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ABSTRACT

The dynamics of a free thin film attached to a rectangular frame surrounded by an ambient
gas is studied theoretically. The mathematical model is described by evolutionary nonlinear
system for the longitudinal velocity components and film thickness. The 1D form of the
nonstationary problem is solved by a finite difference scheme. The film shape evolution in
time is tracked at different Reynolds numbers, Re. The steady state solutions are reached
asymptotically in time for a large range of Re.
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1. INTRODUCTION

The problems of thin film dynamics are of great importance for a variety of
technological processes including liquid-liquid or liquid-gas disperse systems:
emulsions, foams, coalescence of drops, thin film layer coatings, etc. The
free thin films can be observed as attached on a thin frame when pulling
the frame from a liquid in a vessel; between two deformed drops or bubbles
during their coalescence. It is experimentally established that the coalescence
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of these particles [2] is preceded by their initial approach, subsequent thinning
(drainage) of the liquid layer between them (thin film), instability and rupture
of this film. However, it is possible to reach a stable film formation with
no evidence to coalescence. The rupture process takes place when the thin
film thickness is less than a critical value 10-100nm. At this thickness the
instability is mainly due to the long-range intermolecular forces, such as the
van der Waals attractive, electrostatic repulsive and other forces. Then, if the
film thickness is bigger than the critical value, it is sufficient to consider only
the hydrodynamic forces due to inertia, viscosity and capillarity.

There exist different models for treating theoretically the free thin film dy-
namics: linear and non-linear drainage; linear and non-linear drainage and
rupture. The first class of models refers to macroscopic films drainage before
reaching the critical value thickness. On the other hand the drainage models
consider the mobility of the interfaces, i.e., immobile, partially mobile and
fully mobile interfaces. The fully mobile interfaces correspond to vanishing
tangential stresses on interfaces, while for the immobile ones their tangential
velocities are zero. Klaseboer et al. [3] treat experimentally and theoreti-
cally the drainage of the thin film between two deformable spherical drops
approaching each other. They present two numerical models based on the
lubrication assumption for both types of interface mobility. The numerical
results for the film thickness and thinning rate are confirmed by their experi-
ment for a wide range of capillarity number. The thin film is formed between
the deformed drops and the typical dimple shape is also observed. A similar
numerical model for drainage and rupture of thin films with partially mobile
interfaces is proposed by Saboni et al. [6]. The film thickness evolution in
time is obtained both in the absence and presence of van der Waals forces.
For small enough film thickness the van der Waals forces become dominant
and film rupture is reached, i.e., zero film thickness, at finite time. However,
if van der Waals forces are not taken into account, an effective critical film
rupture thickness (bigger than zero) corresponds to the same time.

The linear instabilities studies are well reviewed in [1; 4; 11]. Some of their
shortcomings are discussed in [1], where an evolutionary one-dimensional sys-
tem for non-linear rupture dynamics is derived at the presence of van der
Waals forces. Since a long-wave asymptotics of the full Navier-Stokes equa-
tions and boundary conditions on the film interfaces is used, the film is prac-
tically infinite in the longitudinal direction. A similar model of non-linear
rupture is proposed in [11] for two separate geometries: line rupture and
point rupture. For both cases the one-dimensional transient system is solved
numerically with periodic boundary conditions for the thickness and longitu-
dinal velocity. Self-similar solutions of the system, becoming singular near to
the rupture, are also found to be in good agreement with the numerical ones.

In [9] the free film is approached as a free liquid/solid shell-like body with
variable thickness symmetric to a middle plane. The film is assumed macro-
scopic and van der Waals and electrostatic forces are neglected. Its interfaces
are considered as fully mobile, since no surfactants are present. After aver-
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aging the general balance laws along the thin film thickness (chosen as small
parameter) like in the ordinary shell theory [5], the evolutionary system for
the solidification of a free film of a semiconductor molten material attached
to a rectangular frame surrounded by an ambient gas is derived. The liquid
phase system consists of four coupled nonlinear equations for the two longi-
tudinal velocity components, film thickness and temperature. The first three
equations are similar to those used in [11]. The same 2D energy equation
model for phase change of free thin films at quasi-static equilibrium is solved
in [10], where different frame temperature regimes and different microgravity
conditions were considered.

