gy = §m0, m € Z, the unvanishing components of the
0

connection coefficients are only those for which n = m. With a simple com-
putation we obtain [2],

2"+1 1

,ynm: —ol-n_ se —2' " ri(h— k)(sTs 6nm, 2.4
kh

8, r=2m

where §,s is the Kronecker symbol. In particular, taking into account that
k=0,...2"—=1,h=0,...2™ —1 we have, at the lower scalesn =m =0,1,2:

. i i
Yoo = —2mi, i, =57 ( P ) : (2.5)

—1 1 t —1
-1 —i 1 )
. -1 —i 1
1 i =1 —i

Vin = 11w

Analogously, we have, for the connection coefficients of the second derivative,

d2
i = (Vi @07 @) (26)
ontl_q
Z;;,n — _2(n+m)/2+2 2 Z 82 _2l- "ﬂz(hfk)(srs 5nm,

s, r=2"
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so that, at the lower scales n =m =0, 1,2, it is:
00 2 11 2 [ —1 1

-1 —i 1 )
1 —1 —i 1
1 1 =1 —3
—1 1 v —1

I22 = 1267

2.2. Harmonic differential equations

The wavelets (2.1), can be obtained also as solutions of a class of differential
equations, as follows. The connection coefficients (2.4)—(2.6) are not indepen-
dent due to the following relations

2 13 63 2 275 2
T8 = (4807 T = o2 ()7 TH = o (33)" T = o ()"
where (vaY ) Z 'y,]chN NN is the matrix product. In general, it can be

seen that a recurswe formula
NN =en (VAN , N>0, k,h=0,...2Y -1 (2.8)

relates the two sets of connection coefficients, where the sequence of constants
¢y is explicitly defined by the recursive forward formulas

bo = 2, d() == 2,
by =4by_1+dn, dnv =2dn-1+1, N >1, (2.9)
__bn
CN = 2N_1d?v .
Thus we have the following
Theorem 2.1. The wavelets (2.1) are solution of the Cauchy problem
d2 d
$ N (k/2N) = 2N/2, (2.10)
d 2N+l
——U¢ (2) = -2~ N/ ims,
\ dz e=k/2N 5:221"
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where cy and vV are given by (2.9) and (2.4) respectively.

Proof. From equation (2.8), taking into account the definitions (2.4)—(2.6),
one obtains for h,k=0,...2Y —1

(gt @0 >—CN221< 203 @) (402 @) 0 @)

from where (2.10) easily follows. |
For instance when N = 0, equation (2.10), with ¢y according to (2.9), gives

d? d
508 (@) = —2mi (@) -

This equation is solved by the function
'¢8 (z) = C1(i/27)e 2™ 4 Cy
where the integration constants C, Cs, according to the initial conditions are

C1 = —2im, Cy = 0. So the solution coincides with (2.1), where it is assumed
that n =0, kK =0.

3. HARMONIC WAVELET SOLUTIONS

We assume as solution of the equations (1), in the interval [0, 1] , the following
functions, depending on the (scale) level of approximation N € NU {0},

2N 1271

(et = ¥ ¥ OV +BROF @,

2N 19271

W)= TS 0 (O @)+ 05 @)

(3.1)

with ¢} (z) given by (2.1). Taking into account the orthogonality property of
the harmonic wavelets and their conjugate functions, system (1.1), with (3.1),
becomes

al N a2 N
p1 % (dt2 B (¢ )) Vi () —ay %ﬂ,’: (t) (@W (m‘)) — aq %ng (t)
N N

X (%W(m)) —b | Y B WYy (@) =Y nE ) yp (2) | =0,

k,n k,n
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pzz(dﬁnk ))ui —azznk ) (v w))—%éﬁ?(t)

X (%% <f">) —b | Y vr @) =Y B W vE (@) | =0,

N 2VN-127-1
where, for short, we denote >, = > > . A similar system must be written
kn  n=0 k=0

for the other unknown coefficient functions ﬂ}; (t), M (t) with respect to the
conjugate wavelet basis ¢ ().

By a scalar product with )} (¢), taking into account the connection coeffi-
cients (2.6), and the orthogonality conditions, there follows

d? ol
(@ ) ay Zﬂk kh — as ZT);? (t)
k,n

—b(By ()— ny (8) =0,

r

{ (3.2)
& Y
(dt2 M ( ) as Zﬂk )TkR — as 251? (t)
k,n
\ —b (ny’ ( ) A () =0,
with h = 0,...,2™ — 1, m = 0,...,2N — 1. Thus we have a linear ordinary

differential system for the unknown functions £} (t), n;* (t), and the same
system for the cap functions ,73’\}; (t), n¢ (t), whose general solution depends on
the initial conditions as well on the geometrical constant coefficients I'};* and
the physical parameters p1, p2,a1,a2,as,b. In particular, assuming B} (t) =
E;“ (t), ni* (¢) = np* (t), we will focus only on the equations for 8} (t), ni* (t)
and the wavelet solution (3.1), is reduced to the functions

