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ABSTRACT

The usual wire rating problem is to compute the permissible conductor current so, that
the maximum conductor temperature does not exceed a specified value. When numerical
methods are used to determine wire rating, an iterative approach has to be used for this
purpose. This is accomplished by specifying a certain conductor current and computing
the corresponding conductor temperature. The electrical fuse rating problem is to calculate
the melting behavior and to match thermo-electrical characteristic of the wire and fuse in
a way that the wire is protected by a fuse in wanted time and current range.

Up to now the selection of wires is based on data, which were not particular optimized for
automotive applications, where the wire length is typically short and low weight is impor-
tant. The same, electrical fuses today are designed for a certain current value and do not
protect the wire reliable in a wider current range. So, for automobile applications, fuses
have to be re-designed for every single wire to protect it against short circuit currents. Thus,
the investigation of thermo-electrical characteristics of both wires and fuses is necessary.
This paper would like to show some examples how to calculate heat transfer in cylindri-
cal wires (cable rating) and electrical fuses (melting behavior) by implicit Finite Volume
Method (FVM) [12]. Such a procedure allows us to obtain simple algorithm to investigate
thermo-electrical behavior of electrical conductors.

The key part of the paper is the calculation of the heat transfer by implicit Finite Volume
Method. In non-stationary state 1-D heat conduction equation is solved for both cylindrical
and orthogonal coordinates. In stationary state analytical solutions are presented.

Key words: heat transfer, natural convection, radiation, cylindrical wire, electrical fuse,
mathematical modeling, implicit finite volume method, implicit Euler algorithm, Newton-
Raphson method
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1. INTRODUCTION

Thermal analysis of cylindrical wires and cables is a topic that received con-
siderable attention by many researchers [3; 5; 7]. Using different solution
methods researchers have thoroughly analyzed heat transfer by natural con-
vection around a vertical and horizontal cylinder [6]. As mentioned recently
by Haskew [3] non-linear boundary conditions almost exclusively were lin-
earized using Gauss-Seidel method [2], which offers linear convergence. Such
a choice requires a large number of iterations on an equally large system of
equations. Herein, a finite volume heat transfer model is employed, where
non-linear boundary conditions resulting from convection and radiation are
treated by the Newton-Raphson technique [2].

A finite volume solution grid is imposed on the wire cross section or fuse
axial length and a single power balance equation is written about each control
volume. The heat balance equations at interior nodes are linear in temper-
ature, while power balance equations at boundary nodes are non-linear as a
result of the non-linear convection and radiation equations. This formula-
tion, along with the inclusion of boundary conduction and convection, has
been employed by other researchers in the field and presented in the litera-
ture [5]. The other authors have implemented finite-element solutions to the
same equation applied to underground geometry systems [10; 11]. However,
in these systems non-linear boundary conditions were not imposed. For the
problem considered here, boundary radiation is treated.

While constructing numerical grid of the electrical wire, interior nodes lies in
conducting and insulating media. Only nodes within conducting medium are
considered for internal heat generation, which is a linear function of conductor
resistance. Conductor resistance is treated as a linear function of tempera-
ture over the reasonable operating range. Such consideration of resistance
variation allows highly accurate ampacity computations. Previous work has
treated resistance variations in an outer iterative loop analogous to fixed-point
iteration [4] or utilized a maximum resistance value [9].

System of algebraic equations is constructed using the implicit Euler algo-
rithm [2], which means that equations have to be solved simultaneously at one
time level. The implicit algorithm versus explicit numerical algorithm brings
to proposed numerical scheme unconditional stability and computational effi-
ciency.

2. THE MATHEMATICAL MODEL

We shall consider two different heat transfer problems. The first problem deals
with axial heat transfer calculation in a bras hollow cylinder (fuse prototype)
with finite length. The governing equation is the following:

OAT
5 =0 (2.1)
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The second task is the determination of temperature distribution in the
radial direction of a round insulated electrical wire. The governing equation
is the following:

%% ()\(r) r@@A_TT) +p(AT,r) — W(AT)ag—tT =0, (2.2)
where AT is the difference between temperature T' and environment tem-
perature T, (K), A is the coefficient of heat conductivity (W/mK), a is a
convective heat transfer coefficient (W/m?K) [1], p = E(T)J is the thermal
source (W/m?), where E — electrical field strength (V/m), J = I /A — current
density, where I is electrical current (A) and A is area of conductor (m?), u
is circumference of the cylinder (m), «y is a specific heat capacity (J/kgK).

