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ABSTRACT

In this paper we introduce a notion of generalized derivative for nonsmooth vector func-
tions in order to obtain necessary optimality conditions for vector optimization problems.
This definition generalizes to the vector case the notion introduced by Michel and Penot
and extended by Yang and Jeyakumar. This generalized derivative is contained in the
Clarke subdifferential and then the corresponding optimality conditions are sharper than
the Clarke’s ones.
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1. INTRODUCTION

A function f : R® — R™ is said to be locally Lipschitzian (or of class C%!)
at £o € R" when there exist constants K,, and 0, such that

1 (1) = f(@2)ll < Kaollzr — 2|

Vi, 22 € R, |21 — Zo|| < 0z, ||22 — Zo|| < 8z, For this type of functions,
Rademacher theorem states that f is almost everywhere differentiable (in the
sense of Lebesgue measure). Then the first order Clarke subdifferential of f
at xg, denoted by 0f (o) is defined as ([2])

Of(xo) = cleonv {l = im V f(z), zr, — x0, Vf(zk) exists},

where clconv {. ..} is the closure of the convex hull of all limit points. Similarly
for a function f : R® — R™ of class C''!, that is a differentiable function with
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a locally Lipschitzian jacobian, the second order Clarke subdifferential of f at
zo, denoted by 0% f(z¢), is defined as

0% f(xo) = clconv {I = lim V2 f (), 2, — mo, V> f () exists}.

Thus 8% f(zo) is a subset of the finite dimensional space L(R"; L(R™; R™)) of
linear operators from R” to the space L(R™; R™) of linear operators from R”
to R™. By the previous construction 82 f(zo) is a nonempty convex compact
set of the space L(R™; L(R";R™)) and the set valued map z — 82f(x) is
upper semicontinuous. Let u € R”; in the following we will denote by Lu the
value of a linear operator L : R* — R™ at the point u € R® and by H (u,v) the
value of a bilinear operator H : R* x R® — R™ at the point (u,v) € R"* x R".
So we will set

0f(xo)(u) = {Lu: L € df(w0)}

and
8 (w0)* (u,v) = {H (u,v) : H € 8°f(z0)}.

Some important properties are listed in the following [2].

e Mean value theorem. Let f be of class C%! and a,b € R”, then

f(b) — f(a) € clconv {0f(z)(b—a) : z € [a,b]},

where [a, b] = conv {a, b}.

o Taylor expansion. Let f be of class C*'! and a,b € R™, then
1 .
f) = f(a) € f'(a)(b—a) + §c1conv {0*f(z)(b—a,b—a):z € [a,b]}.

In [2], Guerraggio and Luc have given necessary and sufficient optimal-
ity conditions for C1! vector optimization problems, expressed by means of
Clarke subdifferential. However, in literature, several alternative definitions
for generalized subdifferentials has been proposed for the scalar case including,
in particular, the Michel-Penot subdifferential ([8]). The Michel-Penot sub-
differential of a locally Lipschitzian function at a point is a nonempty, convex,
compact set, contained in the Clarke subdifferential. The smallness of the
Michel-Penot subdifferential makes the corresponding results, like optimality
conditions, sharper than the Clarke’s ones. In [9] Yang and Jeyakumar used
the notion of Michel-Penot subdifferential for C1! scalar functions, proving
also second order optimality conditions.

The aim of this paper is to generalize to the vector case the notions of
Michel-Penot subdifferential and Yang-Jeyakumar subdifferential (sections 2
and 3) and to use them in order to obtain necessary optimality conditions for
nonsmooth vector optimization problems involving C1'! data (section 4).
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2. PRELIMINARY DEFINITIONS AND RESULTS

Let f : R* — R be a C%! function at o € R®. For such a function, the
definition of Michel-Penot generalized derivative ?;\4 at xp in the direction
u € R™ is given by ([9])

f i To + su + 82) — f(Zo + 82
fIM(v’Uo;U) = sup limsup f(xo ) — f(@o )
z€R™ 510 s

Now let f : R® — R™ be a C%! vector function at zo € R®. We can define a
generalized derivative at zo € R” in the sense of Michel-Penot as follows

fra(zo;u) = ( U A(Z)) ;

z€ER™
where
A(z) = {z = pim Gt sutse) - flmtas) o 0} :
k—+oc0 Sk

and ()¢ denote the closure of the set. It is trivial to prove that the previous set
is nonempty and compact. The following lemma states the relations between
the scalar and the vector case.

