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ABSTRACT

Two A-convergence propositions for linear methods A = (A,x), while A,; are linear
bounded operators from Banach space X into Banach space Y, are presented. These results
are applied to study convergence acceleration of linear methods.
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1. INTRODUCTION

Let X,Y be Banach spaces and £ (X,Y") be a space of all bounded linear op-
erators from X into Y. A sequence z = (&) (§ € X) is called correspondingly
A-convergent or A-bounded if

Alim& =& A B =M (& — &) A Flim By =3

or Alimé& =& A Br =M (& —&) N By, = O(1), whereas A = (\g) with
0 < A\ /. Let ¢ and m% be respectively the sets of all A\-convergent or
A-bounded sequences. If Ay = O (1), then ¢} = m% = cx, while cx is a set
of convergent sequences with &, € X. A sequence z = ({) is called summable
(see [4; 8; 12; 14]) by a generalized method A = (Ak), Ak € L(X,Y) if
y = (1) with

Nn = EkAnké-k (]..].)

is convergent. Unless indicated otherwise a sum ), will always be under-
stood as E;ozo and a limit lim or lim,, will be understood as lim,, ,,. Let
u = (uk) with 0 < pg . The transformation A is called correspondingly
accelerating A-convergence or A-boundedness if Ack C ¢ or Am% C mi
with lim gy, /A, = o0.

IThe author is grateful to Prof. Peeter Oja for a valuable remark.
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A method A = (Ayy) with (A, € £ (X, X)) is called regular if Acx C cx
and

limn, = lilgn &k,

while (&) € ¢x and 7, is defined by (1.1). Let I € £ (X, X) denote identity
operator. In the sequel Ay, 0o and py 7 0o.

In this paper we study a possibility to use generalized linear methods for
convergence acceleration. G. Kangro (see [5]) proved in number case the nec-
essary and sufficient conditions for the inclusion Ac), C c% and as a corollary
he proved that a regular triangular number-matrix method can not accelerate
A-convergence. I. Kornfeld [6] generalized G. Kangro’s result for any regular
number-matrix method. We generalize G. Kangro’s results for linear methods
A = (Ank), while A,y are linear bounded operators from Banach space X
into Banach space Y.

2. MAIN RESULTS

The Proposition 2.1 (see [12]) and the Proposition 2.2 give a possibility to
solve several problems of the convergence acceleration using linear methods.

Proposition 2.1. Let A, € L(X,Y), A= (4Ank) and e(¢) = (¢, (,¢,-..)
with ( € X. If

Jlim A, = Ax (k € Ng) in norm, (2.1)

then the conditions

Aex (¢) € mk, (2.2)
SN 14kl < oo, (2.3)
k
/‘nz)‘lzl ”Ank - Ak” =0 (]-) (24)
k

are necessary and sufficient for

Am% Cc m. (2.5)

Corollary 2.1. (see [12]). If X is a B-space and A = (Apn) with A €
L (X, X) is a regular triangular matrix method satisfying the condition

n
Z Ank = Ia
k=0

then A can not accelerate A-boundedness.
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Proposition 2.2. Let A, € L(X,Y), A= (A,) and

er (€)== (0,...,0,£,0,..), ex(Q):=(AT"CATGATG )

with ¢ € X. The conditions

Aex (€) € cy, (2:6)
Ae (¢) € c, (2.7)
Aex (C) € C;, (28)
p
sup Z [ A¢ " Anksk|| = O(1), (s € X, n,p € No) (2.9)
llsxlI<1 =9

V4
Sup D adet (Ank — Ak) sk || =0(1),(sk € X, n,p € No)(2.10)
sell<l p—o

are necessary and sufficient for the inclusion
Ack C cy. (2.11)

Proof. If ( € X, then e; (¢), e(C), ex(¢) € c¢X- So the conditions (2.6) —
(2.8) are necessary for the inclusion (2.11). That means the conditions

Alim Apks = Aps A Flim pp (Ank — 4Ax)s (s € X), (2.12)

3 11?2 Angs = As A Flim pip (Z Apg — A) ¢ (c e X),(2.13)
k k

3 11312 At Apks =AM A 3 lim far, (Z Ao Ank — A") S
k k
(ceX), (2.14)

with AN = (A, " Ani) are necessary for the inclusion (2.11). On the strength
of (2.13) the quantity 7,, defined by (1.1) may be presented in the form

Mo = 25 A% AnkBr + ) Anké (2.15)
k

with By = A (& — £) . Taking into consideration the condition (2.13) and the
presentation (2.15) we get (7,) € cy < A*(Bi) € cy. According to the
results of K. Zeller (see [14]) the conditions

Jlim A\ 'Aes = A Aks (s € X, k € Ny), (2.16)

