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ABSTRACT

In this paper we consider numerical algorithms for solving the system of nonlinear PDEs,
arising in modeling of liquid polymer injection. We investigate the particular case when a
porous preform is located within the mould, so that the liquid polymer is flowing through
a porous medium during the filling stage. The nonlinearity of the governing system of
PDEs is due to the non-Newtonian behavior of the polymer, as well as due to the moving
free boundary. The last is related to the penetration front, and a Stefan type problem is
formulated to account for it. A finite-volume method is used to approximate the given
differential problem. Results from numerical experiments are presented.

‘We also solve an inverse problem and present algorithms for determination of the absolute
preform permeability coefficient for the case when the velocity of the penetration front is
known from the measurements.

In both considered cases (direct and inverse problems) we emphasize on the specifics
related to the non-Newtonian behavior of the polymer. For completeness, we discuss also the
Newtonian case. Results of some experimental measurements are presented and discussed.
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1. INTRODUCTION

Composite materials are nowadays widely used in automotive, aerospace and
many other industries. Liquid moulding technologies (see, e.g., [2]) are of
strong economical interest for manufacturing high quality composite parts.
The essence of the discussed technologies is that a dry fibrous mat, which
form a porous preform, is located within the mould, and after that the liquid
polymer is injected. In this way an accurate orientation of the fibers within
the composite parts is achieved, making possible moulding parts with desired
mechanical properties. In order to reduce the production costs of manufac-
tured parts, mathematical modeling and numerical simulation are more and
more extensively used at the designing stage. Because the filling of the mould
is the most critical part of the process, most of th efforts are concentrated
on its study. The review articles [4; 17] give an impression about most of
the mathematical models and numerical algorithms, developed in this area.
The great part of the models (see, e.g., [4] and references therein) use the
linear Darcy model to describe the liquid polymer flow through the porous
preform, the last being considered in rigid body approximation. It should
be noted, that such models are not valid for the flow of non-Newtonian flu-
ids, also they do not account for the compressibility of the fibrous mat, and
therefore these models have a limited area of applicability in modeling the
polymer moulding. More advanced models consider either the coupled prob-
lem for Newtonian fluid in deformable porous media (see, e.g., [1; 6; 7; 8;
9; 17]), or the flow of a non-Newtonian fluid in a rigid porous medium (see,
e.g., [18]). The most complete formulation, concerning non-Newtonian flow
in deformable porous medium is still not well studied.

Several challenging mathematical problems have to be solved in connection
with simulation of liquid polymer moulding. Among them are developing of
accurate numerical algorithms for solving the nonlinear free boundary direct
problems, analysing and solving inverse problems (e.g., parameter estimation,
etc.). This paper concerns several aspects of the modeling of LPM processes.
These are:

(i) presenting a complete model for flow of non-Newtonian in deformable
porous media;

(ii) solving an inverse problem for determining permeability in the case
when the penetration front is known from the measurements;

(iii) developing a finite volume numerical algorithm for solving the 1-D
direct problem.

First of all, a complete model for flow of non-Newtonian fluid in deformable
porous media is listed. Curing (i.e., polymerization) is also accounted for. The
model assumes sharp interface between the filled (wet) part of the porous
preform and the unfilled (dry) part. A justification of this assumption for
certain process regimes can be find, e.g., in [17]. For the approach dealing
with an unsaturated subregion we refer to the discussion in [4]. In the next
section we recall the 3-D model from [6; 7; 8; 9; 17] which treats Newtonian
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fluids, but accounts for the deformation of the preform and for the curing.
The third section is devoted to a more detailed discussion of the model for
the 1-D case. The fourth section concerns an extension of this model to the
case of the non-Newtonian fluids.

Parameter (i.e., permeability) identification is discussed in Section 3 for
the Newtonian case, and in Section 4 in the non-Newtonian case. Recall,
that determination of the permeability is critical for the simulation of the fill-
ing. Once the permeability is known, the polymer injection can be simulated
by analytical or numerical methods. Analytical solutions for the infiltration
front position are presented in Section 5 for both cases: Newtonian and non-
Newtonian fluids.