The goal of the present work is to analyze the dynamics of a free thin film
attached to a rectangular frame surrounded by an ambient gas on the basis
of the derived evolutionary system in [9]. A numerical scheme solving the 1D
non-linear nonstationary system of two equations for the film thickness and
longitudinal velocity is proposed. The film thickness evolution in time and
longitudinal velocity are obtained for different Reynolds number and wetting
angles. The steady state solution is reached asymptotically in time for Ca = ¢
and 1 < Re < 100. For the same parameters, no film rupture is observed.

2. PROBLEM FORMULATION

2.1. General model

A planar thin liquid film attached to a rectangular rigid frame is considered.
The liquid phase is supposed to be Newtonian viscous with constant density
p and dynamic viscosity p. Since the film is planar, a rectangular Cartesian
coordinate system (z,y,z2) is chosen as a moving system. For simplicity the
two free surfaces are symmetrically located with respect to the reference plane
z = 0 and their mean positions are z = +h/2 where h(z,y,t) = O(e) and
€ << 1. On the reference plane the symmetry conditions are imposed for the
velocities v*(u*,v*, w*) and pressure p*

*

uy=v;=w"'=p;, =0 at z2=0

which imply their asymptotic expansions of the coordinate z = O(¢):

(U*JU*Jp*) = (UOJUOJPO) + chzl ZZk(UQk:UQkaPQk)a (2 1)

o
w* = 2wy + Ek:l z2k+1w2k+1.

Since the film flow obeys the full system of Navier-Stokes equations for v*
and p*, the film interfaces are subjected to the kinematic boundary condition

hi + u*hy + v hy F2w* =0 at  z==xh/2, (2.2)

that can be regarded as an equation for h.
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The film interfaces are assumed fully mobile, i.e., the shear stresses on them
vanish, as the ambient gas is perfect and the surface tension ¢ is constant,
while the normal stress is T.n.n. = 20 H , where T stands for Cauchy stress
tensor, n for unit normal to interfaces and H for their mean curvature. For
the planar film the latter is given by:

[haw (4 + h2) + hyy(4 + hgzj) — hyhyhgy]

2H =
(44 h2 + h2)3/2

= 0.5(hgy + hyy) + O(E°).

If an integration along the film thickness z € [—h/2,h/2] is performed on
(2.1), then u*, v*, w* and p* are asymptotic series of € and depend on (z,y, t).
Inserting these series into (2.2), into the discussed stress conditions on the
interfaces and the full Navier-Stokes equations and equating the powers of ¢,
a system of boundary conditions on the interfaces and governing equations is
obtained. The leading order terms of O(g) are given by:

he + (uoh)z =+ (Uoh)y = 0, (23)
Duy o 2u
5 (woyh + v0sh)y, (2.4)
h
Dvy o 20 W
th - §(hwwy + hyyy)] = 7(2”0yh + uozh)y + E(Uowh
+u0yh)w; (2'5)
(22
po = —2/1/(’11,03 + ’on) — §(hwz + hyy) (26)

The first three coupled nonlinear evolutionary equations for the longitudinal
velocity components and film thickness form a closed system, while the last
equation for p is solved afterwards.

