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ABSTRACT

In this paper we consider the mathematical model which describes the grain drying process.
The air and grain moisture and temperature are described by a system of PDE. A finite
difference scheme is proposed for finding a numerical solution. The convergence of the
discrete solution is proved for a simplified model, when the temperature is assumed to be
given a priori. Results of numerical experiments are presented.

1. INTRODUCTION

Various types of grains are important resources which have a wide variety of
uses. At some stage of production all grains undergo a drying process. As in
many other industries where drying is used, e.g. drying of wood or the other
porous materials [3; 6; 8; 13], reducing drying times allow a reduction in the
energy consumption and a better quality of the final product. Mathematical
modeling can play a significant part in optimization of existing grain drying
technologies and in introduction of new drying processes.

The basic physical and thermodynamic properties of grain and air are ex-
amined and the theory of the drying process is developed in [1; 7]. The design
of the optimum operating conditions for grain dryers is presented in [11; 12].

In this paper a grain drying problem is carried out using a very simple
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model. We assume that the moisture of grains changes homogeneously at all
layers, thus it is sufficient to consider only one such layer. Only two phases
are taken into account, i.e. the moisture in grain and air. The equations for
both moisture contents are obtained using mass conservation laws. The effect
of condensation within the bed of grains is assumed to be negligible.

Such a simple mathematical model is well suited for fitting the model para-
meters to the experimental data. At the same time we note, that the proposed
model takes into account basic physical phenomena involved in drying. Thus
it can be used to predict the behavior of grain moisture content and temper-
ature for drying conditions different from those which were used to identify
the coeflicients of the model.

The outline of this paper is as follows. In Section 2, we state the mathemat-
ical model to be considered and formulate the finite difference scheme, which
approximates the given differential problem. Then, in Section 3, we derive
the stability bound and prove the error bound. The analysis is done for a
linearized problem consisting of two equations. In Section 4, we present some
numerical experiments to illustrate the preformance of our finite difference
scheme. Finally, in Section 5 some conclusions are presented.

2. MATHEMATICAL MODEL

In this section we state a mathematical model and construct the finite differ-
ence scheme, which approximates the differential problem.

2.1. Model

Given a final time Tr > 0, we shall consider the following unsteady prob-
lem. The mathematical model is derived from the conservation laws for the
moisture content in air and grain and the energy:

oc dc 0 oc B8
EE‘FU%—%(D(T)%)—O((C—@), O<z<L, (2.1)
9p(x,r,t) _ Ds(Ty) O

ot 2 6 , 0<r<R, 0<t<£tr, (2.2)

oT
pa,cpu, < ) ( 6 ) + hl (Tg - T) + hl (Ta - T) , (23)
oT, 0 o7,

pgcg(l — E)a—tg 6_ (A 8—) + hl (T T, ) + h3(Ta — Tg)

+ haa (c - %Tg)) +W(T,). (2.4)
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The boundary and initial conditions are given for the moisture content in air:

c(z,0) = pc(2),
c(0,t) = ¢, (To), (2.5)

0cl L (calTa) — (1)), (2.6)

D(T) % =L -

for the moisture content in grain:

ﬂ(xara 0) = (Pﬂ(xar)a
09

or lr—o 0, (2.7)
Dyt | = (o=l (2.

and for the temperature equations:

T(2,0) = ¢r(z),

oT
Aor| = # (T =T(L,1), (2.10)

Tg(m,O) = (,09(.73) ’
o7,

~ G g = # Lo~ Tu(0:1)), (2.11)
ar,|
90z lo=1 #(Ta = Ty(L, 1)), (2.12)

where c is the moisture content in the air between grains, § is the moisture
content in grains, 7' and T, are the air and grain temperatures, respectively.
The remaining important coefficients are the following: D and Dg are difusiv-
ities, w is the air velocity, p, and p, are mass densities, c,, and ¢, are specific
heat capacities, h; are heat transfer coefficients, € is the porosity, and w(T})
the biological heat..

Thus we have a system of semilinear parabolic equations with some coefli-
cients depending on the solution.

2.2. Finite Difference Scheme

Let wp, and wy be uniform partitions of intervals [0, L] and [0, R], respectively:

wh:{a:j: T :jh,j:1,2,...,J—1, h =
wH:{rk: Tk:(k—0.5)H, kZl,Z,...,K—l, TK:R}.
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For simplicity of notation we also assume that the temporal partition is also
uniform

wy={t": t"=nr,n=12,...,N, t" =Trp}.

The finite difference method gives approximations, i.e., ¢7, 8%, T/ and T},

to the solution of the differential problem at the discrete grid points.

The good surveys of numerical methods for conservation laws and time-
dependent advection-dominated partial differential equations are given in [5;
9].