Section 6 is devoted to a numerical algorithm for solving the governing sys-
tem of PDEs. Finite volume discretization, treating the moving boundaries,
decoupling of the system, and results from some numerical experiments, are
consecutively discussed there.

2. MATHEMATICAL MODEL

In this section we introduce the basic equations describing the injection mould-
ing processes. Consider a deformable porous medium that at time ¢ = 0 starts
being infiltrated. Let us denote by D* and D? the time-varying domains
corresponding to the wet part of the solid preform (i.e., which is already wet
by the infiltrating resin), and to the dry one (i.e., which is not yet reached by
the liquid polymer), respectively.

We assume that capillary phenomena can be neglected, thus D* and D¢
are divided by a sharp interface o that represents the infiltration front. We
also neglect the gravity force. The both assumptions are reasonable when the
applied external pressure is relatively high. Let us denote by ¢¢ the contact
surface between the pure liquid and the wet solid.

The mathematical model consists of evolution equations for the state vari-
ables in the wet and in the dry regions, completed by interfaces conditions
on ¢! and ¢° and by proper boundary conditions. Note, the general multi-
component mixture equations can be simplified [7] for the considered here
case.

2.1. Mathematical Model in the Wet Region

The following variables are used to describe processes in the wet region:

@Y and ®;° stand for the volume fraction occupied by the solid and the
liquid constituents, respectively. Assuming the full saturation, the volume
fraction occupied by the liquid satisfies the equality:

=1-80

vy, v}’ denote the velocities of the solid and the liquid constituents;
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P is the pore liquid pressure.

0" is the temperature of the mixture in the wet region. Here we assume
that the solid and liquid constituents there are locally in thermal equilibrium.

0 is the degree of cure of the resin. While penetrating the resin undergoes
a polymerization process (i.e., curing), which is largely exothermic. It is
defined as the ratio between the amount of heat released by the exothermic
polymerization and the total heat of reaction. So 0 < § < 1 (no curing for
0 = 0, complete curing for § = 1).

2.1.1. Mass Conservation of Solid and Liquid Constituents

Assuming that the solid and liquid are incompressible (i.e., the densities of
the solid p, and liquid p; are constant), we obtain the local mass conservation
equations in the Eulerian framework:

L wowy _

5 +V-(®¥v¥) =0, (2.1)
Lo "

—6; + V- (®PvP) =0. (2.2)

Assuming saturation, the volume fraction occupied by the liquid is given
by
r=1-97. (2.3)

Summing up Egs. (2.1) and (2.2) and introducing the composite velocity
(or volume average velocity)

ve = Qv + 8V,
and recalling the saturation condition (2.3) results in the equation

V-v¥=0. (2.4)

c

Let us denote by p the density of the mixture as a whole, i.e.:
Pm = ps®s + pi®)
and by v the velocity of the mixture

_ eV 4 By

J=

A%

w
m

Summing up Egs. (2.1) and (2.2) multiplied by the corresponding densities
gives the following mass conservation equation

Opm
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2.1.2. Momentum Balance Equations
We will not consider general momentum balance equations. To focus on flow
in porous media, the following simplifying assumptions are used [7]:

(A1) Negligible surface tension and capillary effects and slow liquid flow in
the porous medium;

(A2) Negligible liquid excess-stress; excess interaction force between the solid
and the liquid is proportional to the velocity difference v}¥ — v¥’;

(A3) Negligible inertia if compared with the stresses; external body forces
(e.g. gravity) are neglected;

Then we write the general momentum balance equations as

K
l

VPP -V -Tp=0, (2.6)

where p is the liquid viscosity, which depends on the degree of cure § and on
the temperature 8%

p=pu(0",9),

and K is the permeability tensor, which for saturated deformable porous media
depends on the deformation gradient F; of the solid constituent K = K(F,).
B is the pore liquid pressure, and T, is the effective stress tensor.

Equation (2.5) is known as Darcy’s law for deformable porous medium. A
critical discussion of the hypotheses underlying Darcy’s law is given in [14; 15].
Several generalizations of Darcy’s law can be used here, e.g. Forchheimer law
to account for fast flows, or correction to take into account the non-Newtonian
properties of the resin (the last is discussed in the next sections).

