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ABSTRACT

The effects of red cell concentration and peripheral layer viscosity on physiological charac-
teristics of pulsatile flow in presence of mild stenosis are investigated. The flowing blood
is represented by a two-fluid model, consisting of a core region of suspension of all the
erythrocytes assumed to be non-Newtonian (inhomogeneous Newtonian) and a peripheral
plasma layer free from cells of any kind as a Newtonian fluid. In the realm of the flow
characteristics of blood the viscosity is taken to be a function of hematocrit in a manner
that it varies radially only in the central core characterising its non-Newtonian behaviour
while it remains constant in the plasma region. The arterial wall motion and its effect on
local fluid mechanics is also incorporated in the present theoretical study. Finite difference
scheme has been used to solve the unsteady Navier-Stokes equations in cylindrical coordi-
nates assuming axial symmetry under laminar conditions, so that the problem effectively
becomes two-dimensional. The nonlinear terms appearing in the Navier-Stokes equations
governing blood flow are accounted for. Finally, the numerical illustration presented at the
end of the paper provides an effective measure of the flux, the resistive impedance and the
wall shear stress quantitatively in order to validate the applicability of the present model.

Key words: Hematocrit, Stenosis, Inhomogeneous Newtonian, Resistive impedance,
Wall shear stress

1. INTRODUCTION

The studies related to blood flow have long occupied the attention of the re-
searchers — both the theoretical modellers and the experimentalists in general,
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and to the stenosed blood flow, in particular. Although the exact mechanism
responsible for the initiation of the depositions of blood cells and lipids, a lead-
ing cause of stenosis are not clearly known, it has been established that once a
mild stenosis is developed, the resulting flow disorder plays an important role
in the further development of the disease (Misra and Chakravarty [16]; De-
plano and Siouffi [9]; Chakravarty and Mandal [7]; Anderson et al [1]; Long
et al [14]). Under normal physiological condition, the transport of blood in
the human circulatory system depends entirely on the pumping action of the
heart producing a pulsatile pressure gradient throughout the arterial system
and on the haematocrit.

Most of the studies referred to above have been carried out with the assump-
tion that blood behaves like a Newtonian fluid. It has now been well accepted
that blood, being a suspension of cells, behaves like a non-Newtonian fluid at
low shear rates in smaller arteries under certain flow conditions (cf. Chaturani
and Samy [8]; Nakamura and Swada [18]; Chakravarty and Datta [5]; Misra et
al [17]; Tu and Deville [28]; Liepsch et al[13]). Some researchers (Bugliarello
and Sevilla [3], Thurston [27]) have shown that for blood flowing through
small vessels there is an erythrocyte-free plasma (Newtonian) layer adjacent
to the vessel wall and a core layer of suspension of all the erythrocytes (non-
Newtonian). Accepting this idea, several studies (Shukla et al [21]; Pralhad
and Schultz [20]; Srivastava and Saxena [24]; Srivastava [23]) revealed that the
existence of the peripheral layer would be of some significance in functioning
of the diseased arterial system. These studies were based on the use of the
linearized Navier-Stokes equations which may suit well for explaining some
aspects of haemodynamic flow in smaller arteries, but for larger arteries, con-
sideration of the nonlinear terms in the Navier-Stokes equations governing the
flow of blood becomes indispensable. These terms may be disregarded in a
one-dimensional blood flow hypothesis but for two-dimensional flow in larger
arteries they are of major significance having large dynamic storage effects.
Moreover, in most of the recent literatures relevant to constricted flow either
in a rigid artery or in a flexible one, the stenotic geometry has been largely
regarded as time-independent. Such consideration may suit well for a rigid
vessel at the steady state condition but for a flexible artery, the stenosis can
neither remain static at the unsteady state nor even at the steady state situ-
ation. Therefore, for a realistic description of blood flow in a stenosed artery,
perhaps it would be most appropriate to treat blood as a two-fluid model
consisting of a central core region containing all the erythrocytes assumed to
be a non-Newtonian fluid and a peripheral layer of plasma as a Newtonian
fluid while the vessel is treated as a deformable one. An improved problem
such as this should include the two-dimensional flow characteristics of blood
in order to have a complete understanding of the flow disorder in the presence
of stenosis.