2V _12m_1 ontl_y
D=3 Y s |2 Y (entireki) g pinmk) |
n=0 k=0 | s—on |
2N _19271 [ gnH1_q _
=D Doak@ |2 Y (e—%”(m—k/f) + e2i7r(a:—k/2")) 7
n=0 k=0 I s—2n |

or, in trigonometric form,

2N _127 1 antl_q

t) = Z Zﬂ,?(t) ot-n/2 Z cos2ms (z —k/2™)|

n=0 k=0 §=2m
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2N _1927 1 antl_g
u? (z,t) = Z Z ne () |22 Z cos2ms (x — k/2™)
n=0 k=0 s§=2"

4. WAVELET SOLUTION AT THE SCALE N =0

At the lowest scale, system (3.2) gives

2
P (%BS (t)) +4ma, By (8) + 4n*agng (8) — b (83 (8) — g (8)) = 0,

d2
pa (S8 ) + 4 (6 + 438 (0~ b (4 () — 88 () = 0.

We will explicitly give two solutions of this system, unstable and stable re-
spectively, the stability depends on the physical parameters.

4.1. Unstable solution

Let us take, as initial conditions, the profiles

ul (z,0) = B3 (0) [¢8 (z) + w_g(x)] = 2cos2rx,

u? (z,0) = n (0) [¢8 (z) + w_g (:c)] =4cos2nz, (4.1)
o _oe|
ot |,y Ot |ug
so that
g (t) 0 dng (t)
BLO)=1, = =0, n(0)=2, =0.
0 dt | 0 dt |,

Assuming for the physical parameters the following values
p1=1,p2=2, a1=1,a2=2, a3=3, b=2
(so that ajay < (as)?) , we obtain

B (t) =1.91cos11.09¢ — 0.91 cosh 6.86 ¢,
09 (t) = 1.35c0s11.09¢ + 0.65 cosh 6.86 ¢,

from where the solution is given by

u' (z,t) = (1.91cos11.09¢ — 0.91 cosh 6.86 t) cos 27z ,
u? (z,0) = (1.350811.09 ¢ + 0.65 cosh 6.86 ¢) cos 2mz .
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The evolution of the initial profiles is such that the amplitude of the wave
resulting from their combination u (z,t) = u! (z,t) +u? (x,t), is rapidly grow-
ing (see Fig. 2). However, there are some nodes, where u (z,t) = 0, that can
be seen both from the projection into the plane ¢ = 0 and from that one into
the plane x = 0 (see Fig. 3).
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Figure 3. Projection of the unbounded solution at the scale N = 0.
4.2. Stable solution
With the same initial conditions (4.1), we take for the physical parameters

p1=1, p2=2, a1=1, a2=2, 0321/3, b=].0,

471’2 (alag - ((13)2)
a1 + as + 2a3

=~ 20.3. Thus we obtain

so that ajas > (as)” and b <

BY (t) = —0.69cos4.75t + 1.69 cos 7.02 ¢,
n (t) = 0.67 cos4.75t + 1.32 cos 7.02 ¢
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and then the solution is given by

ut (z,t) = (—0.69 cos4.75¢ + 1.69 cos 7.02t) cos 27z ,
u? (z,0) = (0.67cos4.75t + 1.32 cos 7.02t) cos 2mrz .
The evolution of the initial profiles is such that the amplitude of the wave

resulting from their combination u (z,t) = u® (z,t) +u? (z,t), is bounded (see
Fig. 4, 5).

N \ \ i ]
N ," ‘ \\\\ &
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Figure 5. Projection of the bounded solution at the scale N = 0.
5. WAVELET SOLUTION AT THE SCALE N =1
At the scale N = 1, system (3.2) gives (m,h =0,1,2)

( GO 0) - (BOTIY + 8 OTH + 6L OTIF) - g O TE
b (O T4+ O THR) = (87 () = nf? (1) =0,
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pa (G () = o (8 OTE +3 T4+ (DY) — oy (38 (007