To complete the model, one has to specify the constitutive equation for the
stress tensor T,.

2.1.3. Energy Balance
Following the same procedure, which was used in previous above, it is possible
to write the energy equation for the mixture:

9% 1
PmCm (66—7: + vy V0w> =V - (APVEY) + ;KVP“’ -VP¥ (2.7)

_ pspr Py P}

m

+@°H. fc(6,6%) (a —es)(vi* = vg)Ve®,

where ¢, is the specific heat of the mixture:

_ Ps‘I’?Cs + Pl‘I’lel
Cm = >

Pm
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A is the thermal conductivity tensor of the mixture as the whole, the term
®"H. f.(0,0") represents the heat supplied by the curing reaction of the resin
and the last term represents the heat diffusion due to the relative motion.

2.1.4. The Degree of Curing
As the liquid is moving, the evolution of the degree of cure is modeled by the
equation

1ol

E"_vl V6:fc(6a6 )5 (28)

where f, is an experimentally determined function describing the reaction.

2.2. Mathematical Model in the Dry Region

We proceed in a way similar to the one outlined for the wet region. However
some additional assumptions can be used, which enable us to simplify the
model.

(D1) The air pressure is everywhere equal to the atmospheric pressure;
(D2) The gas contribution to the global stress may be neglected;

(D3) The average velocity is equal to the velocity of the solid constituent and
the composite density p,, ~ ®%p,.

Thus we have the following state variables in the dry region: ® is the solid
volume fraction; v¢ is the solid velocity; 7 is the temperature.

Mass Conservation
d
0%®¢

(®vd) = 0. 2.
B + V- (25v5) =0 (2.9)

Momentum Balance Equation
V-T;=0, (2.10)

where T, is the stress tensor of the dry solid. Here we assumed, that T,, = T,.

To complete the model we still have to specify the constitutive equations
for the stress tensors T,, and T,;. We will assume that the wet and dry solids
behave elastically.

Energy Balance Equation

d
ps®lc, (%it +ve. V0d> =V-(A¥VE?) , (2.11)

where AY is the thermal conductivity of the solid.
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2.3. Interface and Boundary Conditions
Infiltration Front
Let the infiltration interface o! be given by the surface

¢i(a‘-7y7z7t) =0.

This surface moves together with the propagation of the liquid, thus its evo-
lution equation is given by

s
ot

+v¥(o?) - Vip; = 0. (2.12)

Preform Border
Let the contact surface o® between the liquid and the wet solid be given by

¢€(way7z7t) = 0'

As the resin penetrates the porous solid this material surface is fixed on the
solid, and therefore its evolution equation is

awe w e —
BN +vY(0°%) - Vipe = 0. (2.13)

Jump Conditions for Material Surfaces
Considering the mixture as a whole, the following jump conditions are ob-
tained for material surfaces [7; 8; 13]

[pm( - VU)] ‘n, =0, (2.14)
[0 =0, (2.15)
[-PI+T,] n, =0, (2.16)
[P] =0, (2.17)

where n, is the normal outside D*. It follows from (2.14) that
[ve] -my =0.

Using (2.17), (2.16) gives the continuity of the stress T, across the the surface:
[Tr]-n,=0.

In one-dimensional case assuming the same constitutive equation of elastic
type for wet and dry solids, this implies the continuity of ®, across ¢!, and
then we get from (2.17) the continuity of vs.

If the specific heat of the solid is continuous across of, the temperature
fluxes satisfy the following condition:

[A,V6]-n, =0.
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Boundary Conditions on o€
Let the superscript ~— denotes the quantities evaluated in the pure liquid re-
gion. Then we have the following conditions

=0, v, =vi,
Tino—ezo, _P7=_P07

where v, is the inflow velocity of the resin and Py the pressure driving the
flow. Thus in the wet region we have ®¥(o¢,t) = @, , where ®, is the solid
volume fraction in the dry undeformed preform.

The temperature on o¢ is 8 = 6;,, where 8;, is the temperature of the
infiltrating liquid.