With the above considerations in mind, a good attempt is made in the
present theoretical study to examine some of the significant characteristics of
the nonlinear blood flow through a stenosed flexible artery under a pulsatile
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pressure gradient. The arterial segment is treated to be a cylindrical tube
containing a nonhomogeneous fluid representing blood. Blood is assumed to
be a two-fluid model consisting of a central core region characterized to be a
non-Newtonian fluid and a peripheral layer of plasma as a Newtonian fluid.
The functional dependence of blood viscosity on hematocrit has been duly
accounted for in order to improve resemblance to the real situation. Although
the general problem such as the present one is of major physiological signifi-
cance, the attention is paid to the effect of wall motion on local fluid mechanics
but not on the stresses and strains in the arterial wall. The consideration of
a time-variant geometry of the stenosis has not however been ruled out in
the present analysis. An extensive quantitative analysis is carried out by per-
forming large scale numerical computations of the quantities having major
physiological significance and presented graphically at the end of the paper
with adequate discussions so as to justify the applicability of the improved
model under study.

2. FORMULATION OF THE PROBLEM
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Figure 1. Geometry of the arterial stenosis with peripheral layer.

The constricted arterial segment is modelled as a thin cylindrical tube con-
taining a nonhomogeneous fluid, consisting of a central core region character-
ized to be non-Newtonian and a peripheral layer of plasma as a Newtonian
fluid, representing blood. Let (r, 8, z) be the coordinates of a material point in
the cylindrical polar coordinates system where the z — axis is taken along the
axis of the artery while r,8 are taken along the radial and the circumferential
directions respectively. The geometry of the time-variant stenosis (cf. Fig. 1)
is described mathematically as (Shukla et al [21], Young[10])

_ (tm,0m) 2w _g_ Lo
(R, R1)(z,1) [(1,04) 2Ro {1+cos Lo( d— )}]m(t),
" Ry, d<z<d+ Lo, (2.1)
(1, a)a(t), otherwise,
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where R(z,t) is the radius of the arterial segment in the constricted region,
Ry the constant radius of the normal artery in the non-constricted region,
Lo the length of the stenosis, d the location of the stenosis and (7,,,dm)
are the maximum height of the stenosis and bulging of interface respectively
appearing at z = d+ Lo /2 where d,, = a7,,. The limitation of the present mild
stenosis (> << 1) has been briefly discussed by Srivastava [22]. Here R, (2, t)
is chosen to be the radius of the core fluid layer and a peripheral plasma layer
of thickness (R — R1) as shown in Fig. 1. The time-variant parameter a(t)
is given by

a1 (t) = 1 — b(coswt — 1)e ¢, (2.2)

in which w represents the angular frequency and b is a constant. The arterial
segment is taken to be of finite length L.

Let us consider the stenotic blood flow in the artery to be nonlinear, un-
steady, axisymmetric, two—dimensional and fully developed, where the flowing
blood is treated to be composed of a non-Newtonian core fluid and a New-
tonian peripheral plasma fluid. The appropriate equations describing such a
two-fluid flow, in the cylindrical coordinate system may be written as

Y9z poz p

ow; Ow; Ow; _ 19p ,u(r)((?zwi 1 dw; 62w,~)

+u +w
Oor? r Or 0z2

a Tl (23)

0%,' 6ui ] 6“,’ _ _l 6_]) M (62u,~ 1 0u, 62ui Uj

ot + Y or +wi 8z  por + p \or2 " ror | 022 T_Q)’ (24)
0%,' U; Bwi _
ar + o + a2 0, (2.5)

where u; and w; (i = 1,2) are the radial and the axial velocity components
respectively, u(r) represents the viscosity of blood in the central core region
for 0 < r < R;(z,t) and that of the plasma region for Ry (z,t) < r < R(z,t),
p is the pressure and p, the density of blood. Here and in the sequel, i = 1
corresponds to the central core region (0 < r < Ry(z,t)) and the plasma
region (Ry(z,t) <1 < R(2,t)) is designated by i = 2.