+ By (t) o + B (O THR') — b (i (¢) = B (1)) = 0
So that, taking into account the expression of the connection coefficients (2.6)—
(2.7), there follows, for m = h = 0, the same equations already solved in the

case N = 0, but in addition we have for m = 1 and h = 0,1 additional
equations for the coefficients 3§ (t), 81 (t), né (t), ni (¢):

o (P 0) —ay (3 O T + B O TH) — oy (b (T8 +f (T3
= b (B (t) = mo (1)) =0,
i (8 0) —an (B3 OTH + 8 OT) — oy (O T+ (O T1)
—b (B () —m (1) =0,
pa (3578 0) = a2 (a8 (O35 + o (O T3E) = 0y (85 () T8+ 51 (OT)
= b (g () = 5 (1) =0,
pa (S5t ) = (T8 + 2} (OTHD) =y (8 (T3} + 81 (O )
—b(ny () =B (1)) =0,
or, explicitly,
o1 (35558 ) — 26w, (58 () + 81 () — 262°a, (=2 (0 + 2t 0)
= b (B (t) —mg (t)) =0,
o1 (51 ) — 26, (556~ 51 ) — 2657, (3 (0 2} 0)
—b (B (1) —m (1) =0,
pa (357 (1) = 260 (= 1)+ 1 (1) = 260 (=5 )+ 51 (1)
—b (g (1) = By (1) =0,
pu (St ) =267, (3 ) =} (0) — 26v%a, (58 0 - 81 ()T

—b(m () = B1 (1)) =0
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5.1. Stable solution

Let us take, as initial conditions,

w' (2,0) = 8 (0) [¥8 (2) + 9§ (@)] + 81 (0) [0} (2) + U] (@)]
= 2cos2rx + % [cosdm (x —1/2) + cosbm (xz — 1/2)],
w? (2,0) =1 (0) [48 (&) + ¥§ ()| +n} (0) [wi (@) + 9T (@)]

23/2
=4 cos2nx + 100 [cosdm (x — 1/2) + cosbm (z — 1/2)]

ou'
ot

_ ou?

T ot

t=0

t=0

so that

B(0)=1, B3 (0)=0, B1(0)=0.01,

e _, dB® _, dai®| _,
dt =0 dt —o dt o
16 (0) =2, 15 (0) =0, n7 (0) = 0.02,
g _, dm@®| _, di@®| _,
dt =0 dt —o dt o

Assuming, as before,
pp=1 p2=2 a=1, a2 =2, a3 =1/3, b=10,
so that the 0-scale solution is stable, we obtain the contribution of the details
B (1), BL(t), nd (t), ni (t). As can be seen from Fig. 6, all the coefficients

give very little (neglectable) contribution to the initial (¢ < 1) evolution in
time, but their influence grows very rapidly when (¢ > 1). In fact, if we define

o (2,) = 85 (8) [0 (@) + 05 @)] + 8L (1) [v} (@) + 9 (@)]
v (2,) = (1) v (@) + 0§ ()| + 0 (8) [} (@) + 9 (@)]

the solution w*(z,t), (a = 1,2) is the combination of the basic trend u*(z,t)
(of the level N = 0) with the “details oscillations" v*(z,t) at the level N =1,

w' (z,t) = u* (2,t) + 0! (z,1) ,

w? (z,t) = u? (x,t) +0° (z,1) ,
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TN
{24

Figure 6. Wavelet coefficients at the level N = 1. A: L (¢),
B: ﬂ%(t), C: né(t), D: 7)% (®).

Figure 7. Projection at the scale N = 1 of the term v(z, t) describing
the contribution of the level N =1. A: 0<¢<0.8,B: 0.8 <t< 1.2,
C:12<t<14,D:14<t< 16

where u! (z), u? (z) are the basic solutions at the level N = 0. The evolution
of the initial profiles is such that the amplitude of the resulting wave is a
combination of the basic wave at level N = 0 with a wave at level N = 1.
The contribution of the level N = 1: v (x,t) = v! (z,t) +v? (z, ), is a periodic
function with neglectable amplitude at initial time and ¢ < 1, but it becomes
consistent thereafter (Fig. 7).
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CONCLUSION

The analysis of the wave propagation in a two phase composite material has
been carried out by using harmonic wavelets. According to the multiresolution
analysis, by increasing the order of the approximation more details are added
to the investigation. In particular it has been shown that some additional
oscillations are present during the evolution and this phenomenon, physically
known, has been analytically detected using (suitable) wavelets.
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Daugiasluoksné bangos plitimo kompozicinése medZiagose analizé
C. Cattani

Darbe nagrinéjamas Kleino-Gordono lygéiy tiesinéje faziy mikrostrukturiniy medziagy teori-
joje daugiasluoksnio uzdavinio sprendimas. Sprendiniui nustatyti naudojamasi bangeliy
§eima, turinfia harmoniniy bangeliy prigimtj. Jungties koeficientai tiksliai randami ir
nusakomi diferencialiniy lyg¢iy rinkiniu. Bangos plitimas yra nagrinéjamas kaip bangeliy
skirtinguose sluoksniuose aproksimacijos superpozicija, priklausanti tiek nuo fizikiniy para-
metry, tiek nuo jungties koeficienty kiekviename sluoksnyje. Grubus priartéjimo lygmuo na-
grinéja tik harmonines slinktis, kai, tuo tarpu, smulkios detalés, atsirandancios subtilesniuo-
se lygmenyse, aora§o smulkias osciliacijas aplink harmonine nulinio lygio aproksimacija.