Lemma 2.1. glM(mo;u) € Efhy(mozu), VE € R™.

Proof. We have

g;w(m()’u) — zseull{)n hn::foup (§f)($0 + su + 3:') - (é-f)(lll’ + SZ) — kgﬂr_loog(zk)a

where z; € R® and

g(z1) = limsup (&f)(wo + su+szx) — (§f)(xo + szk)-
sl0 s

By trivial calculations and eventually by extracting subsequences, we obtain

g(zr) = 'lirf (€f) (o + sjpu + Sj,l;Zk) = (£f) (@0 + s5,k2k)
j—+oo ok

= iﬁ' lim fi(zo + sj,6u + 85,x2k) — fi(To + Sjk2k)
- 1
Py Jj—+oo Sj.k

= Zfilz’,k =&l
i—1
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with Iy € A(zg). Since Iy — [ and | € f},(zo;u), then glM(xo;u) €
Efp(zosu). M

Theorem 2.1. Let f : R® — R™ be a differentiable function at xo € R™.
Then fi(xo;u) = Vf(zo)u, Yu € R™.

Proof. Let | € f1,(xo;u); then by the definition of f}, there exist sequences
zr € R* and sg | 0 such that

f(@o + spu + sp2) — f(xo + sp2k)

[ = lim

k—+o0 Sk

_ L@t skut skzar) = flzo) + f(zo) — f (o + sk2k)
k—+oco Sk

_ o VS (@o)(sku + skar) — VF(@o)skzk + o(sk)
k—+o0 Sk

. o(sk)
=V f(zo)u+ kgg—loo o = Vf(zo)u.

We now prove a generalized mean value theorem for f},. To do this, we
scalarize the function and we use a mean value theorem for scalar functions
proved in [6].

Lemma 2.2. Let A C R" be a closed and convex subset of R™" such that
EANR_ #0,VEE€R". Then 0 € A.

Proof. Trivial. B

Proposition 2.1. [6] Let f : R* — R be a C%' function. Then Va,b € R",
Jda € [a,b] such that

F(6) = f(a) < Frara;b—a).

Theorem 2.2. Let f : R* = R™ be a given C%' vector function. Then the
following generalized mean value theorem holds

0 € f(b) — f(a) — cleconv {fi,;(z;b —a) : = € [a,b]}.
Proof. For each £ € R™ we have
(EN®) ~ (€N(@) S Eulasb—a) = Ele, I € fiu(asb—a),

where a € [a,b] and then

£(f(b) _f(a) —l;;') S 07 lE € f]l\l(a;b_a)a
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E(f(b) = f(a) —clconv {fy(z;0—a) :z € [a,b]}) NR_ # 0, VE € R™
and the previous lemma implies
0 € f(b) — f(a) — clconv { fi(x;b —a) : z € [a,b]}.
|

The obtained result states that fj, is a subset of df(zo)(u). The next
example shows that inclusion may be strict.

Theorem 2.3. Let f : R* — R™ be a C%! vector function at zq. Then
Fri(zo;u) COf(zo)(u).