Since the lumen radius, R, is sufficiently smaller than the wavelength A,
of the pressure wave i.e. % << 1, the radial Navier-Stokes equation simply
reduces to %:0 (Pedley [19]) and hence equation (2.4) can be omitted. It
is then reasonable and convenient to assume that the pressure is independent
of radial coordinate (Imaeda and Goodman [12]) and eventually the pressure
gradient % appearing in (2.3), whose form has been taken for human beings
(Burton [4]) as

—% = Ao + Aicos wt, (2.6)
where Ay is the constant amplitude of the pressure gradient, A is the ampli-
tude of the pulsatile component giving rise to systolic and diastolic pressure;
w = 27 fp, fp being the pulse frequency.
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3. BOUNDARY CONDITIONS

In the central core region, there is no radial flow along the axis and the axial
velocity gradient of the core flow along the axis may be assumed to be equal
to zero. These may be stated mathematically as

ui(r,z,t) =0 on r =0,

6'1111 (T7 2, t)
or

(3.1)
=0 onr=0.

At the interface between the central core and the peripheral plasma layer of
the fluid media, the velocities and the stresses are assumed to be continuous
which may be written mathematically as

wy(r,z,t) = wa(r,z,t) on r=Ri(z1),

ui(r, z,t) = ua(r,z,t) on r = Ri(z,1), (3.2)

(Trz)l = (Trz)2 on r = Rl(z,t).

Also, the velocity boundary conditions on the arterial wall are taken as

—, on r = R(z,t),
ot (1) (3.3)

wa(r,z,t) =0 on r = R(z,t).

u2(T,Z,t) =

It is further assumed that initially no flow takes place when the system is at
rest, that means

ui(r,z,0)=0, wi(r,z,0)=0, Z=172 (34)

4. METHOD OF SOLUTION

Let us introduce a radial coordinate transformation, given by

£= (4.1)

which has the effect of immobilizing the vessel wall in the transformed coordi-
nate €. Using this transformation, the equations (2.3) and (2.5) representing
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blood flow and the prescribed conditions (3.1) — (3.4) take the following form

ow; 1 ap 0_R w§)  p) R OR 1 Ow;
o=t |+ i - s (5 )}ng
1(§) OR\"| Pwi  wi dwi .(61‘% B g@é‘wz)
R |t (5 ) 5 " R O¢ 5z R0z 0¢
w() w;
e (4.2)
Ea_§+£_R+g_R$3—§_O’ 7'—1325 (43)
_ 8w1(€727t) _
Ul(f,z,t) £=0 =0, a€ — =0 =0, (44)
/U)l(f,Z,t) = 1U2(£,Z,t) on 6 =aQ,
ul(fazat) = u2(§,z,t) on é-: a, (45)
(Te2)1 = (7¢z)2 on {=a,
UQ(Eazat):%_fa ’UJz(f,Z,t):O on 5215 (46)
and
U,’(&,Z,O) = 07 ’U)i(f,Z,O) = 07 i= 172 (47)

Here, the central core region corresponding to i = 1 is represented by 0 < ¢ <
a while the peripheral plasma layer corresponding to i = 2 is designated by
a < ¢ <1 in the transformed domain.

For the core region (0 < ¢ < «), multiplying (4.3) by £R and integrating
with respect to £ from the limits 0 to £ (0 < £ < a) one finds,

U1 (§a 2, t)

O ewy -2 / dur d| - / 25 @)

This equation takes the following form by making use of the boundary condi-
tions (4.5) as

[ée- -

wi+ (a5 e — f(£)] )
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where

= =«

wla:wl(fuzat)‘g :w2(£7z7t)‘€ )

ula:ul(é.azat)‘é_ :U2(§,Z,t)‘§

= =

Since the choice of f(£) is, of course, arbitrary, let f(£) be of the form

_ A& -1
f(f) - a2(a2 _ 2)

satisfying
/0 € fE)dE=1.

