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ABSTRACT

In the present paper a two-dimensional boundary value problem of geomigration taking into
account convection transfer, hydrodynamic dispersion, molecular diffusion and absorption
is considered. The problem is described by the system of two differential equations for
the level of ground water [3] and the concentration of the contaminant in ground water
[4]. For numerical solving we used the finite difference schemes taking into account the
characteristic properties of the problem. The calculations were produced in conformity
with concrete hydro-geological conditions. The obtained solutions are used for prognosis of
contaminant migration in ground water.
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1. INTRODUCTION

The geomigration problem is a difficult problem of mathematical physics [4;
5; 7; 8; 9]. It describes main properties of the interconnected processes of the
movement of ground water and contaminants caused by convective transfer,
dispersion, diffusion, absorption, etc. For its solving it is necessary to in-
vestigate the system of multi-dimensional partial differential equations in the
domains composite geometry and in the complex composite domains. Using
the standard implicit sequential methods for non-stationary problems is in-
convenient and non-perspective. Therefore for such problems it is necessary
to build economic and perspective algorithms including those oriented on the
parallel computers. In this paper the class of the algorithms, by which the nu-
merical solving of geomigration problem is reduced to the realization of more
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simple algorithms for simple weakly connected with each other problems in
more simple subdomains is proposed in [1; 2]. Each of these algorithms is
realized either sequentially or in parallel.

In this paper the absolutely stable schemes of complete approximation are
proposed. Iterative and non-iterative methods for the algorithms in subdo-
mains based on the principle of the domain decomposition are constructed.

These algorithms are explicit by virtue of a method of their implementation.
The stability and the rate of the convergence of the iterative methods don’t
yield analogous characteristics of the implicit algorithms.

A minimum subdomain on which the quadratic form of initial equation is
written is a grid stencil. In each subdomain such important properties as
approximation and conservation laws take place. The number of the equa-
tions, which are required to be solved in such subdomain, coincides with the
number of the points of the stencil (boundary subdomains are excluded). The
main reason of the choice of such algorithms is that many numerical methods
for solving the composite problems of mathematical physics are developed
for the case of simple subdomains. We note that the algorithm is essentially
simplified, but the stability domain and the accuracy are not changed.

2. MATHEMATICAL MODEL

Let us consider the boundary value problem of geomigration, we take into
account convective transfer, hydrodynamic dispersion, molecular diffusion,
absorption.

The two-dimensional movement of ground water of constant density may
be described by the partial-differential equation which has been obtained by
the balance method [5; 7; §]:
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where H = H(z,y,t) is ground-water level; T' = T'(z,y,t) is the value of
hydraulic conductivity coefficient; p is water loss coefficient; Q(H) = Qg —
Quetr + Qo+ Q1) represents sources and /or sinks of water such as flow through
the river beds g, the discharge of wells Qy¢11, the atmospheric precipitation
Qo ; the deep-water circulation Q4y; Qr = Tr(Hgr — H) ( Tr = kr/mg is
the vertical hydraulic conductivity coefficient of the river-bed deposits, Hg
is the water level in the river, kg and mpg are the filtration coefficient and
thickness of the river-bed deposits accordingly ); Qo = Qing — Qevap (Qing is
infiltration and Q.yqp is evaporation through an aeration zone); Q+; = Q++Q,
( Q+ = Th(Hy — H) is flow from the underlying seam and Q, = T\ (H, — H)
is flow from superstratum).

When the filtration velocity is small, the velocity vector of the ground-water
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flow in a porous media is expressed by Darcy’s Law [§]

(2.2)

v = (vg,vy) = —kVH = (—ka—H 6H> ,

il

where v, v, are components of the velocity vector; k is the filtration coeffi-
cient.

As a mathematical model of the contaminant migration we use the following
equation obtained by the balance method. It describes the concentration of
the contaminant in the ground-water flow:

+ P(H),
(2.3)

where C = C(z,y, t) is the concentration of the contaminant; ¢ is the porosity;
D = D(z,y,t) is the convection-diffusion coefficient which is equal
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D=Dp+A|v| (2.4)

here D,, is the coefficient of a molecular diffusion, X is the coefficient of a
hydrodynamic dispersion, P = Pj,¢ + Pyen + Pr represents sources and/or
sinks of the contaminant by infiltration Pz, by water intake wells P, by
rivers Pr. Let us suppose that

Py =0, Pyeyy =0, Pr=Tgr(Hr—H)Cgr/(orm),

CRg is the concentration of the contaminant in the river, H(R) is the water
level in the river, m is the thickness of an aquifer, o is the river porosity.

