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ABSTRACT
This paper is devoted to a method of obtaining the equation describing the bend of the round
fixed plate under the loading, concentrated at the point and on the interior circumference.
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1. THE SOLUTION OF THE GILBERT BOUNDARY VALUE
PROBLEM FOR ROUND REGION

Let us consider the following problem. It is required to find all real valued
byharmonic in T+ functions U(z,y), continuous in T+ U L with their partial
derivatives of the first order and satisfying on L the following conditions:

oU oU

5o =D, 5 =, (1)

where ¢; (t), c2(t) are given real-valued functions, belonging to the class H* (L).
The problem (1.1) is a special case of the so-called Gilbert-type boundary
value problem for byanalitic functions

()5 + bt ge = cr(0),
ou ov (1.2)
az(t)a—y + b2(t)6_y = c2(2),

where ag(t), b(t), cx(t) (k = 1,2) are given real valued functions of the
complex argument, satisfying on L the Holder condition with their derivatives
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up to the order (3 — k), and [a(t)]*> + [br(t)]* = 1. So, we can obtain the
solution of the problem (1.1) from formulae for (1.2). As an example, let us

obtain the solution of problem (1.1) for the round regions.
The solution of problem (1.2) is being searched in the form

F(z) = wo(2) + Z¢1(2),

where ¢ (2), ¢1(z) are analytic functions in the circle K;. Then the solution
of problem (1.1) can be obtained by the formula

U(z,y) = Relpo(2) + Zp1(2)]-
We see, that the values of imaginary parts of ¢o(z) and Z¢, (2) do not influence
the solution of problem (1.1). So without the restriction on generality we can
suppose, that the following initial conditions are fulfilled:

Impo(0) =0, ¢1(0), Imyi =0. (1.3)

Then we can rewrite the boundary conditions of problem (1.2):

0o (t) + 101 (t) + 1(t) = —[pp(t) + 11 (8) + o1 (B)] + 21(8), (1.4)
0o(t) + 101 (1) — p1(t) = —[pp (1) + 1 (t) — 1 (8)] — 2ica(t). (1.5)

Using notation

®(2) = 9o(2), Qi(z) = =t (t) — 1 (t) =t (t) — o1 (t) + 21 (t),  (1.6)

we can rewrite the boundary condition of (1.4) as

Qo(t) = —Po(t) + Qu(1). (L.7)

In the case of circle K7 the kernel

Kt = o [ - O]

2mi |17 —t T—1

of the integral equation

21
L

Holt) + = / K(t, )po(r)dr = Qi (t)

is defined by the formula



On the method for the solution of one problem of the elasticity theory133

and its resolvent Ryo(t,7) = —4mi/T.
Considering temporarily @1 (7) as the known function and solving the Gilbert
boundary value problem (1.7) with the coefficient G (t) = —1 we obtain

1 [ Qu(r) 1 / Qu(1) :
i =— [ —dr— — | ——=d 1.
o(2) wmi) T—z"  4mi T +teo, (18)
71 71
where € is an arbitrary real constant.
Substituting in (1.8) for Q1(7) its value from (1.6) we obtain

@ —p1(2) + @12(0) — 21(0) + iImips (0) + iTmei{ (0)

1 Mdr L/Cl(’r)

(I>0(Z) = —

e T—2 21
7 Y1

dr +iep. (1.9)

Passing on to the limit by z — ¢t € 1 and taking into consideration (1.3)
we obtain from (1.9) that

Bo(t) = —t) (t) — p1(t) — 2iIm{te; (0)} + iImey (0)
Fet) + %/@dr L/@dnuieo, (1.10)

T—1 21
Y1 Y1

Do(t) = —tp) () — p1(t) — 2iIm{te} (0)} + il mepl (0)
+ei(t) - l./@dr+ i/@dr—ieo. (1.11)

T T—1 21
gt 71

Substituting in (1.5) for ¢g(t) = ®o(t) and ¢j(t) = Bo(t) their values from
(1.10) and (1.11) we get

¢1(t) = ¢1(t) + Qa(2), (1.12)
where
Qs(t) = %/%df— %ﬂ_i/clf_—q—)dT-l-icQ(t)
71 Y1

+ 2iIm{tp(0)} + iIm{tp)(0)} +ieo. (1.13)

Considering temporarily Q2(t) as the known function and solving the Gilbert
boundary value problem (1.12) with the coefficient G5(t) = 1, we obtain