Taking the approximation of considering the equality between the integrals to
integrands, we have from (4.9)

Owq 2 0R a OR 42 -1)
__20R a2, i 1
0z Roz " + R (a 5z e u1a> a2(a? - 2) (4.10)

Substituting (4.10) into (4.8) one finds

oR alluwi, —uia
dz a(a? —2)

U1(§,Z,t) =¢

(€2 — 2)] ) (4.11)

In a similar manner, for the plasma region (a < ¢ < 1), multiplying (4.3) by
&R and integrating with respect to £ from the limits a to £ (@ < € < 1) and
exploiting the boundary conditions (4.6), one finds (to save space, detailed
derivations are not given here)

UQ(&,Z,t) :£ 66_‘511]2 + é_lz (QUQQ - a283_-§w2a - 63_]:)
2 _ 02\(£2 4 o2 —
x (€ 04(032(5_ ;‘)204 2) + % <u2a - a%—fwm)] (4.12)

Again, u14 (= u24) appearing in equations (4.11) and (4.12) can be obtained,
just by putting £ = a, from

£+1
2

OR =~ RE&-10w, 2 OR
92T 2e 110, " e+1ot

u2(§,z,t) = ) (413)
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which is another form of equation (4.12). By making use of (4.11), equation
(4.2) takes the form

Ow, 19p owy 0%wn dun
g _ 29 | r el g1 _ 2
ot p Oz +T1(§, 2,1) dE + 15(§, 2, t) 92 w1 92
(€) 9w
LA <EL 4.14
+ ) 922 0<é<a (4.14)

and from (4.12) and (4.2), one must have

o 19 dw: O*w: O
% = —;8—5 +T3(§,Z,t)6i£2 +T2(§,Z,t) 6;-1;2 —U)z%
p(€) 8w,
e <E<1,  (4.15)
where
( OR _p(&) p(® [, 0°R  (OR\’
Tl(é-azat) £R ot + p£ a p {£R622 §<E) }
Oéa Wi — Ula 1
e S
_ o) ( 6_R>

_[.p0R  wO wef, R (0R\
T3(£,Z,t) - l£R§+ pE - p {£R622 _26(5) }
R ,OR OR
—z{OzUQa -« au&a - E}
(- o)) +a? - 2) “R{uza-aasza} ;

ﬁ-

(a? —1)2 3 0z

5. FINITE DIFFERENCE APPROXIMATIONS

The finite difference scheme for solving Eqs. (4.14) and (4.15) is based on the
central difference formula in order to transform all the spatial derivatives in
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the following manner:

( Own, _ (wm)i'c,j-i-l - (wm)ﬁj—l

B = oA = (wm) e,
Pwm (Wi — 2wm)f; + ()b ) (W)
oe 0SE e
) (5.1)
Oown (wm)fﬂ,j - (wm)f—l,j = (W)
0z o 2Az B miz
0wy, _ (wm)fﬂ,j - 2(wm)ﬁj + (wm)f—l,j = (wp,)
\ (922 (AZ)2 e

while the time derivatives are transformed by their forward difference approx-
imations given by
k

Ownm, _ (wm)z’,j — (wm); (5.2)

where

A= A¢ for m=1,
T A¢ for m=2.
In a similar manner, we can discretize the derivatives for u,,, whenever neces-
sary. Here wy, (&, 2,t) is discreatised to wy, (&, 2, tx) and in turn, to (wm)ﬁj
where we define & = (j — 1)A¢, (j = 1,2,..., N, + 1) such that {n,41) =
a, and & =a+[j — (N +1)]JAE, (j =N.+1,N.+2,...,N +1) such that
€(N+1) =1.0, z; = (Z - ].)AZ, (7, =12,....,.M+ ].) and t; = (k‘ - ].)At, (k =
1,2,...) for the entire arterial segment under study with A&, A€’ are the in-
crements in the radial direction for the core layer (0 < ¢ < a) and for the
plasma layer (a < £ < 1) respectively while Az is the increment in the axial
direction and At is the small time increment.