Boundary Conditions for the Curing Equation
The curing equation (2.8) is hyperbolic thus the boundary conditions

0(0°) = bin

must be specified on the part of the boundary where the characteristics enter
the domain (the resin enters the preform), i.e. where (v}’ —v¥) -n,. <O0.

3. ONE-DIMENSIONAL INFILTRATION

This section deals with one-dimensional problems (see [1; 6; 7; 8]). Assume
that the porous medium is initially dry, homogeneous, isotropic and that the
flow and the strain take place only along x axis.

Let us denote by & = z.(t) the left border of the preform, which can move
(due to the preform’s compression) when the liquid touches it. The infiltration
front x = z;(t) separates the wet region D% from the remaining dry region
Dé:

DY =[xz, (t),z:(t)], D?=l[x:(t),L].

As infiltration proceeds, both the dry and the wet preforms compress or ex-
pand back according to the process conditions.

The one-dimensional mathematical model is obtained from the system of
equations given in the previous section.

For ¢ < 0 the whole preform is dry, at rest, and compressed at a given
volume ratio:

®5(z,t =0) =2, z€[0,L],
z(t=0)=0, z;(t=0)=0,

where @, is the solid volume fraction of the solid preform in its undeformed
configuration.
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3.1. Wet Region

In the wet region the following equations are satisfied:

vy

ot +%(®svs):07 (31)
V(2 (t),t) = D,, t>0,
ovY?
e _ 2
W/ w wy _ K opPY
(1 - ¢s )(Ul - vs ) - ll/((s, ew) 61’ Y (33)
OPY orv
el 4
Ox + Oz 0, (3.4)
00" OO\ _ D [, 08N K or g
Pmem \ "g¢ TV oz ) T 9z \"™ 0z )~ P'Uu(s,6%) bz oz
y " K arv\? oY
ol w00 w
E-{_Ul %_fc(éae ): (36)

where 7% is the xzz component of T,:
T :_(Tm)wwa .’L‘GDw, tZOJ

and K is the zz component of the permeability tensor K = (K)

T -

Velocity Driven Infiltration

Before formulating equations in the dry region D? we will use equation (3.2),
from which it follows that v, is space independent in DY

ve(z,t) = v(t).

Due to jump conditions, formulated in previous section, the composite velocity
is continuous across z.(t), thus we have:

ve(x,t) = uin(t), =z € DY,

where u;,,(t) is the velocity of the infiltration liquid.
Using Darcy’s law (3.3) we can express the velocities of the solid and liquid

constituents

K oP*

u Ox
ey Kopv

1-9% py Jz

w o _
Vg = Uip + ,

w o __
Ul —'U/in—
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The infiltration front z;(t) moves with the liquid, thus we have the initial
value problem

7 = (-'L'z(t)at) = Uin 1-0¥ p ox ’
mz(t - 0) =0

Determination of the Permeability
It follows from (3.7) that the permeability of the homogeneous structure can
be determined as

1-89)u (9Pv\ ™!
K = (uin = o) ¢ pu W(Bx) ’

if experimental measurements of the interface velocity v;* (z;(t), ), the volume
fraction occupied by the solid ®¥, and pressure gradients are available.

Constitutive Models
We still need to specify the constitutive equations for the stresses. Two models
can be used.

(WA1) Considering the elastic model for wet porous medium preform means
that
T =Xy (9Y),

where ¥, is a strictly increasing function. Most frequently it is assumed that
Yi=X,.

Then the continuity of the stress across x; implies also the continuity of the ®.
If wet and dry preforms behave elastically with X4 # 3, then the continuity
of &, across x; does not hold any more.

(WA2) Due to the fact that the solid and the liquid matrices can not de-
form independently but have to carry the load by joint deformations, the wet
preform is modeled by the linear model

orv w 0T w OVY w 0% (PY)
/\(W+vs 8—$—2a7 o > +7 _A(iat

¥, (B¥
AL

ovY
ox —2a ox

zw(@;")) T (@),

where A is called the relaxation time, A is the retardation time, A > X and a
is a parameter ranging in [—1,1].
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(DA3) The dry preform is always assumed to behave elastically
0 = %4(87), (3.8)
where Y, is a strictly increasing function of the solid volume fraction.

