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ABSTRACT

The goal of the paper is to present and test the nonlinear monotonization of the Babenko
scheme for solving 2D linear advection equation with alternating-sign velocities. The nu-
merical method of monotonization is based on the idea of limited artificial diffusion.
There are some approaches for constructing quasi-monotonic second order approximation
schemes for solving hyperbolic systems and equations of gas dynamics: flux correction
methods, the Godunov method, TVD methods and others. In particular, many authors
developed the idea of TVD method. We try to use this idea to get a new quasi-monotonic
high order accuracy scheme based on the well-known non-monotonic Babenko scheme. The
algorithm is presented for 1D problem. For testing 2D problem we use the splitting algo-
rithm. The proposed monotonized scheme has shown the best results among all considered
in the paper schemes especially for non-smooth initial profile.

Key words: Babenko scheme, TVD method, high order accuracy scheme, monotonized
scheme

1. STATEMENT OF THE PROBLEM

Let us consider an initial value problem for the two-dimensional advection
equation

dp 8 ) _
3t + 6—$(Pvl) + a—y(ﬂ’Uz) =0,
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Figure 1. The typical initial profiles po(x,y) for testing numerical methods.

with alternating-sign velocities v1 = v1(z,y,t), va = va(z,y,t) in a space-time
domain (z,y) € R?, t > 0. The following initial data (see Fig.1) is also given:

R(r,¢), 0<r <o,
ple,0) = iz = { 0P OST ST

where

r =/ (z —200)2 + (y — Y00)?,
_ { arccos ((z — To0) /1), Y 2 Yoo,
27 — arccos ((z — zo0)/7), ¥ < Yoo,
ro = const > 0, x99 = const, yoo = const.

The main goal of the paper is to develope a new quasi-monotonic high order
accuracy finite-difference scheme and test it by comparing with a represen-
tative set of well-known schemes. The numerical method of monotonization
is based on the idea of introduction a limited artificial diffusion which en-
sures the monotonization. The application of the proposed limiters to the
diffusion led to the high accuracy [3]. Such method of the construction was
offered by Osher, Chacravarthy [5] and was developed in papers of Favorskii,
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Figure 2. The grid stencil for the basic

Figure 3. Grid stencil for the case 1.
scheme.

Tishkin, Vyaznikov [7] and others [2]. This approach has been applied to
the well-known non-monotonic Babenko scheme [1], also known as "square"
scheme. As a result the new quasi-monotonic non-linear scheme has been
constructed [4]. The comparative analysis has demonstrated the high quality
of this scheme. We use the splitting algorithm [6] for solving 2D problem.
Below we present the monotonization algorithm for 1D problem.

2. NEW SCHEME

In order to solve the problem numerically first let us consider the basic
Babenko non-monotonic scheme ("square"). It is given by the following equa-
tion

Tty L+
where 7; = vy (x;,t)7/h, T, h are discrete steps. A stencil of this scheme is
given in Fig.2.

Then we introduce an artificial diffusion in some way. The magnitude of a
coefficient of artificial diffusion depends on a solution. We choose this coeffi-
cient to be such that the scheme satisfies monotonicity conditions [6]. Below
in Fig.4 one can see the difference between the new quasi-monotonic and the
basic non-monotonic scheme for the case of one spatial dimension and constant
positive velocity.

14— 1 —
Wit =g, = - ST ) — ),

Figure 4. Final profiles (for T=400) for a set of Courant numbers (1D case, v; = 7/h).
a) Basic nonmonotonic scheme: the Babenko scheme for v = 0.1;0.5;1.0;1.1; 1.5 b) New
qusimonotonic scheme for v = 0.1;0.25; 0.5; 0.9

Now let us investigate this problem for the case of alternating-sign veloci-
ties. The region where the sign of the velocity is preserved contains at least
3 neighbouring points. In order to state a correct problem for hyperbolic
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Figure 5. The dependence of artificial ~Figure 6. Grid stencil for the case 2.
diffusion y on R.

equations it is necessary to specify as many conditions as a number of char-
acteristics which go from the boundaries into the considered region. Because
of the fact that the velocity is of an alternating-sign there are four cases.

Case 1 ( 7¥i-1, Vi, Vi+1 = 0): the characteristics turn to the right. The
advection of the solution starts from the left boundary. The scheme is given
as follows:

WPt —uM (1 +7) + (1 — v (R, 7)
! —uf )=o) = p(BE 1, 7im1)) + 2(viuf — yicaui ) =0,

ViUl iUy . . .
where R} = Tl i +;"+11_u1 and u*t' is unknown quantity. It has the stencil

given in Fig.3. '
The limiters are defined as follows (Fig.5):

1, R>0,
1+ 2R/(1-7), —0.5(1—7) <R <0,

/J’(Ra 7) = 07 —R* < R < _05(1 - ’Y);
2(R+R*)/(1—7), —R*—-0.5(1-7)<R< R,
-1, R< —R*—0.5(1—7).