Using (5.1) and (5.2), equations (4.14) and (4.15) may be transformed to
the following difference equations:

1/0p k
(wﬂﬁ-}l‘l — (w1)f,j + At [—; (&> + (T1)f,j(w1)l}§ + (T2)f’j(w1)lss§

- wolywnf+ M wt], 0<e<a, 69
()b = (wn)hy + At -2 (GE)" + (Ta)fwml + (T (ol
-l + M wk], ase<t, G



238 P.K. Mandal

where the notations ( );, ( ); and ( )* indicate that in the expressions,
z, € and t are replaced by z;, & and t; respectively wherever they appear
and T,(&,2,t)'s appearing in equation (4.16) are discretised to T,(&;, zi, tk)
and in turn, to (Tp)f’j, (rp=1,2,3).

Also the prescribed conditions (4.4) — (4.7) together with the initial condi-
tion have their finite difference representations, given by

(u)fy =0, (w1)f; = (1)}, (5.5)
(Ul)f,NcH = (UZ)i’C,NC-i-la (wl)f,NcH = (w2)§,Nc+1a
A¢ A¢
(wl)f,Nc = (1 + Ag,)(w2)§,Nc+1 - A—g,(wz)f,Nchz, (5.7)
OR\
(wa)iner =0, (w2)iiner = ()i (58)
(wm)%,j =0, and (um)%,j =0, (5.9)

where the index N, + 1 corresponds to £ = a.

The difference equations (5.3) and (5.4) are solved for wy and wy by making
use of the stated conditions (5.5) — (5.9) throughout the arterial segment
under consideration. After having obtained the axial flow velocities for both
the central core and the plasma, the radial flow velocity for both the layers
(core and plasma) can be calculated from equations (4.11) and (4.12) where
(u1)i,N.4+1 in equations (4.11) and (4.12) can be determined from equation
(4.13).

Now, with the help of the axial and radial flow velocities for both the core
and plasma layers, one can easily determine the volumetric flow rate (Q),
the resistive impedance (A) and the wall shear stress (1) from the following
relations, given by

a 1
QF = 2 (R})? / & (w)f ;d¢; +/ £j(w2)£~ijd£j], (5.10)
0 «
L(Z)k
- ‘ (52) ‘, (5.11)
k - k
77 = p(én.) ((U1)iJrLNCJrlZAz(m)z_u\ur1 (5.12)

o @ k (Ul)f,Nc-H - (ul)i'c,NC n i (wl)i‘c,Nc+1 - (wl)i‘c,NC
Rf 0z A& Rk A&

i 7

(u2)fpi v — (W2)fi vy 1 OR k(ua)fnyr — (u2)fy
+"‘(§N+1)< 24z AT AT
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n 1 (w2)§,N+1 - (UJZ)QE,N
Rk A¢ '

(2

Finally, the expressions for the dimensionless flux (Q'), resistance to flow
(X') and wall shear stress (7') are given as

Qf
(@n)}’

e k Tk
—r L=t 5.13
()\n)f T (Tn)f ( )

1k
Ai_

k
Qi =

where QQ,,, A\, and 7, are the flux, the resistance to flow and wall shear stress,
respectively, for the normal artery in the absence of peripheral layer.

The major steps in the computation sequence may be summarized
as follows:

1. Set the values of u.,, wmy; m = 1,2 in the entire field at to=0.

2. Calculate (wg)fjl (i.e. at t = t1 = to + At) from equation (5.4) for j =
N+1toj=N.+1ie. from & =1to & = a by exploiting appropriate
boundary conditions.

3. Calculate (wl)f;rvlc from equation (5.7).

4. Calculate (wl)fjl from equation (5.3) for j = N. —1to j = 1 i.e. until

&=0 is reached by exploiting appropriate boundary conditions

5. Calculate (ug)f’}L\,chr1 = (ul)fj\,lcﬂ] from equation (4.13) and put it into
equations (4.11) and (4.12) and then calculate (ul)f;-rl from equation (4.11)
forj=1toj = N.+1i.e. from £ =0 to £ = a using appropriate boundary
conditions.

6. Calculate (Ug)fjl from equation (4.12) for j = N, +2to j = n+ 1 until
& =1 is reached by using appropriate boundary conditions.