211 T—2
Y1

p1(2) = 10 dr — 4im / —QQT(T) dr + €, (1.14)
ot
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where €; is an arbitrary real constant.
Substituting in the right-hand side of (1.14) for Q(#) its value from (1.13),
we get the equality

1 ) 1 ]
01(2) = — / Qi) ieT) (r) + ica() dr — — Qi) Trer) (r) + ica() dr
271 T—2 47 T
7 71
- L/CI(T)dT+ ! m 0(0) + L +e1 —zph(2).  (1.15)
47 T 2 o 20 ! #olZ)- )
71

Taking into account that ¢1(0) = 0 and setting z = 0 from (1.15) we obtain

1 iCQ(t) )
0=— dr + - .
47i T T 260 te
71

But the last equation is equivalent to the system

l€1 = 0,
I ca(T) dr. (1.16)

€0 = —Imei(0) — —

Taking into consideration (1.16) we can obtain from (1.15)

p1(2) = _%/wdT—%m/MdT—zm. (1.17)

04! 71

Differentiating equation (1.17) we have

A = 5 [ 2O - @, (118

Substituting in (1.18) z = 0 we obtain

©1(0) + ¢1(0) = %M/Mdr (1.19)
Y1

But equation (1.19) can take place if and only if

Im{QLM,/MdT} —0. (1.20)
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Let us permit that condition (1.20) is fulfilled. Then, from (1.17), (1.18),
taking into consideration (1.19) and the equation I'm](0) = 0 we obtain

_L Cl(T)-f'iCQ(T)
p(z) = 21 / T—2 dr
71
1 c1 (1) + ica(T) z c1(7) + iea(T)
2mi T dr 4mi 72 dr, (121)
7 7
1 c1(7) + iea(7) 1 c1 (1) +ica(r)
! =— | ———d7— — | —————~dr. (1.22
v1(2) 2 / (1 — 2)? dr 4ri T2 dr. (1.22)
71 71

Since c;(t), c2(t) € HY)(y;) we can rewrite the formula (1.22) as:

()= o, [ A=),

wu(z) = 27y T—2z
Y1

C 2mi (T — 2)2

27" [ a(r) +ica(n) dr + Z__l / c1(7) + ica(7) dr.
2mi T2
it "

Then substituting in @1 (7) of the boundary condition (1.7) for ¢1(t), ¢1(t),
@1 (t), ¢1(t) the boundary values of functions found by formulae (1.21) and
(1.22) ¢1(2), ¥}(z) and solving the boundary value problem (1.7) we have

dr+ -

T

T—2z 2mi (1 — 2)?
7 T

®o(2) = 27

L/Cl(T) —iCQ(T) -1 Cl(T)+iCQ(T)dT

—1 .
Z__/cl(7)+w2(7-)dT_
2mi T2

Y1

Then with the help of integration and taking into consideration (1.3) we
have

folz) = /{L/MdT+ 2 [ view)

2mi T—2z 2mi (1 — 2)?
r 7 7

L /MdT}dz+ao, (1.29

2mi T2
Y1

where I' is an arbitrary smooth curve, belonging to circle K; and connecting
points 0 and z, and J¢ is an arbitrary real constant. Then we can determine
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function F(z) by the formula
F(z) = po(z) + Z¢1(2),

where @o(z) and ¢1(2) are determined by formulae (1.23) and (1.21), respec-
tively. This result was published in [3].

2. A METHOD FOR OBTAINING THE EQUATION OF THE
BEND OF THE ROUND FIXED PLATE UNDER THE LOAD-
ING

Let us apply this result to the solution of the following problem: find the

equation of the bend of the round fixed plate under the concentrated loading

P, applied at the point My(zo).

It is known, that the equation of the bend of such a plate has a form

w = w(z),

where w(z,y) satisfies the differential equation
P
A2y = 55(z — 2p). (2.1)

Here D is the rigidity of the plate with the flexure, §(z) is the Dirac function,
and also the following boundary conditions are fulfilled for the function w(z,y)

w w
w||z1=1 = 0; %llzl:l =05 6—y||z\=1 =0.
We search for the solution of the equation (31) in the form

w = U + wo,

where @(z,y) is a byharmonic function,

P
" 167D

wo (z —20)(Z — 20) - In((z — 20)(Z — Z0)). (2.2)

Function wg(z) is a special solution of the equation (2.1) (see [2], p. 379).