Before we proceed, let us introduce some notation of discrete operators

_ Bik1 — Bik _ Bir = Bik—1
ﬂr - H ) ﬂf‘ - H °

By using the modified Finite Volume Method (FVM) we get the following
system of discrete equations:

n+1
n+l _ n+1y n+1 +1 JM
e +ucg™ = (Dj_os(T™) gt , —a (C? - F(Tg"j)> ; (2.13)
Ds(Ty) (2 gna H?
= n =14 — 2.14
IBt d"l% (rk—0.5 ﬂr )r’ d + 127.% ’ ( )
PaCa (sTt + uT%H'l) = ()\jfo.s T,—?"'l)ac +h (Tg"j"'1 — T]."+1)
+hy (T, =T, (2.15)
Poce(1—&)Tye = (Agj—0.5Tps ) + M (T -T2
il
+1 +1 J n
+ h3 (Ta — T;’;J ) + h40é (C;" — ]j(Tg"])) + W(ng) . (216)
The discrete boundary conditions for (2.13) are given by:
gt = ca(To), (2.17)
+1 2 +1 +1 +1 ‘le;l
ECt,J + UCE,J + EDJ_0.5(TH )CE,J + o Cy - F(T;?])

2
= (ea(To) = 57
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the discrete boundary conditions for (2.14) are the following:

155 Brdo =0, (2.18)

R?H B!
2 ﬂtij + T%—0.5D5Bg—;}( = (C;H_l - F(‘?Z—‘gr;) )

the discrete boundary conditions for (2.15) are the following:

Tt =Ty, (2.19)

Arcos TP = 5 (T~ T3H)
and the discrete boundary conditions for (2.16) are given by:

—Ng,0.5 T = 5 (To — T;g“) , (2.20)

gz,0 —

n+1 __ n+1
N0 Tyt =5 (Ta = Tj5) .

At each time step the system splits into two parts. First we solve the linear
system for new values of moisture contents c®*!, 37! and then solve the
system for temperatures 77+, Tt

For the practical implementation of this scheme, we solve the first system
efficiently using the Picard type iterative method, which can be written in the
following compact form:

s n s—1
c—c _ s _ s _ MK
T <c F(Tgn)) | (2.21)
Bs;ﬂn :A2,88+5kK€ (CS_F(B;Z")> ,

where §;; is the Kronecker delta:

1 ifi=j,
6ij:{

0 otherwise.

Then the realization of each iteration splits into solving J systems of linear
equations with tridiagonal matrixes. The convergence of such iterative process
will be proved in the next section.

The system of temperature equations can be solved using a block version
of the factorization algorithm with matrix blocks of the dimension 2 x 2.
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3. CONVERGENCE ANALYSIS

In this section we consider only the part of the given finite-difference scheme,
i.e. we restrict to the approximation of the moisture content equations. This
simplifies the investigation of nonlinear scheme but still includes the main
theoretical problems of the stability analysis: the stability with respect to
boundary conditions and estimation of singularities near r = 0.

In order also to prove that the Picard iteration method converges for suf-
ficiently small time steps 7 < 79 the following linear semi-implicit discrete
problem is investigated:

eco +ucpt™ = (Dj_os(a) Gt —a (< —b;B0y), ©€wn, (3.1)
Cg+1 = Mo,
n+1 2 n+1 n _ 2 n+1
€cy,g + ucy +hDJ 050 +a(cJ —bJ,BJK)—hn(pl—cJ ),
Dpg(x;) n
e = Zr] (ri- 055“) ; (@,r) €Ewp XwH, (3.2)
k

TO 5 B?jol = 5 ’
2
Bjx + Dﬂﬁnﬁ{ = ﬁ£< ntl _ 5n+1) :
The difference scheme can be written more compactly:

{ gy = Alcn+1 _ ’)/C(Cn+1 _ b,B"),
5t — A2ﬂn+1 + 'YﬁdkK(Cn—H _ bﬂn+1),

where operators A; include boundary conditions.

Mathematical models of such type also arise in many other fields, such as
mathematical modeling of biotechnological problems [4]. Analysis of nonlinear
finite difference schemes is presented in [2].

3.1. Approximation Error

Let assume that solutions of the differential problem are sufficiently smooth
functions in the whole region [0, L] x [0, R] x [0, tr] of the problem definition.
The truncation errors of the finite difference scheme are defined as follows:

( C(O7t)_l'l’07 ]:07
ec(zj, t" 1) — Are(zj, t")

+7e (e(zj, t") — b;B(zj, Tr, 1)), §=1,2,...,J—1,
2
= (sotay, ") — Ave(ay, t7)

e (elws ") = by, t) ), 3 =,

¢c($j7 tn) =9
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'I‘g_5 ﬂ(wj707tn)1‘7 k= 0,
ﬂ(mjarkatn_l)t _A2/8(m]'7rkatn)a k= 1527"'3K_ ]-a

%(ﬂ(mjark:tn_l)t — As (x4, 1y, t7)
—p (c(zj, t") — bﬁ(w,,rK,t))), k=K.