N is the concentration of the contaminant in a solid phase of a porous media,
and it is determined by the formula [4]

o =a(c M),

where « is a sorption velocity coefficient, 8 is a contaminant distribution
coefficient.
Taking into account the formula [4]

ON taC
5 = a | N exp(—af(t — 7))dr),

equation (2.3) can be modified as:

00 _ 9 (00\ 0 (L0 | a0 oC
Ua_8x(D6:p)+8y<D6y> Vs 5o Uy6y+P(H), (2.5)
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where 0* =o(1+1/(cp)), P*(H)=ocP(H).

Let us consider system (2.1), (2.2), (2.4), (2.5) along with initial and bound-
ary conditions. We suppose that the aquifer under consideration has arbitrary
geometry Q = Q(z,y) and open boundaries Q. Without loss of generality,
boundary conditions can be represented in the following form:

H = H(z,y,t) |asa= 0, C =C(z,y,t)|on =0, t>0. (2.6)
At the initial time moment ¢t = to we consider the following conditions:

H =H(z,y,0) l|o=0,  C=C(z,y,0)|la = Co(z,y). (2.7)

Finally, (2.1), (2.2), (2.4), (2.5) — (2.7) lead to the system of equations de-
scribing the ground water flow and the contaminant movement in the ground
water.

3. NUMERICAL METHOD

The filtration problems have a number of a specific properties [6; 8; 9; 10],
which make difficulties for using standard numerical methods well suited
themselves for various classes of the problems.

Constructing the difference schemes for the filtration problems we take into
account such properties as composite configuration of the domain of calcula-
tion and discontinuous coefficients. It is necessary to use economic numerical
algorithms in order to obtain long-term prognosis.

To construct the discrete model of system (2.1), (2.2), (2.4), (2.5) — (2.7)
we use the integro-interpolational method [11].

The construction of the numerical solution of the stated problem is per-
formed in two stages, namely, the discretization of the domain of calculation
(or the construction of the difference grid) and the implementation of the
discrete model.

For the simplicity of presentation without loss of generality, we shall con-
sider a uniform grid: hy; = hy ; = h.

Integrating equations (2.1) and (2.5) over the control volume f;’:o: ;"_Jroof
and using the notation from [11] it is easy to obtain the following system of
difference equations:

pHy = (T—o5,Hz), + (T70.5yHg)y + Q(H), (3.1)

0*Cy = (D-05,Cs); + (D-05,C) , — v:Cg —v,Cy + P*(H).  (3.2)

Let us construct a multi-component iterative method for implementation of
scheme (3.1) — (3.2), which is based on the method of domain decomposition,
when grid cells are chosen as subdomains [12].
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Let the grid vector-functions W; ;, ¥; ; are the components of the unknown
functions C' and H, accordingly. These grid vector-functions are defined in
the nodes of the grid cell:

T
Wi; = (wi,j(xiayj)awi,j (-Z'Hlayj):wi,j ($i+1>yj+1);wz',j (-Ti;yj+1))
T T
= (w,},j,wz?’j7w,?,j,wg’j) = (w17w27w3,w4) 5

Uij = (Vi (€6, 45)s Cig (@i, 95) Vi (Tig1s Yjnn)s i (@i, y5401)) T
. T T
= (wil,jawiz,jaw?,j:’(p?,j) = (1111,1/12,1/13;%04) .
The elements of components are numbered from the bottom left node of the
cell anticlockwise.
Numerical solving equation (3.2) presents major difficulties. Therefore, let
us consider in more details the description of this part of the geomigration

problem. According to the technique of MMDT [1; 2], we construct the fol-
lowing explicit iterative procedure

s+1 s+1 s s s *
o* (w" —w) /T +0A, (W - W) + Ay W +Ani2 W,,= P*(¥), (3.3)

0 0 0 0
1_ 2__ 3_ 4__ —
W= W5, W= Wit1,5, W= Wig1,j41, W = Wijp1, n =14,

where § > 0 is some iterative parameter,
AW = 05071 (v,w? + vyw?) — 2 (D+0,5,w2 —2Dw' + l:),+0.5w4) ,

AW = —0.507" (vaw' — vyw?) — A2

/

D_g5w" —2Dw?* + l:),+0,5w3) ,
AsW = —0.5h71 (vzw4 + vywz) —h2 (5’,0,511)2 —2Duw? + D,0.5,w4) ,
AW =0.5071 (vww3 - vywl) —h2 (1:),,0_51111 —2Dwt + D+0_5’w3) ,

vy = (4, ),0y = vy(4,7); Aiga = A, W = W;;, the component W is

diagonally opposite to W; ; with respect to the node, in which the element

w™ of the component W; ; is defined (for example, W§ = W;_q j_1, W5 =
Wi+1,j,1 and etc),

Do.5, = Dijos,j = 0.5(D(xiy1,y;5) + D(2i,y5)),
D_q5, = Di_o5,; = 0.5(D(zi,y;) + D(xi-1,9;)),
1:),+0.5 = 5i,j+0.5 = 0.5(D(xi,y;j+1) + D(zs,y5)),
5,—0.5 = 5i,j—0.5 = 0.5(D(z;,y;) + D(zi,y;-1)),

D =0.5(Dito.5,; + Di—05,), D =0.5(D; j1o.5 + 5i,j—0.5)-
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Figure 1. Types of the cells of the computational grid. Here o denotes an
internal grid node.