Then function u(z,y) = i(z,y) satisfies the following boundary condi-

tions
a1 (t)]je=1 = %Imzl = —2Re[(t — 20)(1 + In((t — 20)(t — 20)))],

c2()jy=1 = g_ZHtl:l = —2Im[(t — z0)(1 + In((t — 20)(t — Z0)))]-
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Let us compute the integral

1 c1 (t) + ico (t)

2mi t—=z
Y1

dt.

Substituting their values of ¢ (t) and ¢x(t) from (2.2), we obtain

_QL' (t—zo)(l+1n(t—z)(f—20))dt
27 t—2z
Y1
ZQL./(t—zo)(1+1n(t—z)(%—20))dt
21 t—2z2
Y1
_QL (t—20) (1 +In(1 —tZ)-In (1 - %Q))dt
- T2mi t—z
Y1
:_2li‘/ (t = 20)(1 +In(1 — t20))
211 t—z
Y1
1 (t—ZO)(%Q'F%JQ—"‘"') ]
— dt|.
211 t—=z
Y1

The first integral, as the integral from function, analytic in the circle K1,
is equal to

(z — 20)(1 + In(1 — 2 - Zp)).

We compute the second integral, applying the theorem about the residues.
It is equal to zg. Consequently,

i | O = 2= 20) (1 + (1= 50 -2) )

Hence we easily obtain

1 Cc1 (t) + ico (t) 20 (Z — Zo) B
— - —dt=-2|1—- —— +In(1-2% -
2mi ) (t—2) T—5.z T mt=22)
7
i C1 (t) +ico (t) dt =0
2mi t ’
Y1
1 C1 (t) + iCQ (t) 9
— —————"dt = -2(1
2mi g =2+l

71
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Let us compute the integral

L' C1 (t) - 1:62 (t) dt.
271 t—z
71

Substituting the values of ¢ (¢) and c2(t), we obtain

1 (t —Z0)(1 + In((t — Zo)(t — 20)))

9. dt
211 t—=z
71
 (1=5)on((r-) 0-r0)
=_2.__/ dt
21 t—=z
Y1
1 (%—z())<1+ln(1—tzo)++z7°+2—t°2-+"'>
=—-2-— dt.
21 t—z
Y1

Applying the theorem about the residues, we obtain

1 Mdt =-2 [20 + (—zo + %) In(1 — Zoz)] .

21 t—z
Y1

Now let us find the function

Q01(Z)_ i/cl(T)—{—’l.CQ(T)dT L/01(T)+iC2(T)dT

2w B

T—Zz 27 T

7 -

z C1 (T) +ico (7')
- SRR g

47?’7, 7—2 T
04!
1+ |20)?

= 2|20 + (2 — %) (1 +1n(l — 2%) — W)]

=2 —|20[*2 — 22In(1 — 2Zp) + 220 In(1 — 2%).
After the elementary transformations we obtain

1 fa@) —iet) 2zt [ealt) +ic(t) it + 271 [al(t) +ic(t)
2mi t—=z 2mi (t—2)2 2mi 12
7 71 7

72 . — 72 .
=2 (BEERB -0, @9

dt
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It follows from (2.3), that
vo(2) = 2 (Zoz1n(1 — Zz) — |20* In(1 — Z2)) + 1 — |20/
Hence

vo(z) + Zp1(2) = 2 (Zoz - In(1 — Zpz) — |20|* In(1 — Zoz)) + 1 — 2*
+2(—2+ 232 — 2(z — 20) In(1 — Zp2)
= (1—20/?) (1 = |2]> = |2 — 20> In(1 — %92)?) .

Consequently
u(z,y) = Re(po(2) + 2¢1(2)) = (1 + |20]?) (1 — [2?) — |z — 20/ In(1 — Z02)*.

Hence the equation of the blend of the plate has a form

1617:D [(1 - |z0|2) (1- Izl2)} +1n

In order to obtain the equation of the round fixed plate of radius r we must

2
_zo

w(z,y) =

1—Zpz

substitute in (2.1) £ for z and 22 for 20. Another proof of this result can be

found in [5]. Let us find the equation of the blend of the fixed round plate of
radius 1, if the loading is concentrated on the interior circumference v with the
intensity P. The case of circumference v, which is concentric with the plate,
was considered in [4]. Let us use the Cartesian coordinate system and suppose
that the center of the plate coincides with the beginning of coordinates, and
the center of circumference ~ is the point with the complex coordinate wu.

