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ABSTRACT

There are well-known numerical methods for solving the initial-boundary value problems
for partial differential equations. We mention only some of them: finite difference method
(FDM), finite element method (FEM), boundary element method (BEM), Galerkin type
methods and others. In the given work FDM and BEM are considered for determination a
distribution of heat in the multilayer media. These methods were used for the reduction of
the 1D heat transfer problem described by a partial differential equation to an initial-value
problem for a system of ordinary differential equations (ODEs). Such a procedure allows us
to obtain a simple engineering algorithm for solving heat transfer equation in multilayered
domain. In a stationary case the exact finite difference scheme is obtained. An inverse
problem is also solved. The heat transfer coefficients are found and temperatures in the
interior layers depending on the given temperatures inside and outside of a domain are
obtained.

Key words: transfer problems, initial-boundary value problems, partial differential equa-
tions, finite difference method, finite element method

1. THE MATHEMATICAL MODEL
We shall consider the partial differential equation
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where ¢ is a specific thermal capacity (ﬁ), p is density (T—’;%), A is the

coeflicient of heat conductivity (mLK), g is the function of thermal sources

(X5), t is the time (s) and u is the absolute temperature (K).
Multilayer media €2 consists of N layers

N={z:2€Q, k=1,N},

where each layer is characterized by set Qp = {2z : zx—1 < 2z < 2}, and
z =z, k =1,N — 1 are the joint of the layers (the interior grid points in the
FDM).

If every layer has parameters pg,cg, Ak, qr, then the heat equation (1.1)
can be presented in the following form

0 Buk _ T
5(’\’“5) —F, k=1,N, (1.2)
where
0
F, = Ckpk% — qr(2,1)

and up = ug(z,t) is the temperature in the layer Q.

We have the following conditions:
1) Continuity conditions on surfaces z = 2z, k=1, N —1:

ug(2k,t) = ugy1(2k,1),

Oup(z,t) A Ougy1(2k,t)

Ak 92 = Ak+1 9z ;

2) boundary conditions on the surfaces z = zp and z = zy:

0 ,t
7 210D o s (20, 0) — 00) = 0,
(1.3)
0 ,t
PN (o, 1) — ) =0,

where a1, an are convection heat transfer coefficients, 6y,0n are the dimen-
sionless temperatures of air. For the initial conditions we give the temperature
ug(z,0) in every layer k =1, N.
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2. THE FINITE VOLUMES METHOD AND THE FDM

Using the finite volumes method [1; 2; 3], we obtain the finite-difference
scheme, i.e. N + 1 equations are given on a joint of layers

A
L (ur — uo) — a1 (ug — o) = Ry,

hi
A A
h’““ (Whi1 — up) — h—k(uk —up 1) =R; +Rf, 1<k<N, (21)
k+1 k
A _
—an(uy —0n) — ﬁ(UN —un-1) = Ry,

where
R; =I_ +R;, Rf=I"+R/,

Rl; = M/ (2! - zk—l)uk(zat)d'za k= 17N7
b S,

. Zht+1 —
Rf = M/ (k1 — 2)lg41(2,t)dz, k=0,N —1,
Zk

i1
t
ﬂk(z,t)ZW, hy =2 — 2,1, k=1,N,
1 2k
I, =——/ (z — zp—1)qr(z,t)dz, k=1,N,
B Zk—1
1 Zk+1
IF=- / (Zk+1 — 2)qr+1(2,t)dz, k=0, N — 1.
hiv1 /.,

In a stationary case exactly calculating integrals I, , I,j we obtain the exact
finite-difference scheme.

3. THE BEM AND THE FINITE-DIFFERENCE SCHEME

The finite difference scheme (2.1) can be obtained by using the BEM. Ap-
plying this method for equation (1.2) in the segment [zx_1, 2%, multiplying
equation (1.2) by the function w(z,§) = |z —¢|, € € [2k—1, 2x] and integrating
it by parts twice we get

Zk Zk
)\k/ ukw"dz = / Frwdz + A\ Py, (3.1)
Zp—1 Ze—1

where

2k ,  Ow
w = .
Zk_17 (9,2

P = (upw' — ujw)
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Due to equalities w' = sign(z — &), w" = §(z — &) (here §(z — &) is the
Dirac-delta function) we obtain the third Green formula for the 1D case:

Zk
Arur(€,t) = / |Z — §|de2 + A\ Py, (3.2)
where
P = wi(zk)sign(zr — &) — vi(z) |2k — €] — vk(2r-1)sign(zk—1 — §)

i (2h—1)[zr-1 — €], vr(2) = un(2, ).
From (3.2) for the given values vy (zr), vk (2k—1), V), (2k), v}, (2k—1), F it is
possible to find vy (§) = ug(€,t) for all € € [zx,_1, 2x].

Let us consider two limit cases, when £ — 21 and £ — 2. Then we have
two equations in the following form:

AUk (2k—1) = A (vr(2k) — hevg(2r)) + iR,
(3.3)
Ak (26) = A (vi(2zk—1) + havy(zk—1)) + PR .

Substituting k£ by k + 1 in the second equation (3.3), then dividing these
expressions respectively by hy, hy41 and applying the continuity conditions

vk(zk) = vk+1(zk), )\kvjc(zk) = )\k+11);c+1 (zk), k= I,N -1

we obtain the difference equations (2.1) for k = 1, N — 1. The first equation
of (2.1) is obtained from the second equation (3.3), if ¥ = 1, and the last
equation — from the first equation (3.3), if K = N (the boundary conditions
(1.3) must be used).