For cylindrical coordinates (cylindrical wire), we have two-layer media, i.e.
metallic conductor and insulation. In general, electrical cable can have mul-
tilayer media, therefore media ) consists of N layers:

N
Q:{r:re UQZ}’ Q={r:rp.1<r<r} i=12,...,N,
i=1

and r = r;, k=1, N are the boundaries of the layers.
The following conditions are applied:

1. The continuity conditions on the surfaces r = r; :

ATz (ri, t) = ATH_l (T‘,’, t),

OAT;(ri,t _ OAT; 1 (7t ) (2.3)
_)\lrz or ) T=T; N _)\z+17'z or ) r:r,-7
2. The initial conditions
AT(z,0) = ATo(z), =z €[0,zn], (2.4)
AT(r,0) = ATo(r), r€[0.5,rn]; (2.5)

3. The boundary conditions on the surfaces = zg and = = =y :

AT(0,t) = ATy (), (2.6)
AT(r,0) = ATN(1), )
the boundary conditions on the surfaces r = rg and r = ry
lim 7\, 04T (ro, 1) (ro, ) =0,
=0 oar "
~rAN = = a(d, AT)(Tx(rn, ) — Tono) (2.7)
T=TrN

+ EO’(TJA{T(,’.Na t) - Te4nv)7
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where d is a diameter of conductor (m), T is the temperature of wire sur-
face (°C), Teny is environment temperature (°C), ¢ is emissivity coefficient
and o is Stefan-Boltzmann constant, o = 5,67 1078 (W/m2K*).

3. ANALYTICAL SOLUTION FOR STEADY STATE REGIME

Equations (2.1) and (2.2) in steady state case takes the following form:

d dT auT

el ) It = Nl
dx( dx) 1 =0 (3.1)
1d dT

- - = 0. 2
rdr()\rdr)+p 0 (32)

In order to obtain analytical solutions we apply the following assumptions:
e convection coefficient « is temperature independent;
e thermal source p is temperature independent;

e no temperature gradient in the metallic conductor (see Fig.1)
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Figure 1. Temperature profile in the metallic wire and its insulation. Here Ty is tempera-
ture in the axis of the wire, T} is temperature at the interface between wire and insulation
(an assumption was made, that the temperature at the surface of the wire is equal to the
temperature at the inner side of the insulation), Ty is the temperature on the outer side if
the insulation and Tep, is temperature of environment.

The solution of Eq. (3.1) is given by

T(x) = Ty exp ( j—Zx) + Thexp ( i—Zm) Z;\ (3.3)
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Taking into account boundary conditions (2.6) we get:

In order to obtain the solution of the Eq. (3.2) we reconsider the bound-
ary conditions. As a first limit condition we do not consider the symmetry
boundary condition (as for numerical approach) but the joint between metal-
lic conductor and insulation layer. The second limit condition remains the
same as for numerical approach but without non-linear heat radiation to the
surface part:

dT
dr
dT
dr

_ EI
=71 h 27(7’1)\1 ’

(TN - Tenv) .

(3.5)
&

T=TN - AN
For r; < r <ryx Eq. (3.2) can be written as follows:

%%(r%) 0, (3.6)

which after integration becomes equal to

dT" ¢
==L (3.7)

where ¢ is an integration constant. Taking into account the limit condition
(3.5) the constant c is given by:

EI (3.8)
CcC=— . .
271')\1\]

According to the second limit condition (3.5), the temperature of the outer
surface of the insulation is:

(3.9)
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The temperature profile in the insulation (r; < r < ry) can be determined
by integrating the equation (3.7):

EI
In Y. (3.10)

T(r)="1T
(’f’) 1-’_2’/'1')\1\1 T1

Finally, the temperature at r = r; is expressed as:

pA pA | TN
In —

Ty = Teny .
! + 2nrya 2mAN 0 T

(3.11)

4. THE IMPLICIT FINITE VOLUME METHOD

Using the implicit finite volume method [2], we obtain the finite volume scheme
approximated by central differences. In time, differential equations (2.1) and
(2.2) are approximated using the implicit Euler method. The approximation
by FVM can be obtained in the following steps:

1. Equations (2.1) and (2.2) should be re-written in the integral form. We
integrate the equation over a small fixed volume V.

2. The volume integral over the heat flux vector is transformed to a surface
integral by means of the divergence theorem.

3. We apply the integration form to the finite volume V; = [i — 0.5;¢ + 0.5].

4. The integral form over finite volume V; = [i — 0.5;4 + 0.5] is replaced by
central differences in space and backward differences in time.