It was proved in [4], that if the loading is concentrated at the point zp, the
equation of the blend of the surface has a form

P |z — 20|
w(z) = 67D [(1 —l20?) (1= 12?) — |z — 20|21nm .

Hence, if ¢ is a point of the circumference « , the equation of the blend of the
plate has a form

—t?
1-|z)*) + |z — t|°In M] dl,

= 1— |t
)= 162D [ 1#°) 11—z
Y

where dl is an element of the length of the arc . Let us compute the integral

h= [ 1= 1) (= )]

ol
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We rewrite an element of the arc dl in the form

dl = rd _irfedp  rd(t—u)  irdt
TP i it —u)  t—u’

Due to equality (t — u)(t — @) = r? we have t = % + @. Hence

= [0 @ - aP)]a

— (1= P =/tfu[1—t(t’" — - w)ldr

~

Applying the theorem about the residues (see [2]), we obtain
L=2mr (1—r"—u®) (1-|2%).

Now let us find the integral [ |t — z|?In|t — z|?dl. Firstly, we suppose that
g
|z —u| < r. Then

t—z? =t —u) - (z=w)]’ = [t —u) — (z —w)][(f - @) - (z — a)]
:(t—u)(t—ﬂ)(l—i:Z) 1—';1:;‘)

=2 ((1— j:Z) (1—7(2_622“_“)).

Hence

I :/|t—z|21n|t—z|2dl

- [i-stule (-3 (-5

1nr2/|t—z|2dl+2Re/|t—z|21n (1 - W) dl
Y Y

r2

:rzlnrz/(l— z—u)(l_ (E—a)(t—u)) —r dt

t—u r2 t—u
v
+2r2Re/(1— j:Z)[l— W] In (1 - (E—ET)Q(t—u))tiidi'
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Applying the theorem about the residues, we obtain the equality
Iy =2nrInr (r* + |z — ul®) + 4nr|z — uf’.

Now let us suppose that |z — u| > r. Then

= (2~ u)(z - @) (1—,1:9 (1—;2)
S (1220 (1 ey )

Thus we have proved that I3y = I3z = I3.

3. MAIN FORMULA

We have proved that the equation of the blend of the plate has a form

~ 167D —r? — |ul? — |z]? 2,2 o2
w—167rDl27rr(1 r? —|ul’) (1 = |2)?) + 2arInr® (r* + |2 — ul?)

+drr|z — u)® — 277 (r* + |2 —ul*) In |1 — uz|® — 47r°Re
— Zu

Z(z —u)]
if |z —u| <r, and

2 2) (1 — 12 2 (2 2
) 2rr (1 =1 — |ul?) (1 = |2°) + 2arIn|z — ul® (r* + |2 — u?)

+4mr® = 2mr (r? + |z —ul?) In|1 —uz®* - 4ﬂr3ReM] ,
—zZu
if |z —u| > 7.
Let assume that the loading P is a real valued function of the coordinates
P = P(z,y).
We denote

_Owo 1
or D’

810(] 1

Pl(xay): P2(may):_a—y5a

where D is a cylindrical rigidity of the plate. Then on the unit circumference

t+t t—1t t+1 ¢-1
Py(z,y) =P (Ta2—l) =P1( 2t72—it =c (1),

_ t+f t—F\  _ [(t+F t—1\
Py(z,y) = P, (T’Z—z) =P (Ta— = ca(t),

2
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where |t| = 1. In this case for computation of the integrals in (1.21) and (1.23)
we can use the theorem about residues.

Let the loading g(z,y) be an arbitrary twice continuously differentiable
function of coordinates. Then for computation of integrals in (1.21) and (1.23)
we can use the approximate method, described in our article [3].
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Apie vieno uzdavinio elastikumo teorijoje sprendimo metoda
V.R. Kristalinskii

Straipsnyje kompleksinio kintamojo analizés ir kompiuterinés algebros metodai taikomi
spendZiant eile uZdaviniy, kuriy tikslas surasti apskri¢ios jtvirtintos plokstelés lygtis, kai ja
veikia jvairaus tipo apkrovos. Gauti rezultatai testuojami pavyzdZiais. Gauta keletas naujy
rezultaty. ISnagrinétas atvejis, kai apkrovos pasiskirs¢iusios nekoncentri§kais apskritimais,
atkarpa arba laisvai bet kokiu budu visoje ploksteléje.