3.2. Dry Region

Since the interaction between the air and the solid can be assumed negligible,
there is no pressure drop in the air. Therefore P¥(x,t) = Py, , where Py,
is the atmospheric pressure.

Let 7¢ be the zz component of the excess stress tensor in the dry region,
then we obtain

ord

—=0. 3.9

o (3.9)
If the dry preform is assumed to behave elastically, then equations (3.8) and
(3.9) imply that ®¢ is space independent.

ol = 3d(t).

Due to continuity of v, across the interface x;(t) we have
v (2i(t), 1) = vg (2i(t), 1)

or

ve(x,t) = uin(t), =z € D?.

Then from the continuity equation and from the boundary condition
Ug (L, t) =0,

(i.e. the preform is constrained by a fixed draining boundary at £ = L) and
using the fact that ®? is space independent one has

#(24(2))

d _
vi(z,t) = (I)‘% (L-1z).

s

Neglecting the influence of the air, we get the simplified heat equation

08  ddd 06 0 06?
aZ7 L ZTsr o\ ) = dy 77
PsCs (QS ot + dt (L—=2) 6:1:) or ((I)S/\s 8:1:) ) (3.10)
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Pressure Driven Infiltration

If the inlet pressure AP(t) = Py(t) — Patm is given, then we can integrate
the momentum equation (3.4) and use the continuity of the stress on the
infiltration front:

r4(t) = AP(t), t>0.

Then the solid volume fraction of the dry region is given as

(1) = 271 (AP(1)) -

Using this formula and the mass conservation we can find the initial position
of the left border of the preform after incoming liquid compresses the preform:

w0 = (1~ g5 ) -

Let denote by @ the function

K(8Y) 0P

@=- n o Ox

Evaluating the composite velocity v, on both sides of the infiltration front
z;(t) and recalling the fact that z;(¢t) is a material interface fixed on the
liquid phase, one can write the equation

d:L',-
Uin = Y (uin — Q) + (1 — ‘I’g})%

d
= -2 (- e -x).

Using (3.7) we can eliminate u;, from the obtained equation, this gives the
initial value problem for the interface x;(t):

d(®%z;) . d®? vQ

(3.11)

2;(0) = x40 -
The inflow velocity is then determined as
(®3)' 1 2yQ
uin(t) = (L — z(t)) <I>zi + 3 1 1 —S<I>§U (zi(t),1).

If AP(t) is constant in time, then after simple computations it can be proved
that

dz;i(t)
dt -

uin(t) = (1 - 95)
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4. NON-NEWTONIAN FLOW

In previous section we have considered the Newtonian fluids, for which Darcy’s
law specifies the relation between the velocity and the pressure. But a large
number of fluids, such as polymer solutions, polymer melts, suspensions do
not follow Newton’s law of viscosity [10]. One of the possibilities to describe
non-Newtonian fluids is to modify the classical Darcy’s law and to use a
generalized Darcy’s law (power law). For one-dimensional case we have:

w\ 1/n
K@P) | 1)

R

where n is used to describe different types of fluids. If n < 1 then a fluid
is pseudoplastic (polymer solutions are pseudoplastic). A dilatant fluids are
described using n > 1. Here H is the non-Newtonian bed factor. Following
[3] we combine a power law model of a non-Newtonian fluid with the Blake-
Kozeny model for the porous medium, this gives

3

n
_ K ° (1-n)/2
H D (9+ n) (150Ke€) ,

where € is the porosity of the structure. Then equation (4.1) can be rewritten
as:

K+n)/2 gpuw\ /"

a-eyer—o) = (<X 20 (4.2

1 3\"
= — zZ 1 (1-n)/2
d 12 (9+ ) (150¢)

Determination of the Permeability
Using the generalized Darcy’s law (4.2) and the fact that v. is constant in
space we can express the velocity of the liquid constituent

Y ( K(1+”)/26Pw>1/"

1— 9w pwd, Oz (43)

Ulw = Ujn +

The infiltration front z;(t) moves with the liquid, thus we have the initial
value problem

gv [ KO+w)/2gpu\ /"
<_ pwd, Oz ) ’
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After measuring the front velocity v (z;(t),t), the volume fraction corre-
sponding to the solid ®? and the pressure gradiant, we can determine the
permeability of the homogeneous structure as

v 1—gu\"  rapwy )70
K=—-{(}'—up) oo wdy e .