Then the discrete forms are given as follows:

a) for cylindrical tube (fuse), axial heat transfer:

'ATln =Tenw, =1,
Ait1/2 Ai—1/2
2 (AT AT AT? — AT?
Ami+1/2 < i+1 i ) + Ami_1/2 ( i z—l)
" Ax; .
) +%AT,.nAxi + % (AT{‘ - ATZ."_I) = pAz;, (4.1)
1<i<N,
(ATR =Teny, @=N,
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b) for cylindrical wire, radial heat transfer:

( T1/2M05
A’l"l/z

(aTp - aTy) + %@27&5 (aTy - aTp)

= A7‘07‘1/21707 =0,
) A iTi—1 /2 Ni—
ST PA (N AT 4 TTRURNE (Ape Ay )

AT‘A+1/277, A7'Ii—1/2
+%Z" (AT,." - AT{“l) = Argmp;, 1<i<N,
TN_1/9AN_
QTR = Tens) + 20 (TH)* = Thy, ) + DL (1 - 1)
n(T)rn A
7 (T)rvArn n_ agn-1) 1 nooi_
\ 9AL (ATN ATy ) ZTNAerN, i=N.

(4.2)

5. NEWTON-RAPHSON METHOD FOR SOLVING THE SYS-
TEM OF ALGEBRAIC EQUATIONS

Since, we have to deal with one-dimensional heat transfer problem Eq. (4.1),
the Gauss elimination method [8] can be further simplified by taking advan-
tage of the zeros of the tridiagonal coefficient matrix. This modified procedure,
generally referred to as Thomas Algorithm [2], is an extremely efficient method
for solving large number of such equations. Using this algorithm, the number
of basic arithmetic operations for solving a tridiagonal set is of the order N,
in contrast to O(N?®) operations required for solving with Gauss Elimination.
Therefore, not only are the computation times much shorter, but the round
off errors also are significantly reduced.

The Newton-Raphson iteration method [8] is used to linearise equations
(4.2). The Newton-Raphson method is an algorithm for finding the roots of
systems of nonlinear algebraic equations by iteration. If a good initial guess is
made, Newton-Raphson iteration process converges extremely fast. Iterations
are terminated when the computed changes in the values of p™ become less
than some specified quantity e.

Applying Thomas Algorithm Eq. (4.1) is turned into the form:

C()AT&1 - boATln =pg;

—alAT(? +C1AT1" — blAT2" =p?;
.......................................... (5.1)
—a;ATP | + c;ATP — bATP, =pt j=1,...,N—1;

—anATR_ | + cNATR = pi.

)
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Temperature variables AT are found by the following relationships:

b
ap = 25 By = 22,
Co b Co n ﬂ
. pi+a;Bi1
a; = i py = (5.2)
%—%%F ¢ —ajj-1
PN tanPN-1 .
T=Tn MWL T =Tl +fy i= 1 N
where:
0 — A o A Cl_2)\+'y+au
J—Amga ]_A:L.2’ J_A:L.2 At A’
"
1 1 ou TRt
a + L+ 2 py=EJ+ w2, j=N.

NTAz2 N T A2 TAr T A At

After applying the Newton-Raphson method, nonlinear system of equations
(4.2) turns into:

(co Pyt — boPl* = p§ — co AT + by ATY

—a1 Pl + 1 PP — by PR = pt + a1 ATS — e; AT + by ATY;

{—a;PP | +c; PP — ;P = pl + a; AT | — ¢;ATD (5.3)
AT j=1,..,N—1;

—anPR_| + (en + o)X + BAM(TR)?) PR = pi + AT ™!

[ +anATR |+ (—env — aN)TR — BATR)* — adTeny — BATE,,

where P are unknown temperature variables, AT are initially guessed values.
Coeflicients a, b, ¢ of the system of linear equations (5.3) are calculated by:

rA r 2r vy !
L= L= L= _ .= F 1.1—7
4G = pgm YT gy ST xgp T ap BT B i
j=1,2,....N—1;
1 1 7y T
= eN=— 4 & =EJ N =N.
an szy CN A.CL'2 + Ata DN +’YN At y J

6. NUMERICAL RESULTS AND DISCUSSION

We have used the following data to calculate thermal behaviour in the fuse sys-
tem with the blow-up element in the middle, made of Brass 58 (CuZn39Pb3)
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(see Fig.2): N = 1 (one layer was used: brass); I = 180 A is the cur-
rent passing through the fuse; v = 410.J/m? K is the specific heat capac-
ity; A = 113W/mK is the heat conductivity of brass; T,,, = 65°C is the
temperature of the electrical wire.