Proof. Let | € fi;(xo;u). Then there exist sequences z; € R” and si | 0
such that

_ o f(mo + sku + sk2k) — f(wo + sk2k)
= lim .
k—+o0 Sk

So, by the upper semicontinuity of 0f, we have

f(zo + spu + Skzsk) — f@o + sk2k) € clconv {0f (z)(u);
k

x € [xo + Skp2k, To + Spu + Sk2zk]} C Of (xo)(u) + €B,

where B is the unit ball of R™, ¥n > ng(e). So ! € 8f(xo)u + eB. Taking the
limit when € — 0, we obtain [ € 0f(zg)(u). B

Example 2.1. Let f : R — R?, f(z) = (2?sin (L) +2%,22). f is of class
C% at zo = 0 and f},;(0;1) = (0,0) € 8f(0)(1) = [-1,1] x {0}.

3. A GENERALIZED DERIVATIVE FOR C!! VECTOR FUNC-
TIONS

Let f : R* — R™ be a Cb! vector function at 9 € R®. Then the second
order generalized derivative at o € R" in the directions u,v € R” in the sense
of Michel-Penot is the following

fM’$0,U U ( LJ A— ) )

z€ER™

A(z) = {l = lim Vi(zo + skv+ spz)u — V(x + spz)u
k—+4o00 Sk

» Sk ,L 0}.
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It is trivial to prove that fi;(zo;u,v) is nonempty and compact subset and
that fi;(zo;u,v) = (Vf(-)u)ys(zo;v). The results given above can be ex-

tended to the second order.

Proposition 3.1. Let f : R* — R™ be a CY! vector function at zo € R™.
Then €f yr(20;u,v) € &ffy (wo;u,v), VE € R™.

Proof. In fact, we have

W;\J(xo' v) = sup lim sup EV f(xo + sv + s2)u — EV f(xo + s2)u
2€R™ 50 s

— sup limsup L&D @0 + 50+ s2)u = V(Ef) (@ + s2)u

—
= &f m(wo; u,v)
zeR™  sl0 S

and then the thesis follows by using lemma 2.1. B

Proposition 3.2. [9] Let f : R* — R be a C*! scalar function. Then, Va,b €
R™, there ezists a € [a,b] such that the following generalized Taylor formula
holds

Ta(asb—ab—a), a€la,bl.

f() = fla) =V f(a)(b—a) <

N | =

Theorem 3.1. Let f : R* — R™ be a CY! vector function. Then the follow-
ing generalized Taylor formula holds

0€ f(b) = f(a) = Vf(a)(b—a) — %clconv{fj'(,,(w;b _ab—a):x € [a,b]}.
Proof. For each £ € R™, we have
EN®) — E€N@) ~ VEN@ B —a) < 5Em(esb— ab—a) = 58l
where I € f,(c;b —a,b— a). So
(1)~ f@ - V@0 -0 - 3ie) <0, R

€ (10) = 1@ = V@0 - @) - Gelcony {fi(wib - b=
2 € [a,B}) N R #0,
0€ f(b)— f(a) = Vf(a)(b—a)— %clconv {fir(x;b—a,b—a): z € [a,b]}.
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Theorem 3.2. Let f : R® — R™ be a C1! vector function at xo € R*. Then
v (o3 u,v) C 0 f(z0)(u,v).

Proof. We have
Fir(@o; u,0) = (Vf(-)u)yr (w03 v) C AV f(-)u)(wo)(v) = 8 f(o)(u,v).
[ |

The following example shows that the inclusion may be strict.

Example 3.1. Let f is of class C'! at ©o =0
2 s (1 4 4
f:R—> R, f(m):(x sm(;)%—x,x)

and
wr(0;1,1) = (0,0) € 8%£(0)(1,1) = [-1,1] x {0}.

4. NECESSARY OPTIMALITY CONDITIONS FOR C'! VEC-
TOR FUNCTIONS

Consider the following Pareto set constrained optimization problem

ming= f(z)  subject to =z € X, (4.1)

where X is a subset of R” and f : R* — R™. A point zo € R" is called a local
minimum point (local weak minimum point) of (4.1) if there exists a neigh-
bourhood N of zy such that no x € N N X satisfies f(zo) — f(x) € RT\{0}

(f(z0) — f(x) € int ).
We remember that the following set
WF(X,20) ={d:3s; 10,20 +spd € X}
is called cone of weak feasible directions to X at xg.