7. Computations for t=t; are continued until z = L is reached.

8. Entire sequence is repeated for the next time increment and continued until
desired time span has been achieved.

6. NUMERICAL RESULTS AND DISCUSSION

In this section we shall discuss the validity of the present updated model by
undertaking a specific numerical illustration based on the existing experimen-
tal data for the various physiological parameters encountered in the present
analysis. The viscosity of blood is chosen to be a function of hematocrit
(Baker [2]) in the following form

(&) = po[l — ko ()17,
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where ¢, (€) is the volume concentration of the red cells and is expressed as

@ =cfi- () oa-9

and 6(¢) is the Heaviside function defined by

o-{i

and po being the plasma viscosity.

4000

*—*1t=05s. 7

\Z\/ ] o—o t=0.8s.
e0.05 x—x t=0.5 5., rigid wall
=7 =053, linear
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v—v t=0.5 5., pp=0.5p;, 1,=0.036
-0.07 4
1500 : T T . T -0.08 : ; T . ,
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Figure 2. Distribution of the rate of Figure 3. Distribution of the wall shear
flow for different time periods (rm = stress for different time periods (rm =
0.15Ro, ¢ = 0.24, up = 0.012). 0.15Ro, ¢ = 0.24, up = 0.012).

For the purpose of numerical computations of the desired quantities of ma-
jor physiological significance, the following parameter values have been useed
(see, Thomas et al, [26]; Burton, [4]; Buliarello and Sevilla, [3]; Baker, [2];
Milnor, [15]; Sud and Sekhon, [25]):

Ry =5mm, L=30mm, Ly=0.5L, d=75mm, b=0.1, us =0.012 P,
p=105x10%kg.m 2, f, =1.2Hz, Ay = 100kg.m 2572 A; = 0.24,,
a=0.95 7, =0.15Ry, k=16, c=0.24, ¢ = 0.67, A = 0.0125,

A¢' =0.0025, Az = 0.5.

The iterative method has been found to be quite effective in solving the
equations (5.3) and (5.4) numerically for different time periods. The results
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c— a=0.95
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x—x =0.95, M,=0.5;

1400000 4
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G
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TW?RO
Figure 4. Distribution of resistance to Figure 5. Distribution of dimensionless
flow for different time periods (7m = flow rate for t=0.5 sec. at z=15 mm (c =
0.15Ro, ¢ = 0.24, u» = 0.012). 0.24, 1 = 0.035, £2 = 0.5).

appeared to converge with an accuracy of the order ~ 107% when the time
step was chosen to be 0.00001.

The computed results obtained following the above mentioned method for
various physical quantities of major physiological significance in order to have
their quantitative measures are all exhibited through the Fig. 2 — 7 and dis-
cussed at length.

The results of the present analysis are compared with (i) those of single-
layered Newtonian fluid (us = 0.035,c¢ = 0), (ii) the results of the two-layered
model case of Newtonian fluid (u; = 0.035, ‘;—f = 0.1,0.5), (iii) those for the
rigid wall i.e. by disregarding the term % in the governing equations and by
treating R = R(z) only and (iv) those for a linear model i.e. by discarding
the convective acceleration terms in Navier-Stokes equations.

Fig. 2 exhibits the distribution of the flow rate over the stenosed arterial
segment for three different time periods. The flow rate curves following the
outline of the stenosis appear to diminish at the onset of the stenosis until
the maximum constriction site and thereafter increase downstream symmet-
rically along the diverging section of the stenosis, that is, the flow rate curves
become perfectly symmetrical about the critical location (2 =15 mm) of max-
imum narrowing only in the constricted regions for all times. However, it
assumes relatively higher unperturbed values in the non constricted portions
of the artery. Moreover, the fact that the flow rate is reduced considerably in
the absence of any arterial wall motion helps in establishing the importance
of the consideration of the vessel wall deformability in the present model un-
der study. It may be recorded that if the flowing blood is treated to be a
single-layered Newtonian fluid (2 = 0.035, ¢ = 0), the rate of flow is reduced
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— =095
*—x Single layer, p=0.035