5. ONE - PHASE MODEL

It is well known that the macroscopic flow behavior at large length is well
captured by one-phase flow models (see publications on RTM [4; 16; 19]).
Such models are sufficiently accurate in predicting flow-front location, mold-
filling time, and pressure distribution during mold filling.

In this section we consider one-dimensional model of the injection in a non-
deformable porous media (i.e., a rigid preform) with a resin as the only phase.
Its flow is governed by the Darcy’s law

K OP(z,t)
== i
or the generalized Darcy’s law
K(1+n)/2 OP(z, 1) 1/n 59
o= (- ) (5.2

where ¢ is the volumetric velocity (i.e., the amount of volume traversing a
unit area per unit time through the preform). We also assume that injection
is isothermal

If the flow is saturated, then the assumption of resin incompressibility (i.e.,
the mass balance) leads to the following boundary value problem:

dq
% =
P(Oat) = PO(t)a P(wi(t)at) = Patm -

0,

We can obtain the solution in the explicit form (this formula is also valid
for the generalized Darcy’s law):

P@ﬂz%@+iﬂ;&@m

Let consider the Darcy’s law. The evolution the infiltration front is de-
scribed by the initial value problem
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dil,','(t) _ K Po(t) - Patm
dt —u )
331(0) =0.

If the driving pressure is constant in time, then we obtain the position of the
infiltration front in the explicit form:

zi(t) = \/% (Po— Pasm) 1.

Similarly for the generalized Darcy’s law the infiltration front is given by

K(1+n)/2 1/(n+1) n+1 n/(n+1)
R e ) B

0.15

0.1

0.05

&

Time[s]

Figure 1. Position of 2(t): measured values (circles) and a fitted curve (solid line).

Ezxperimental Data. In this paragraph we present certain results of exper-
imental measurements performed in the University of Kaiserslautern. The
conditions of the experiment were characterized by a slow flow, a Newtonian
liquid was used in experiments. In Figure 1 we plot the measured values of
z2(t) (circles) and the linear approximation (solid line), which is fitted to the
experimental data using the Least Squares method. As it can be expected,
the presented results show that the model based on Darcy’s law gives a good
approximation of the movement of the infiltration front in this case. Measure-
ments with a non-Newtonian liquid are to be performed and compared with

our analytical predictions in the near future.
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6. NUMERICAL METHOD

Let us assume that at time moment ¢ = 0 the liquid touches the left border of
the preform. We are not trying to describe the early instants of the infiltration
process and simply state that the incoming liquid compresses the preform and
wets some its part, therefore the initial positions of the border z., as well of
the infiltration front x; are given a priori

Ze(0) = eg, x:(0) = 40 -

Then we can identify a wet region D* and a dry region D?.
There are two main difficulties in constructing discrete approximations of
the given differential problem:
e Moving boundaries z.(t) and z;(t) (the Stefan type problem);
e The generalized Darcy’s law for flow velocities.

In this section we will analyze some methods for solving the described above
one-dimensional differential problems. In order to simplify the presentation
we restrict to the mass and momentum balance Egs. (3.1)—(3.4):

(00 0
- (bw w —
6t + ax ( S US ) 07
DY (2 (¢),t) = D, D¥(wi(2),t) =Dy, t>0,

Y (z,0) = Do(xz), z(t) <z <mi(t),

\ v
B
(I=29)(v —vy) =Q,
oPe ot _
\ Oz Ox ’

here () describes the Darcy’s or generalized Darcy’s law terms.

6.1. Discretization

The given one-dimensional problem is defined in the region with two free
boundaries. Following [1] we define discrete meshes which are dynamically
adapted to the moving boundaries:

W=Az;j=2;t): z;=2.(t),+hwj, j =0,1,...., M, xpr = xi(t) },
D?L:{xJZ'Z-](t) -’L']Z.’Ez(t)—f-hdj,]:M,M—i-l,,N, .Z'N:L},

here M = M (t) is selected to preserve the quasi-uniform spatial discretization
of the whole region D

(zi(t) — ze(t)) N

M = M>1.
L ? -




Simulation of liquid polymer moulding 197

Let 7™ denotes the discrete time step at ¢t = ¢t". In the following we will denote
by @7 the finite difference approximation of ®(z;,t").