Lemma 4.1. Let x9 € X be a local weak minimum point. Then Vd €
WF(X,20), 351 1 0 such that V f(zo + spd)d ¢ —int RT".

Proof. Ab absurdo, d € WF(X,xg) such that Vs, | 0, Vf(zg + srd)d €
—int R". Let s, | 0 such that zo + sxd € X. By the mean value theorem we
have

fi(xo + skd) — fi(zo) = V fi(zo + i rd)d < 0,

if k is large enough. This contradicts the local optimality of zo. B
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Theorem 4.1. Let f be a C1'! vector function. If zg is local weak minimum
point then

JI\IJ(J“O; da d) ¢ —int RT;
Vd € WF(X,x0), Vf(xo)d € —(Rr\int IRT)
Proof. Ab absurdo, suppose there exists some d € W F (X, xq) with V f(z¢)d €
—(RP\int R?) and fy;(wo;d,d) C —int RT. Let s be a sequence that sat-
isfies the previous lemma. Taking the suitable subsequence if necessary, we
have
83 "(Vf(wo + skd)d — V f(z0)d) = | € fiy(z0;d,d) C —int RT.
Thus, the assumption V f(z¢)d € —(R7 \int RT) implies that
Vf(zo + spd)d € V f(wg)d —int RY' C —(RY \int RY') — int R = —int R".
|

Corollary 4.1. Let X = R® and f be a C''! vector function. If z¢ is a local
weak minimum point, then

(203 d,d) ¢ —int R,
Vd € §', V f(zo)d € —(RT \int RT").
Proof. It is trivial, recalling WF(R™,z9) =R". &
So theorem 5.1 in [2] follows from corollary 4.1.

Corollary 4.2. Let X = R™ and f be a C1! vector function. If g is a local
weak minimum point then

0*f(wo)(d,d) ¢ —int RT",
Vd € §', V f(zo)d € —(R7 \int RT").

Proof. Tt is trivial, recalling f};(zo;d,d) C 8 f(z0)(d,d). R

Example 4.1. Let f : R — R?, f(2) = (a:4 sin (1) — ﬁ—Q,—m2). The point
zo = 0 is not a local weak minimum point. We have fi;(0;d,d) = (—d;, —2d2) €

—int R (the necessary condition is not satisfied) but

10 = |5, G| x (-2,

i.e., the necessary condition is satisfied.
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5. CONCLUSIONS

The study of the class of C1! functions has been renewed since the work
of Hiriart-Urruty, Strodiot and Hien Nguyen [5]. The need for investigate
these functions, as pointed out in several papers on this topic (see [2] and
the references therein) comes from the fact that several problems of applied
mathematics including variational inequalities, semi-infinite programming, it-
erated local minimization, etc. involve differentiable functions with no hope
to be twice differentiable. The notion of generalized derivative for this class of
function is crucial in order to derive second order optimality conditions. For
the scalar case several definitions have been proposed including, in particu-
lar, the Michel-Penot derivative and the Yang-Jeyakumar derivative. In this
paper these notions have been extended to the vector case and then used for
proving necessary optimality conditions for vector problems. These general-
ized derivatives are subsets of Clarke subdifferentials and this is important for
establishing the "best" optimality conditions for nonsmooth vector problems.
Example 4.1 shows that these new conditions can be used when Clarke’s ones
fail.
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Butinos neglodZiy vektoriy optimizavimo uZdaviniy optimalios sa-
lygos
D. La Torre

Straipsnyje jvedama apibendrintos i§vestinés savoka neglodZioms vektor-funkcijoms, kad
galima buty gauti optimalumo salygas vektoriy optimizavimo uzdaviniams. Sis apibrézimas
apibendrina Michel ir Penot jvestas savokas, kurias iSplété Yang ir Jeyakumar. ISvestinés
apibendrinimas jeina j Clarke subdiferenciala, taiau optimalumo salygos yra jautresnés nei
Clarko.