0—0 0i=0.95, W,p=0.1p,p4=0.035
1.44 *x—x 01=0.95, P,p=0.57, py=0.036
a—a (Young ,1968)
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Figure 6. Distribution of dimensionless Figure 7. Distribution of dimensionless
resistance to flow for t=0.5 sec. at z=15 wall shear stress for t=0.5 sec. at z=15
mm (c = 0.24, 41 = 0.035, £2 = 0.5). mm (c = 0.24, u1 = 0.035, £& = 0.5).

considerably which can be easily estimated by comparing the relevant curves
with distinguishable marks. One can also notice the behaviour of the flow
rate for a linear model where the flux distribution keeps on increasing in the
non-stenotic region. The present figure also includes the corresponding results
based on two-layered Newtonian model (u; = 0.035, % = 0.5), and the effects
of red cell concentration and the peripheral layer viscosity can be quantified
through a numerical comparison between the relevant curves. It is worth
mentioning that the flow rate enhances or reduces to some extent with the
arterial length confined to the stenotic region only depending upon whether
the arterial cross section increases or decreases respectively.

The results of the wall shear stress distributed over the entire stenosed ar-
terial segment for different time periods are displayed in Fig. 3. The stresses
appear to be compressive in nature throughout the artery which become max-
imum only at the critical location where the artery assumes its constriction
maximum. The nonstenotic portions are however slightly perturbed with
relatively lower stress values. Beside this, if one disregards the vessel wall
distensibility, the stresses are noted to increase considerably like those for a
single-layered Newtonian fluid (u = 0.035, ¢ = 0), two-layered Newtonian fluid
(11 = 0.035,£2 = 0.5) and for a linear model so far as their magnitudes are
concerned. ﬁlus the effects of red cell concentration, the wall flexibility, the
nonlinearity and the red cell concentration on the wall shear stress over the
arterial length can be quantified through the direct comparison of the relevant
curves. The present figure also exhibits that as time progresses from t=0.5 s.
to t=0.8 s., the symmetric characteristic of the stress distribution is slightly
disturbed but with appreciable deviation of magnitudes. The present stress
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distribution is believed to play an important role in detecting the aggregation
sites of platelets as remarked in Fry [11] that the growth and deterioration of
the endothelial cells of the arterial wall are closely connected to the generation
of shear stress on the arterial wall.

Fig. 4 indicates how the resistive impedances are influenced by the unsteady
flow behaviour of blood as well as by the vessel wall distensibility, the flow
nonlinearity and by the peripheral layer viscosity. The resistive impedances,
unlike the characteristics of the flow rate, start increasing at the onset of
the stenosis from relatively lower unperturbed values in the nonconstricted
portion until its maximum constriction followed by a symmetrical decline
downstream as the constriction approaches its minimum and then they be-
come invariant outside the stenotic region. One may observe that the flowing
blood experiences much higher resistances to flow in the absence of vessel wall
distensibility, in the absence of peripheral layer (single layer) and also in case
of two-layered Newtonian model but a complete reverse phenomenon is ob-
served in case of linear model and consequently the effect of wall distensibility,
the peripheral layer, the inhomogeneity and the nonlinearity on the resistive
impedances can be measured quantitatively through a direct comparison of
the curves corresponding to the same instant of t= 0.5 s.

For the sake of undertaking a comparative study with the existing ones
in order to substantiate the validity of the present theoretical analysis, some
critical results for @', X' and 7' (vs. stenosis size ’1'%—”0) have been plotted in
Fig. 5 - 7.

Fig. 5 shows the distribution of dimensionless flow rate (Q') at the maximum
narrowing of the arterial lumen (2=15 mm) at t=0.5 sec. with stenosis size
%—’Z. For the fixed stenosis size, ' decreases if the flowing blood can be treated
as homogeneous and increases as the peripheral layer viscosity decreases. If
the flowing blood can be treated as a single layer fluid (¢ = 0.035,¢ = 0),
the dimensionless flux is found to be decreasing compared to all the curves as
depicted in Fig. 5. In addition, it may be noted from the present figure that
in all the cases Q' decreases as the size of the stenosis increases for a given
set of parameters.