Case 2 ( 7;—2, Yi—1, v < 0): the characteristics turn to the left. The
advection of the solution starts from the right boundary. The scheme is given
as follows:

n+l n+l1

i-3 -2 il i i+l i+2 i-2 i-1 i i+1

Figure 7. Grid stencil for the case 3. Figure 8. Grid stencil for the case 4.
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Figure 9. Results of testing of the proposed scheme for all initial profiles.

(it —uf D1 —vie1) + (L + yic) (R, , —vie1)]
+ (U™ —uf) (1 4+ %) (1 = (R, =) + 2(viuf — yiauiy) =0,
where R; = % and u"t]' is unknown quantity.

The grid stencil of the scheme is shown on Fig.6.

Case 3 (Vi—3, Yi—2, Yi—1 = 0; Vi, Vi+1, Yie2 < 0): for these velocities the
advection of the solution is comming from both boundaries into the region.
The characteristics (passing through z; 3, ©; 2, x;_1 ) turn to the right, and

the characteristics (passing through x;, ;y1, ;y2) turn to the left. We find
n+1 n+1

unknown quantities u;" ", u;";" solving the system.

(WPt —u? 1+ 02571 (1 — u(R,0))] + 0.25(uf+! — ul)yi(1 — p(R,0))
+0.5(1 = yi—2) (1 = p(R{_5, vi—2)) (uihy —ul )
+0.5(viug +vio1u 1) —viaul 5 =0,

(Wit —uP)[1 = 0.25%(1 — p(R, 0)] = 0.25(uj™ —uy)yi—1(1 - u(R,0))
+0.5(1 + Yig1) (1 — p(Riy, —7ign)) (W — ulyy)
—0.5(viuf + vim1uiy) + Yirruy, =0,
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Figure 10. Results of testing "limiters" method for all initial profiles.

R =max(R; , R} ). For this case we have the grid stencil given in Fig.7.

Case 4 (v 3, Vi—2, Yi-1 < 0; %, Vit1, YVie2 = 0): there is the advection
out of the region (see Fig.8). The directions of the characteristics are opposite
to those in the previous case. The scheme is given as:

{Z(U?H —uM)[(1 + %) + (1= ) (R, 7:)] + 2vul =0,
(uinj_ll - u?—l)[(l —%i-1) + (1 + ’Yz'_1),u(Rz:1, _’Yi—l)] — 2v;_1ui_1 = 0.

3. RESULTS OF TESTING AND CONCLUSIONS

Let us present the results of solving test problems with the new scheme (see
Fig.9). The numerical solutions were obtained for all initial profiles (see Fig.1)
taking v = 0.25,

1, 0<t<0.25T 1, 0<t<0.25T

—1, 0.25T <t<0.5T sl g) = 1, 0.25T <t<0.5T ,

—-1, 05T <t<0.75T -1, 0.5T <t<0.75T
1, 0.75T <t<T ~1, 05T <t<T

1)1(.23',:1/) =
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Figure 11. Result of testing the Lax method for "M"-shaped initial profile.
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Figure 12. Result of testing of explicit upwind and downwind method for "M"-shaped
initial profile.

and the final time moment is 7" = 480.

The numerical solution has dissipated in few grid nodes. The shape of the
third initial profile surface practically has not changed. The amplitude of the
other two initial profiles has fallen slightly.

We have compared the new scheme with the following well-known finite-
difference schemes: "limiters" method [7] (see Fig.10), the Lax method (see
Fig.11), explicit upwind and downwind method [6] (see Fig.12).

The criterion of the comparison is a magnitude of an error of a numerical
solution. The best scheme gives a minimum error value. The error analysis
allows one to make the following conclusion. The proposed scheme with the
monotonization has shown better results than known schemes, especially for
the "M"-shaped initial profile.
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Babenko schemos ("kvadrato") netiesiné monotonizacija
M.P. Galanin, T.G. Yelenina

Straipsnio tikslas yra Babenko schemos dvimadiam tiesiniam advekcijos uZdaviniui su Zen-
kla keiianciais greiCiais netiesinés monotonizacijos metodo pateikimas ir testavimas. Skai-
tinis monotonizacijos metodas remiasi dirbtinés difuzijos jvedimo idéja. Egzistuoja keli
kvazimonotoniniy antros aproksimacijos eilés schemy hiperbolinéms sistemoms ir dujy di-
namikos lygtims konstravimo budai: srauty korekcijos metodas, Godunovo metodas, TVD
ir kiti metodai. Mes naudojame TVD idéjg naujos kvazimonotoninés aukstos tikslumo eilés
schemos gavimui remiantis pla¢iai Zinoma monotonine baigtiniy skirtumy Babenko schema.
Skaitinis algoritmas pateiktas vienmacio uZdavinio atveju. Dvimacio uZdavinio sprendimui
taikomas faktorizacijos algoritmas. Pasiulytos monotonizuotos schemos pagalba gauti rezul-
tatai yra geriausi, lyginant su kity straipsnyje naudojamy schemy skai¢iavimy rezultatais.
Ypatingai gerai tai matoma neglodaus pradinio profilio atveju.