In the case of two-dimensional domain Q = Q| J9Q there are 15 types of
the grid cells (see Fig.1).

+1
In the case of the internal cell (see Fig.1 I) for finding SWZJ (,7) from

equations (3.3) we obtain the system of four linear algebraic equations for the
s+1 s+1 s+1 s+1
unknowns w', w?, w®, w? :

s+1
M W =F, (3.4)

where

mi1 = 0* /7 +2D; ;6/h?, mas = 0* /7 + 2Dy j6/h?,

mgs =o*/T+ 25i+1’j+1(5/h2, mas =07+ 2.51'7]‘4_1(5/]12,

m13 = m31 = Mag = Mz = 0, miz = §(—Dj_o.5,;/h+ 0.5v;)/h,

ma1 = 6(=Diyos5,5/h — 0.50;) /h, mag = 6(—Dit1,540.5/h + 0.5v,) /h,

mzs = 6(=Dit1,j10.5/h — 0.50,) /b, mis = 8(=Dj j—_o.5/h + 0.50,)/h,

ma = 6(=Dijro.5/h — 0.50,)/h, m3s = §(=Dito.5,41/h — 0.50,)/h,
(-D

my3 = 1) i+0_57j+1/h+ 05’Um)/h,

fl = P*(wl) + U*’wl/T + 2D,~,j5w1/h2 + m12w2 + m14w4
+ Ll(lh]) + L3(i7j)7
f2 = P*(w?) + o*w? /7 + 2D;y1 j6w? [h? + mayw’ + mazw?®,
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fz3 = P*(w®) + o*w? /7 + 2127,~+17j+15w3/h2 + mgaw? + mgqw*
+Li(i+1,7+1)+Ls(i+ 1,5+ 1),

fo = PX(w?) + o*w* /7 + 2D; j 110w /h? + myw' + maw®
+ Lo(i,j+ 1)+ La(i,j + 1),

Ly (i,5) = (Di+o.5,jw?,j — 2D jw;; + ﬁi,j+0~5w§,j) /P2
— 050 0y (i + 0.5, j)w} ; + vy (i, j + 0.5)wj ),
Ly(i,j) = (Di70-5,jwz{1,j —2D;w}  ; + 5i,j+o.SW?—1,j) /h?
+0.5h7" (v (i — 0.5, )wi_y j — vy (i, j + 0.5)wi_, ;)
Ls3(i,5) = (Di—0.5,jw;}—1,]’—1 - 251',1'“)?—1,]'—1 + 5i7j—0-5w?—1,j—1) /h2
+0.5h (va (i — 0.5, j)wi_y j_y +vy(i,j — 0.5)wi, ;_,),
L(i,§) = (Divosjwi 1 — 2Dijwl;_y + Dij_osw);_1)/h*
— 0.5k (vp (i + 0.5, j)wi ;_y — vy (i, 5 — 0.5)w;; ),

vz (1£0.5, j) = 0.5(ve (11, J) 02 (i, ), vy (i£0.5, j) = 0.5(vy (i1, j)+vy (i, 5)),
Vg (i, j£0.5) = 0.5(0g (2, j 1) 02 (1, ), vy (¢, j£0.5) = 0.5(vy (i, j£1)+vy (i, J))-
The solution of system (3.4) can be written in the form

s+1 s+1
w'= A1/, w? = Do/,

s+1 s+1
w=po — 11D —paLa] A, wh=to — 1 Ar/A -t Ao,

where A = ad — ¢b, A1 = ed — fb, Ny = af — ce,
a = —ma3py — M34t1,b = Mgz — M33pz — Mayts,c = My — My3p; — My4ly,

d = —my3ps — Muata, e = f3 — ma3po — maato, f = fa — maspo — maato,
Po = fa/Mas, p1 = Ma1[Mas, P2 = Maa/Ma3,
to = fi/mig, t1 = mi1/Mmag, ta = Mmia/Mag.

+1

We get a similar system for finding the elements of the component sW i, for
any internal cell.