The plots of Fig. 6 indicate the effect of inhomogeneity and peripheral layer
viscosity on the distribution of the dimensionless resistive impedances (\')
with stenosis size ;{—"(; at a specific time of ¢t= 0.5 sec. at the site where the
arterial constriction gets maximum (2=15 mm). One may notice that the re-
sistance to flow increases in magnitude to a considerable extent with increasing
stenosis size from 0 to 0.2. It may also be noted that the magnitudes of the
resistance to flow, under given set of conditions decreases with the decrease of
the peripheral layer viscosity and if the flowing blood can be treated as a sin-
gle layered Newtonian fluid, the resistance to flow, ', increases compared to
two-layered Newtonian fluid and two-layered inhomogeneous Newtonian fluid.
These results agree well with those of Shukla et al [21] who studied the two-
layered one dimensional model of Newtonian fluid and also support Srivastava,
and Saxena [24] qualitatively well who studied two-layered one dimensional
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model of blood flow consisting of a core region assumed to be Casson fluid
and a peripheral layer of plasma as a Newtonian fluid. Moreover, a compari-
son has also been made with the existing result of Young [10] who studied the
one-dimensional model of blood flow in the absence of peripheral layer. A con-
siderable deviation of the results thus obtained from the second and the fifth
curves may be due to the additional considerations of unsteadiness, nonlin-
earity, vessel wall distensibility and also two-dimensional flow as encountered
in the present improved model.

Finally, the concluding Fig. 7 of the present paper illustrates the effects
of the peripheral layer viscosity, the inhomogeneity of the streaming blood
on the dimensionless wall shear stress (7') plotted with stenosis size * at
a specific time of t= 0.5 sec. at the maximum constriction site (2=15 mm)
of the artery. The notable feature is that the stress is compressive in nature
and hence the downward trend of the curves indicates the enhancement of the
stress due to the increase of the severity of the stenosis for all cases. This,
in turn, can be stated as — the more the severity of the stenosis, the more
the wall shear stress. Again, it can be easily estimated that as the viscosity
of the peripheral layer increases, the dimensionless wall shear stress increases
if one follows through the relevant curves of the present figure. Moreover, if
the flowing blood is treated to be single-layered Newtonian fluid, the stress
is found to be all time higher than those for the two-layered Newtonian and
two-layered inhomogeneous Newtonian models.These features once again are
in good agreement with those of Shukla et al [21] and Srivastava and Saxena
[24] whose studies were based on one-dimensional model of blood flow in rigid
arteries only.

The significance of the consideration of any improved mathematical model
such as the present one can now be completely understood from the above
mentioned discussion. Studying the present quantitative analysis together
with our previous results [cf. Chakravarty et al [6], it may be remarked that
the resistance to flow and the wall shear stress decrease in the case of two
layered model compared to the single layered model and therefore one can
conclude that the presence of peripheral plasma is of major physiological sig-
nificance regarding the functioning of the diseased arterial system. These
observations agree qualitatively well with those of Shukla et al [21] and Sri-
vastava and Saxena [24] and hence the applicability of the present model is
well validated.
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Netiesinio dviejy sluoksniy dvimacdio modelio analize
P. Mandal

Straipsnyje i§tirti raudonyjy kraujo kuneliy koncentracijos efektai ir periferinio sluoksnio
klampumas priklausomai nuo pulsavimo fiziologiniy charakteristiky, esant nestipriai stenozei.
Tekantis kraujas apraSomas dviejy skysCiy modeliu, vienas i§ jy laikomas neniutoniniu
skysciu, kitas — periferiné plazma, laikoma niutoniniu skyséiu be jokiy lasteliy. Kraujo
srauto klampumas yra hematokrito funkcija, kuri keiciasi pagal spindulj neniutoniniame
skystyje, o plazmoje nekinta. ] modelio tyrimga jtraukti arterijy sieneliy judéjimas ir jo
sukelti efektai lokaliajai skys€io mechanikai. Baigtiniy skirtumy schema naudojama spresti
nestacionarias Navier-Stokes lygtis cilindrinése koordinatése, kai laminarinés salygos tenk-
ina aSinio simetriskumo salyga, ir uzdavinys yra faktiSkai dvimatis. Pateiktas skaitinis
eksperimentas patvirtina modelio tinkamuma.