Flm Y A A = A% (s € X) (2.17)
k
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and (2.9) are necessary and sufficient for A*cx C cy, while if the conditions
(2.9), (2.16) and (2.17) are satisfied we have

n=limr, = AAF+Y N 1AL (Br — B) + AL (2.18)
k

It is easy to see that (2.12) implies (2.16) and (2.14) implies (2.17). The
condition (2.9) can be inferred from

YA I Aaell = 0Q1). (2.19)
k

Using (2.15) and (2.18) we get

T =1 =2, Ae AnkBr + > Anké — AMB =D AT Ay (B — B) — A€
P P

and

Hn (nn - "7) = Z,un)‘]:l(Ank — A)(Br — B) + Nn(zAnk - A)¢
k

k

+ (O A Ank — AMNB.
k

By the conditions (2.13) and (2.14) the limits of two last summands on the
right hand side exist. That is why the condition

AMECS C ey (2.20)

with AN = (un A (Ank—Ar)) and ¢ = {z = (&) (& € X) A (lim & = 0)}
is necessary and sufficient for the inclusion (2.11) (if (2.6) — (2.9) are satisfied).
According to G. Kangro [4] the conditions (2.10) and (2.12) are necessary and
sufficient for the inclusion (2.20). This completes the proof.H

3. COROLLARIES AND REMARKS

Remark 3.1. If we take X =Y = K and Anx = ani! (ank € K) then we
get from Proposition 2 G. Kangro’s (see [5]) corresponding result for number
case. We generalized G. Kangro’s method.

Corollary 3.1. If the conditions (2.1), (2.3) and (2.4) are satisfied then the
conditions (2.6) —(2.8) are necessary and sufficient for (2.11).

Proof. The condition (2.6) implies (2.10) and (2.19) implies (2.9). The con-
ditions (2.1), (2.3) and (2.4) imply (2.19). B
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Ezample 3.1. Let X = C'[a,b] be a B-space of real value continuous func-
tions of a real variable, while the norm in C'[a, b] will be ||| := max,<¢<s |€ ()] -
Let the functions K, (t,s) be continuous on [a,b] X [a,b]. Let the integral
operators K,y : C'[a,b] — C [a,b] be defined by

b
(Koni0) (£) = / Ko (£,5)C(s)ds (¢ € [a,8]).

The operators K, are linear and bounded, while (see [7])

b
1K il| = JE?é‘b/a Ko (£, 5)] ds.

So Kni, € L(X,X). If lim,, yoo Kpp = Kp innorm) A" [|Kxl| < oo,
a1 A, 1 EKnk — Ki|l = O (1), then the conditions (limits in norm)

Flim Knps = Kiys A FHm py (K — Ki) s (s € X)),

Flim Y | Ko = K< A 3 lim py, (ZKnk—K>< (s €X),
k k

3 1i7r1nz/\,;1 Kpws =KX A 3 lin i (Z Aot Kok — K*) ¢ (ceX),
k k

are necessary and sufficient for ICcé[a i C cé[a p With K = (Knk) -

Corollary 3.2.If X is a B-space and A = (A,) with A, € £(X,X) is
a regular triangular matrix method satisfying the condition Y (A, = I,
then A can not accelerate A-convergence.

Proof. This assertion can be proved analogically as Corollary 2.1.H

In number case Corollary 3.2 was proved by G. Kangro [5]. I. Kornfeld [6]
generalized this G. Kangro’s result for any regular number-matrix method.

Remark 3.2. Nevertheless of nonexistence of a regular summability method
improving A-convergence in applied mathematics linear methods are used to
accelerate the convergence (see [11]). This is possible if we use some subsets
of ¢} or m%. Also for acceleration it is possible to use nonregular methods or
in some cases the pseudo-summability (see [11]).

Remark 8.3. J. Wimp (see [13]) asserted that linear methods are limited in
their usefulness primarily because the class of sequences for which the methods
are regular is too large. The experience indicates that the size of the domain
of regularity of a transformation and its efficiency seem to be inversely related.
So we cannot expect too much from any linear summability method.
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Remark 3.4. J.P. Delahaye (see [3]) asserted that in some problems of nu-
merical analysis or optimization we are faced with nonconvergent sequences
and sometimes we want to know what kind of nonconvergence it is.

Remark 3.5. The main results on nonlinear methods of convergence accel-
eration are obtained by Claude Brezinski (see [2; 3]).

Remark 3.6. Sometimes having the information about the transformed se-
quence Az we can get the information about z using the Tauberian theorems
(see [9; 10] and [12]).
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Konvergavimo pagreitis ir tiesiniai metodai

I. Tammeraid

aprézti operatoriai i§ Banacho erdvés X j Banacho erdve Y. Sie teiginiai taikomi tiriant
tiesiniy metody konvergavimo pagreitj.