The system (2.3) — (2.6) can be written in a tensor form as in [9]:

Dh

Dt h¢ + (uoh)z + (voh)y =0, (2.7)
Dv 1. =«
pD—tf = EdZUSTf, (28)
where vy = (ug,vo) is the surface film velocity, Te = —Ps + Ty is the surface

film stress tensor and divs is the surface divergence. The pressure tensor (due
to capillarity) is given by

Ps = _% [AV2hIs + 0.5(Vh)*Ts — Vsh ® V,h] (2.9)
and the film stress tensor (due to viscosity) is

Ty = 2uh {(divsvf) I, +0.5 [vsvf + (vsvf)T} } , (2.10)
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where I is the identical surface tensor, V, is the surface gradient and ©
stands for transposition. The system (2.7), (2.8) for ug, vo and h is of order
O(g). Since the fluid is incompressible, the equation for w; is derived from
the continuity equation:

w1 = —Ugz — Voy-

The higher order terms of the asymptotic expansions (2.1) can be obtained
in a similar way.

In the described model the gravity forces and the intermolecular forces are
not considered. However, if needed, their counterparts can be added to the
right hand side of (2.4), (2.5) or (2.8).

2.2. One dimensional model

If the frame is long enough, i.e., dim(y) >> dim(z) >> €, and the end effects
in y direction are neglected, then the film dynamics depends only on (z,t)
and the system (2.3) — (2.6) (or (2.7) — (2.10)) is simplified:

oh 0

T oy o) =0 211
Bug Oug\  0*h  4p 8 1, dug

(e +w5y) =75 + 5 ae g ) (2.12)

Since the 1D system (2.11), (2.12) is derived from (2.7) — (2.10), its order is
O(e) (h=0(g), up = O(1), z = O(1)). The following dimensionless variables
are introduced:

¢ =z/a, t =upt/pa®, u =uo/U, h = h/ea.

Then, the dimensionless form of the system (2.11) — (2.12) is given by

oh 0

o T 5, ) =0, (2:13)
ou ou c Bh 40 ou

5 T Reug = Gt t s (Mar) (2.14)

where the primes are omitted (here z, ¢, u and h are dimensionless), Re =
paU [p is the Reynolds number and Ca = pU /o the capillary number. Since
the fluid dynamics is governed by the full Navier-Stokes model, Re > 0. In
order to preserve the order O(e) of (2.14), we impose the following restrictions
to Re and Ca:

If the film wets symmetrically the frame in the x direction, i.e., at x = £1,
then it is sufficient to consider the half line z € [0, 1]. The boundary conditions
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for h and u are the following:

u(0,t) = u(1,t) =0, (2.15)
oh oh
abzo = 0, %lw:l = tan a, (216)

where 7/2 — a is the wetting angle. Since the liquid mass in the film is
conserved during the thinning process, this condition is expressed as

1
/ (h— ho)dz = 0. (2.17)
0
The initial conditions are given by:
h(z,0) = ho, u(z,0) = 0. (2.18)

For simplicity in our numerical model we take hy = 1.

As the van der Waals forces are not included in the model, the posed non-
linear nonstationary problem (2.13) — (2.18) is solved till reaching a minimum
value of h. It may be correspondent to a stable film shape when the process
becomes steady at some finite time T’

lim h(z,t) = h(z), lim u(z,t) = u(x) (2.19)

t—T t—T

or it may be correspondent to an effective critical film rupture thickness [6].
At this time moment T the actual film rupture occurs:

h(z,T) = 0. (2.20)

3. NUMERICAL SCHEME

The finite difference scheme is constructed using the control volume method.
The temporary grid w; = j7, j > 0is uniform with constant temporary step

and the spatial domain Q = [0, 1] is covered by equal unit grids
Oy ={2os5i = (i —1)Az/2, Az >0, i=1,...,2N+1; =2gs50en+1) =1}
The function u is approximated by its values in grid points with integer indexes

Q

8

={.’Ei=(i—1)A{E, i=1,...,N+1; .Z'N+1=1},
while the function h — in grid points with half integer indexes

Of = {z;_05=(i—05)Az, i=1,...,N+1; zn4y =1-05Az}.
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Further, each unit of the selected grids Q, Q¥ will be connected to a control
volume, whose planes pass between two adjacent units. Thus, "chess" grid
is used for calculation of unknown quantities. Here for the simplicity we use
notation [7].
Although the subscripts of unknown quantities are equally marked, they
relate to various grid:

U; = U(.fﬂz',tj_’_l), T; € Q_g, h; = h(.’L‘z — 0.5A.€L‘,tj+1), Zi_05 € Q_g

Two different control volumes, displaced relatively to each other by half step,
are used for the two functions A and u.
Integrating (2.13) on the control volume [z;_1, z;], we get

AM —AM_
Az -

where AM = AM; =< h >;<u >; .