To simulate heat transfer in cylindrical electrical wire the following data
was used:

Type of the wire - FLY; cross-section — 16 m™2; maz. allowed tempera-
ture of the insulation — 90°C; (N = 2) (two layers were used: copper and
PVC insulation); I; = from 0 to 300A; Ib= 0; Ay = 401W/mK, X =
0.17W/mK; 1,7, are nonlinear specific heat capacity coefficients depend-
ing on temperature; Ty, = 65°C is the temperature of environment.
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Figure 2. The conception of the Pyrofuse
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Figure 4. The function obtained from
the numerical calculation of tempera-
ture (after steady state) in the metallic
conductor of the wire for different cur-
rent values.

Figure 5. The function obtained from
numerical calculation, where "heating —
up time" was calculated, which deter-
mines maximum time can be handled by
the wire applying the current represent
in the picture. Here the limit condition
for the heating-up time was 90°C de-
grees.
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In Fig.3 we presente fuse melting behavior with simplified fuse element
geometry for better illustration purpose. From the picture can be seen the
maximum temperature (310 °C) of the element after infinite time. This tem-
perature was given by the fuse manufacturer and the aim was to choose the
correct fuse element geometry in order to obtain given mazx. temperature for
known electrical current value. Also fuse holders had to be designed in such
a way that the temperature on the junction between the wire and the fuse
holder does not exceed maz temperature of the wire insulation (90°C). The
validity of numerical calculation results was verified by the experiments with
fuse prototypes.

In Fig.4 and Fig.5 temperature and time behaviors of electrical wire, re-
spectively are presented. In Fig.4 we show the temperature is in the junction
between the conductor and insulation. This curve allows finding the maximal
permissible temperature of the wire thus best to exploit the wire cross section
in real applications. Fig.5 depicts the time, which is allowed for the electri-
cal load given in the picture. This information is ideal if the wire is loaded
finite time with higher current when the nominal current of the wire. Also
this information is useful if the fuse has to be designed to protect the wire
against overload currents. The results obtained in Fig. 4 and Fig.5 were also
validated by the measurements.

7. CONCLUSIONS

1. The proposed method allows us to calculate heat transfer in electrical con-
ductors using reduced 1-D model, which is completely satisfactory to in-
vestigate thermo-electrical behaviour of the conductors.

2. Applied implicit FV method enables us to approximate differential equa-
tions by applying energy conservation low directly to the mesh nodes.
Therefore, it is maintained clear physical understanding while discretizing
the differential equations. Also the method ensures both conservativeness
and numerical stability of numerical scheme while having low computa-
tional time costs.

3. Using FVM, second order accuracy approximation was obtained for both
governing equation and boundary conditions.

4. The analytical solutions are given for steady state regime, with some sim-
plifying assumption. Although the heat convection coefficient a is assumed
as constant value (that makes quite a deviation from correct value), the
Egs. (3.3), (3.11) are precise enough to calculate temperatures analytically.

5. The results of the proposed heat transfer mathematical model, boundary
conditions and numerical approximation by implicit finite volume method
give less than 10% error from experimental results.
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SILUMOS PERNESIMO UZDAVINIO SPRENDIMAS CILIND-
RINIUOSE ELEKTROS LAIDUOSE IR SAUGIKLIUOSE NAU-
DOJANT NEISREIKSTIN]I BAIGTINIU TURIU METODA

A. Ilgevi¢ius, H.-D. Liess

Siame darbe yra nagrinejamas netiesinis §ilumos perne§imo uZdavinys siekiant apskaiciuo-
ti temperaturos pasiskirstyma cilindriniuose elektros laiduose bei saugikliuose naudojant
neiSreikstinj baigtiniy turiy metoda. Zinant temepratiiros pasiskirstyma, véliau galima
efektyviau iSnaudoti elektros laidy skerspjuvius bei patikimau apsaugoti pastaruosius nuo
perkrovos sroviy. Si problema (laidy skerspjuviy minimizavimas) yra labai aktuali ten kur
elektros laidinky svoris turi buti minimizuotas (automobiliuose, laivuose ar léktuvuose).
Pasiulyta skaifiavimo metodika supaprastina elektros laidininky Siluminiy-elektriniy cha-
rakteristiky apskai¢iavima nestacionariu atveju. Pagrindinis démesys Siame darbe yra
skiriamas neiSreikStinio baigtiniy turio metodo pritaikymui §ilumos laidumo uZdaviniui
spresti. Netiesinés lygtys atsirandancios dél netiesiniy kraStiniy salyy yra iSsprestos nau-
dojant Niutono iteracijy metoda. Stacionariame rezime pateikti Silumos perne§imo lygties
analitiniai sprendiniai apskai¢iuoti temperaturos pasiskirstyma elektros laiduose bei saugik-
liuose.