Infiltration Front

The front tracking method is applied to determine the time step 7,,. Using
the free boundary equation for z;(t), the time step 7, is chosen so that the
infiltration front jumps from one node to the next node per time step. Thus
the discrete mesh parameter M (t") = n and the time step 7, is computed
from the following equation

L-z.0) %

N

N7, - _)eg Ay (6.1)

n
M—

M=

Approximation of the Differential Equations

For a moment let us assume that the left boundary z.(t) is not moving, i.e.
remains constant. In the case of Darcy’s law we can reduce the system of
equations to a single parabolic problem [9]

0y 0% _ 0 (K((I)s) du () 4, a@g) |

ot dr Oz w ddw ¥ Ox
(b;u(xeat) =&, q)g}(wi(t)at) =®,, t>0.

(6.2)

Let us introduce the following notation of finite differences:

(bj — q>j_1

Pjt1 — P
h ’ '

5 ;= -

(S+q>] =

The discrete approximation is obtained using the finite-volume method. We

use the upwind approximation for the convection part, centered differencing

for the diffusion part and a backward Euler method for integration in time,
then the difference scheme takes the following form

n+l _ Fn

(I)J' (I)j + ! 6_@;”'1

in
Tn

_ ajy0s(®")0 BT —a;_o5(@7T)5_ 7T
= - ,

gt =®,, N =03,,
where
o7, 1<j<M-1,

1
5((1)?4—14_(}]”\'/[)’ j:M_l-
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The system of nonlinear equations is solved using the Picard linearization:

4 n,r x
o — 7
J J n+1 n,r
T + Ujp (S,Qj

ajro5(®™" )0 BT —a; o5(TN)I BT

q = A )

n,r n,r
oy =0, &, =d,,

[ #70=a", j=1,2,... ,M—1.

Generalized Darcy’s Law

The given above algorithm also can be used if the flow velocities are described
by the generalized Darcy’s law, at least when the parameter np < 1. Here
we have changed the notation of n to np in formula (5.2). Then the iterative
algorithm takes the following form:

L bitos(®™T )6 BT — bj_o.5(@™" )5 BT
j J ntl s gnr _ 105 T J j
- +up oo j - ,
1
K(+n0)/2() d%,,(®)\ "P N
Piroal®) = <( udy, dd ) ® i |64.@;|(1—me)/no
i+l

6.2. Moving Boundaries

In this section we will take into account that the contact surface z.(t) is
fixed on the solid. Thus if vs(z.(t),t) # 0, then the boundary is also mov-
ing. Let us consider the elementary domain, which is described by our mesh
[zj-1(t),x;(t)]. We denote by v = v(x,t) the velocity of grid points. Then it
is convenient to use the integral formulation of the mass balance equation

5 z;(t) 5 z;(¢)
2 wap 4+ O U ) B dy = 0. .
- / oY i+ o / (0 — v) B dz = 0 (6.3)

zj-1(t) zj—1(t)
Applying the finite-volume method we approximate the integral equation

(6.3) by the following conservative finite-difference scheme

n,r 4
h"’“}j — h"®7

Tn

n,r n,r n,r n,r n,r fN,T
+F (0]} #50, 87) = F ()7, 77,877

= aj+%((1)n,r—1)5+(1,?,7" _ (Ij_% ((I)n,r—l)(s_q);b,r ,

n‘,,r _ p-i—l _UTL,T

w = .
j+y — in it+37
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where the numerical flux F (w]- +%,¢j+1,¢j) is defined as follows (see, [5;
12]):

1 1
F (wj—i-%’q)j-i-laq)j) = Sty (i1 + &) = Slwip s [ (B = 25) -

The velocity of the movement of the grid point x;(¢") is defined as

w(En) = e, en) (1= ), G=01 0,

and the contact surface z. (") moves with the velocity:

R0 B
27y,

(u?w_,‘_l_ al/z((I)n,r—l)(s_’_q)g,T—l) (Diz}g—l +

,U;u ('Z'B (t"ﬂ‘)) = (I>n,r—1
0

The contact front position is updated by the following formula:

w™" = w4 (1= )y (z(t™7),t"7), 0<60<1,

(M) = 2. (t") + Tw™", w™® =0.