The notation <> means h and u values on cell border. Selection of these
values has an important significance.

The accuracy and stability of the difference scheme depend on the approx-
imation method. As the schemes without taking into account flow direction
result in instability of calculations, we determine AM; in view of flow di-
rection on given border. The value < u >; coincides with the selected grid
unit system for u, for < h >; there is a necessity definition of function A in
grid points which are not appropriate to their positions on grid pattern. In
this case simple "transfer" of function values according to the coefficient sign
determining convective transfer is used. As a result,

hy + 0, i=2,N, (3.1)

AM; = ufh; + u; hita,
where
wi =uf +u;, ul=05(ui+|uil) >0, u; =0.5(ui—|ul|)<0.
Then in accordance with conditions (2.15)
AM; =0, AMy =0.

The system (3.1) is described by N — 1 equations corresponding to the
unknowns h;, i=2,N — 1. The values h(z1,t;41) and h(zn,tj41) are still
unknown and will be determined from the boundary conditions (2.15).

A similar differential analogue for the motion equation is obtained after
integrating the equation (2.14) in the control volume [z;_¢.5, Zit0.5]:

4 _
uz + Re(@ ™ ug + atuz) = %hmi + E(hui)w, i=2,N—1,(3.2)

u; = 0, uny =0,
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where h = 0.5(h; + hij1),

hzzi fori=3,N —2;
hzzs = (h4 — 3hs + 2h2)/A$3 for i1 = 2;
(tanaAzx — 2hn + 3hn_1 — hy—2)/Az® fori= N —1;

The scheme (3.1) — (3.2) approximates the differential equations with the
error O(Axz + At). The analysis of stability is carried out by using the dif-
ferential approximation mechanism [8], the stability depends on the sign of
diffusion coefficient of appropriate differential approximation.

When constructing the differential scheme inside the integration area the
weight (mass) and momentum are preserved. For example, for (3.1) the mass
preservation law gives the condition (2.17).

The system (3.1) — (3.2) is nonlinear. For its solution the following iterative
process is proposed:

B+ (AM® — AM?)/Az =0, =; € Ok, (3.3)
4

u§+1 + Re(a*ustt + atouit) = %h;ﬂ + ot (RSt

z; € QY, (3.4)

The use of velocities from previous time layer makes the iterative process
unstable. Therefore the following order of calculations is used. The problem
is solved in steps: first we find h*t! from the system (3.3), and then we
solve system (3.4) for u®t! by the elimination method. As iteration ending
conditions the errors estimates are imposed:

lui¥' —uf| <ew or |(uit! —uf)/uf| <eu,

B+ — b3l <en or [(h{*! — h])/hi| < en,

where g, and g, are given constants determining accuracy of the iterative
process.

The problem is recurrently solved on temporary layerst; = t;_1+At, j=
1,J, until one of conditions (2.19) or (2.20) is fulfilled. For the numerical
process the first condition is given as |h; — hij| < €min, When the process
becomes asymptotically steady at finite time T = ¢;, with j = J and epp is
a given number. The second condition reads as h;; = O(Ax).

4. RESULTS AND DISCUSSION

If Ca — 0, the steady state solution of the problem (2.13) — (2.17) can be
achieved independently on Re. It is given by the analytical formulas:

h(z) = 0.5(z*> — 1/3) tana + 1, u(z) = 0. (4.1)
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Figure 2. Evolution in time of h(z), u(z) of stationary problem for Ca = 0.15¢, o = 1, 37.