Using the Taylor series it is easy to prove that the truncation error ¢7; can
be estimated as:

Y, e, t") =

0, 7=0,
Q:[}g;: MC(T+h)7 j=1727"',J_17
Mc(th+h?), j=1J.

The first-order approximation in space is due to the approximation of the
advection term by the upwind finite difference method. Our goal is to get
the difference schemes which is free of oscillations. The approximation of the
boundary condition has a second-order accuracy.

The truncation error 15 can be represented in the following form (see, [2;
10]):

0, k=0,
Dg “n
Vir = T/% (re_os i 05) + Y5, k=12,...,K—-1,
My(rH + H?), k=K,
where
2 2 H2
Mi—os = O(H?), g = (T +H"+ —k>

The global error of the discrete solution can be estimated using the bounding
functions, which are solutions of specially constructed stationary problems
(see [2] for a similar analysis). This requires to bound the following norm of
the truncation error:

k
2
| Z Hrydpg,| <

k=1 Tk+05 p=1

K-1

k
Z Mkto.5 | H + Z ||7“¢ ||ooZH7'p
p=1

1 “n
R([In"lloo + 5llr5" oo ) < M (7 + H?).

3.2. Stability

In order to prove that for sufficiently small 7 < 79 the Picard iterative method
converges to the solution of the finite difference scheme it is sufficient to
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consider the problem

£
;CS+1 = Alcs—i_1 - 'Yc(cs+1 - b/BS) ’

1
BT = 4B 4 b (e - DAY

Then using the classical maximum principle we get from the first equation
that

b
le" oo < ﬁ 1B% oo » (3.3)

where we have defined the discrete norm as follows:

lelloe = ma ;1.

For the second equation we are not attempting to prove the most accurate
estimate. It is sufficient to construct a bounding function, which gives the
upper estimate of 3°t!. This bounding function is a solution of the appro-
priate stationary problem and can be constructed explicitly [2; 10]. Thus the
following estimate is valid:

185 loo < Clle* oo - (3.4)

Combining both estimates (3.3) and (3.4) we prove that the Picard iterative
method converges for sufficiently small time steps 7:

7.0 C

Moo <
[le*™ oo < =T b

ll€[loo -

4. NUMERICAL EXPERIMENTS

We consider problem (3.1)—(3.2). Our goal is to investigate the dependence
of grain drying time on the air velocity u. Let L = 50 cm and R = 0.17 cm.
The other relevant parameters are chosen as follows:

2 2
e = 0.43, D:O.%%, m:m.s%,

pa=0001977-% ¢£=03, ¢=o00L.
cm

The solution satisfies the following initial and boundary conditions

906(:1:) = 0.7, ca(TO) = 0.5, Ca(Ta) =05,
pp(x,r) =100, IL(T,)=1.
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The results are displayed in Fig. 1. The total moisture content in grains as
functions of the time

S(t) = %/OL /ORB(:U,T,t)r2 dr dz

are plotted for different air velocities u = 4.11G.
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Figure 1. The total moisture content in grains

It follows from the presented results that for small u the drying rate in-
creases for increased values of u, but starting from u > u., this rate remains
practically constant.

5. CONCLUSIONS

In this paper a simple model was constructed to simulate the physics of grain
drying. The system of differential equations is approximated by a nonlinear
finite difference scheme. It is proved that a simplified discrete problem is
stable and discrete solution converges to the exact solution of the differential
problem. Furthermore, the applicability of the model could be extended by
including more general coefficients and fitting these coefficients to the exper-
imental data.
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Grudy dZiovinimo matematinis modeliavimas
R. éiegis, T. Leonavi¢iené, V. Skakauskas, O. Subo¢

Siame straipsnyje nagrinéjama netiesiniy diferencialiniy lygé¢iy sistema, apraSanti grudy
dziovinimo matematinj modelj. UZdavinys sprendziamas skaitiSkai, naudojamas baigtiniy
turiy metodas. Gautoji diskreCioji schema yra konservatyvi, pasiulytas ekonomigkas jos
sprendimo algoritmas. [rodyta, kad baigtiniy skirtumy schema yra stabili pradinés salygos,
krastiniy salygy ir laisvojo nario atzvilgiu. Stabilumo jver¢iai gauti remiantis mazoruojanéiy
funkcijy metodu, leidusiu tiksliai jvertinti singuliarinius aproksimavimo paklaidos narius
taske r = 0 ir treciojo tipo kraStinés salygos aproksimavimo paklaidos poveikj globaliajai
diskre¢iojo sprendinio paklaidai. Pateikti skai¢iavimo eksperimento rezultatai, parodantys
grudy dziovinimo laiko priklausomybe nuo oro srauto greifio dziovinimo jrenginyje.