In the case of boundary cells (i,7) (Fig. 1, II-IV ) the values of the ele-

s+1
ments of the component W ;; in the boundary nodes are determined from
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the boundary conditions. Here the dimension of the system of equations for
s+1
determination of the unknown elements of the component W ; ; is reduced to

3 for cells of the IV-kind, to 2 for cells of the II-kind and to 1 for cells of the
ITT-kind.

After calculations at all cells of the grid domain (including the boundary
cells) as a solution on k + 1 time step we can take arithmetic mean of the
elements of the solution components related with the same node of the grid:

k1 k+11 k+21 k+31 k+41
w = w(Ts, Yy, th1) = (W45 + w i1y + wisg -1 + whijo1)/4

A method for numerical solving (3.1) is constructed similarly. Taking into ac-
count the discussion given above, the procedure of finding numerical solution
of the problem consists of the following stages:

1. Solve (2.1) and find the level function H in the domain of the calculation ;
2. Find the filtration velocity from formula (2.1);

3. Find approximate solution of equation (2.5) for concentration of the conta-
minant C' in the grid domain using the obtained level function H and the
filtration velocity v ;

4. Transit to the next time level;

Table 1.
Hydrogeological and hydrochemical parameters of an aquifer.

Dehydration coef ficient uw 0.1

Hydraulic conductivity coef ficient T 1.0 x 102 m?/day
Vertical hydraulic conductivity coef ficient

of the river — bed deposits Tr 1.0 x 1071 1/day
Discharge of intake well

per square of grid cell Qn 0.8 m/day
Water — level in river Hgr 0.0 m
Porosity o 1.1 x 108

E f fective porosity B 1.0 x 103

Filtration coef ficient k 5.0 m/day
Molecular dif fusion coef ficient Dy 1.0x 1078 m?2/day
Hydrodynamic dispersion

coef ficient A 1.0x 1072 m
Concentration of contaminant

in the river Cr 0.1 kg/m3
River porosity OR 5.0 x 1072

The applied programs have been written in Fortran. Let us formulate some
properties of the described numerical algorithm. Schemes (3.1), (3.2) are ab-
solutely stable and the order of their accuracy is O(r + h?). The method
is implemented as the explicit algorithm. It has practically unlimited pos-
sibilities of parallelization (at each time step all components are calculated
independently from each other by the explicit formulas). The method can be
used for the domains of arbitrary composite geometry (not only rectangular
and multiply connected) and in the case of the three-dimensional problems.
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4. RESULTS AND DISCUSSION
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Figure 2. Ground-water level (H) at time 5 years.
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Figure 3. Forecast of the contaminant migration in ground water after 5 years: a) conta-
minated domain, b) ground-water contaminant concentration.

The represented model allows us to simulate processes of the movement
of ground water and contaminants taking into account advective transfer of
chemically non-active contaminants in ground water, percolation through hy-
drogeological "windows", dispersion, diffusion, evaporation and etc. It takes
into account arbitrary geometry of filtration field and arbitrary boundary con-
ditions, various hydrogeological and hydrochemical parameters of calculated
aquifer, a variety of features and processes such as rivers, wells, evapotranspi-
ration, recharge from precipitation, information on the sources of contamina-
tion, etc. With the help of our model it is possible to forecast the contaminant
migration in the ground-water flow at arbitrary time moment.

In Table 1 hydrogeological and hydrochemical parameters of simulated
aquifer are presented. Let us present some results of numerical experiments.
For example consider the rectangular domain 2250m x 2500m with one wa-
ter intake well at point (1125m,1125m) and the river on the line y = 500m.
In Fig.2 the results of simulation of the ground-water level are presented.
Fig.3 illustrates the distribution of the contaminant in the simulated aquifer
system at time 5 years if there is a source of the contaminant with intensity
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Co = 0.05g/1 at the three points of the domain (875m, 500m), (1125m, 500m),
(1425m, 500m) at the initial time moment ¢ = 0.
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Geomigracijos uzdavinio matematinis modeliavimas ir skaitiniai me-
todai

G. Gromyko, G. Zayats

Straipsnyje nagrinéjamas dvimatis krastinis geomigracijos uzdavinys, kai atsiZvelgiama j}
konvekcinj perne§ima, hidrodinamine dispersija, molekuline difuzija. Sis uzdavinys apraSo-
mas dviejy diferencialiniy lyg¢iy sistema grunto vandeniui ir uZterStumo koncentracijai
vandenyje. Siam udaviniui spresti taikomas baigtiniy skirtumy metodas atsiZvelgiant
i uZdavinio charakteristines savybes. Skai¢iavimai buvo atlikti su konkre€iomis hidro-
geologinémis salygomis. Gauti sprendiniai gali buti naudojami prognozuojant uZterStumo
judéjima gruntiniame vandenyje.