6.3. IMPES Type Algorithm

The given nonlinear system of equations can be linearized by solving sequen-
tially the pressure and saturation equations [11]. Application of this method
for problem (3.1)—(3.4) gives the following algorithm:

1. Implicit Pressure Equation

{ —(5_5+P”’T = 5—(54—2111 (‘I’n’ril) s (6 4)

P()n’T:POa P;\?T:Patm-
2. Mass Balance Equation

The difference scheme which uses the Enquist-Osher numerical flux [5; 12]
takes the following conservative form:

oy PR h97) - F (5T en)
Tn h © o (6.5)

n,r n,r
(I)()’ =, (I)M =P,

where the numerical flux F is defined as above.
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6.4. Numerical Experiments

The simulations presented in this section use the values of parameters given in
[7], where the infiltration of a thermosetting resin in a network of glass fibers
is considered.
The dependence of the permeability on the volume ratio is assumed to be
given by
K(®Y) = Kge 16(%7 %)

The stress-strain relations are given by

Eu} (@’ls,u) — EBU (626.443';" _ 626.4<1>T) ,

£4(8%) = £ (2% — 25%r) .

The resin viscosity and the function describing the curing process have been
taken of the following type:

18000/R0( 0.1 )LSJF(S if §<0.1,

u(5,0) = { H0° 01-0
o0 otherwise,

po = 2.78 -10~* (J/mol)
E FE.
f(0,0) = <01 exp <_R_;> + ¢o exp <_R_t29> 60'3) (1—6)L7,

c1 = 378330, ¢; = 678330, E; = 54418, Ey = 50232,

where R is the g

L _ - - -
0.25 D
L -
-
0.2 -7
-
r ”
b
0.15 %
’
r ’
4
01 -
7
s
0.0s|,’
0 10 15 20
Time[s]

Figure 2. Positions of free boundaries: z¢(t) (solid line) and z;(t) (dashed line).

In order to test the proposed finite-difference scheme we simulated the in-
filtration process which is driven by a constant pressure 0.1 M Pa. After the
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application of the pressure, the preform initially is compressed from 300 mm
to 282 mm. Figure 2 shows the evolution in time of z.(t) and z;(t).

As it is expected from the one-phase model, the interface z;(t) moves as
Vt, at least for the initial time interval.

Figure 3 gives the evolution of the solid volume fraction at different time
moments.

0.55

kA /.1
054~ e 1 o 4
’ 1 K !
L R 1. B 1
0.531- 7 -
</‘
L . ]
./‘
0.52- -
0.51- -
05 P S IR R
-0 0.15 0.2 0.25 0.3

X [mm]

Figure 3. Solid volume fraction ®s(z,t): t = 3.73 (solid line), ¢ = 8.43 (dashed line),
t =19.16 (dotted line).
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Polimery filtracijos uZdavinio skaitinis sprendimo algoritmas
R. Ciegis, O. Iliev

Siame darbe nagrinéjamas skysty polimery filtracijos uzdavinio skaitinis sprendimo al-
goritmas. Matematinis modelis yra apraSomas netiesiniy diferencialiniy lyg¢iy dalinémis
i§vestinémis sistema. Dél deformacijy filtracijos metu kei¢iasi uZdavinio apibréZimo srities
geometrija, be to skyscio filtracijos frontas irgi juda, todél formuluojamos dvi Stefano tipo
krastinés salygos. Diskrecioji aproksimacija gaunama baigtiniy turiy metodu.

Taip pat darbe sprendZiamas atvirkstinis meZiagos laidumo koeficiento nustatymo uz-
davinys. Gautos ireik§tinés formulés Niutoninio ir apibendrinto Niutoninio skyséiy tekéji-
mams. Sie teoriniai rezultatai palyginti su eksperimentiniais matavimy rezultatais.