The minimum value of h(z) is reached at = 0 and it depends on the angle
a. Then h(z) > 0 for a < 1.40564 and its graphs are shown in Fig.1. The
negative values of h, i.e., h(0) < 0 for 7/2 > o > 1.40564, are not solutions
of our physical problem of thin film dynamics. Further in the numerical
experiments, we have obtained the steady state solution (4.1) for different
times T, according to the condition (2.19).

The numerical solution of the steady state problem for Ca = 0.15¢, a = 1.37
with initial conditions u(z) = 0 and h(z) = 1 is presented in Fig.2. As it
can be seen from Fig.2a the velocity quickly increases at the initial moment
t1. Then the velocity decreases; at tg it is equal to zero, when the solution
has reached its steady state. The final solution h at t¢ = 50 (see Fig.2b)
is validated by the exact steady state solution (4.1) represented in Fig.1 for
a = 1.37. The integral mass conservation (2.17) is preserved with the order
3x 1076,

The presented numerical scheme has been applied for Ca = ¢, a < 1.40564
and large range of Re. The grid steps for all calculations are Az = 0.02,

59
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Figure 3. Evolution in time of h(z), u(z) for Re =10, Ca =¢, a = 1,37.

At =1.e7%.

In Fig.3 and Fig.4,5 the film thickness h and longitudinal velocity u distrib-
utions in space and time are presented for Re = 10 and Re = 100, respectively.
For both cases @ = 1.37 and the film rupture does not occur. The solution
reaches its steady form, but for different times: T'= 5 for Re = 10 and T' = 4.6
for Re = 100. The other numerical experiments with smaller Re confirm this
tendency, that the time T increases with the decrease of Re. The condition
(2.19) is fulfilled with the accuracy O(Az) for h and O(107°) for u.

Analyzing Fig.4 and Fig.5, we see that at times smaller than T, the film
shape for Re = 100 is convex at the center (z = 0), i.e., a dimple is formed.

28] ——t1=0.1e-2

2,6 ——12=0.1 .

2,4 gre_h —=—13=0.2 4%

4=0.3 Zai

2,24 e 15207 t7 Gl t5

2,0 ——16=1.7 +,+/+/_/. “

1,84 t7=4.6 s

. ; 13

1,64 A

1’4 ++,+ - e

4] O g Y ©2
h 1,24 {J,. o~ /./_/

1,0 ' e -
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0,4
0,24
0,04

4tk
SR  a

T T T T T T T T T
00 o1 02 03 04 05 06 07 08 09 10
X

Figure 4. Evolution in time of h(z) for Re = 100, Ca = ¢, a = 1,37.

5. CONCLUSIONS

In the present work we study the dynamics of a free thin film attached to the
rectangular frame surrounded by an ambient gas. The considered model is
derived in [9]. The 1D problem consisting of a non-linear unstationary system
of two equations for the film thickness and longitudinal velocity is posed. For
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Figure 5. Evolution in time of u(z) for Re = 100, Ca = &, a = 1,37.

solving it a finite difference numerical scheme with "chess" grid pattern is
proposed. Since the system is non-linear, in order to linearize it, an iterative
procedure is constructed.

The film thickness evolution in time and longitudinal velocity are obtained
for different Re. The steady state solution is reached asymptotically in time
for Ca = € and 1 < Re < 100. For the same parameters, no film rupture is
observed.

A parametrical analysis of film dynamics in the absence and in the presence
of van der Waals forces in the model will be a subject of future studies. An
appropriate numerical scheme will be developed for the 2D model.
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Laisvosios plonosios plévelés dinamikos skaitinis modeliavimas
L. Popova, G. Gromyko, S. Tabakova

Nagrinéjamas svarbus dujy dinamikai plonosios plévelés judéjimo matematinio modeliavimo
uzdavinys. Atlikta diferencialiniy lygéiy asimptotiné analizé. Pasiiilyta skirtuminé schema
skai¢iavimams atlikti ir pateikti skaitiniy eksperimenty rezultatai.