From the finite difference scheme (2.1) we obtain the values ug_1,u, k =
1,N, and from (3.3) — the values v} (zx—1), v} (2¢) in the interior grid points.

4. THE ANALYTICAL SOLUTION IN A STATIONARY CASE

In this case the difference scheme can be solved analytically. Representing the
first equation of (2.1) in the form

a+
A1 (Ul — UO) — af(ul - 00) = Ra_a—ll

and adding to the second one, we obtain

Ai(uz —w) = af (w1 — ) = af QF, (4.1)
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where
Ak
A,=—=, k=1N
k hka s 4V,
R R
Qf == +Qf, Qf ==,
aq ay

Rr,=R}I+R,, k=1,N-1, Ro=R{,
o is the factor of thermal resistance of two layers numbering the layers in

the growing sequence. We find, similarly to the formula for total resistance in
parallel electric circuits, that

11

1
af S m Ay
After this step we find the equation
Am+1 (um+1 - um) - a;(um - 00) = Oé; T+n’ (42)

where a;f, is the common factor of thermal resistance of (m + 1) layers,

1 1 1 1
_ = + — = —_— AO = Q1
04% a;,1 Am ; Az ’ ’
R < R;
Qh=—F+Q =) —+ (af =a1, Ro=Ry).
Qm, = q;
Similarly expressing unknowns un,un_1, ... in an opposite direction, after n
steps we find
ay_,On —un—pn) = AN—n(UN—n —UN—n—1) = AN_,,QN_pn> (4.3)

where a)y_,, is the common factor of the thermal resistance (here n is num-
bered in a backward direction)

1 1 1 - 1
— == + P = Z Ao ANy1 = an,
aN—n aN—n—i—l N-1 i=0 N—i+1
_ Rn_ _ n Rn_;
QN—nZ — n+QN—n+1=Z — :
An_p i=0 An_;

ay =an, Rny=Ry, Qy=Rnx/an).
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Taking n = N —k,m = k —1 in (4.2), (4.3) we obtain the system of two
equations

A (ug — up—1) — ak+_1(uk_1 —6) = O‘Z_—1Q:—1

(4.4)
a;(@N—uk)—Ak(uk—uk_l):a;Q;, k=1N.
Representing the first equation in the form
Ap(u —up—1) — o5 (ur, — 60) = o Qf
and adding to the second equation, we find
Ot;gN + a:HO —Q
Up = T — s (4.5)
o + oy
where Q = Qy o), +Q{_,af, k=1,N.
If n = N — 1, then it follows from (4.3), that
ay (On —u1) — A1 (ur —uo) = oy Q7
or
ag(GN — Uo) — Al(Ul - UO) = aan_
Therefore
00 6o —
uo:% N + a16)p Qo7 (4.6)

ay + oy
where Qo = Qg ag + Ro.

If ¢, = 0, then the stationary solution is the linear function in each layer,
and it can be represented in the following form:

uitac(z) = Up_ 1+ ————uy,

— kuk—l)a z € [zk—lazk]a k= 1aN

If a; = 0, then in formulae (4.5), (4.6) it is necessary to substitute a; =0,
and Q;l__la;: =Ro+ R+ ...+ R_1.

In the case of the Dirichlet boundary condition the first and the last equa-
tions (2.1) don’t depend on ag;any — oo and ug = by, un = On.

In the case of the Neuman boundary condition it is necessary to substitute
a; =ay =0.
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As an example, it follows from (4.5), (4.6) for N =3

o = a503 + a16p — Qo uy = a;63 + (11’_00 - Q1
ar + ao ’ af +ay ’ (4.7)
a5 05 +adh — Q2 us = azfs + ai 6 — Qs
a2+a2 ’ a;'—}—ag ’
where

L _ 1,k 1 1 hy 11 h
of a1 M oof o X af o A
1 1 h 1 1 h 1 1 h
e . . R N B

a; a3 A o] ay A ay  ay A
Qo=R{+yQr, Q1=0Qra; +Qiaf, Q2=Qya;, +Qf a3,

Ry +RJr Ry +R+
Q3 =Q50; +QFaf, QFf =—2—"+Q¢, QF = 2—2 +Qf,
1 2
Rf . Ry __ R, +RS _ .. R +Rf
Qg:_07Q3:_37Q2:72 _2+Q37Q1— =1 -1 +Q2
a1 as 2 ay

In the case of the Dirichlet boundary condition (a;; as — 00) it follows from
(47), that Ug = 00, Uz = 03.
If ¢y =0, then

Qfal =R{, Qfaf =R{+Rf+R/,
Qfad =R{ + RF + R + Rf + Ry,
af =af =af =0.

If in addition Ry =0, k =0, 3, then up = u; = up = uz = 65.

5. APPROXIMATION OF INTEGRALS WITH THE HELP OF
QUADRATURE FORMULAS

In a non-stationary case integrals R:, R,; are computed approximately with
the help of quadrature formulas.

z—2z Zht1 — 2
By means of substitutions & = * or & = Zk+l 7 2 we find
hg hgt1

. 1
A AL (5.1)
R :ck+lpk+1hk+1/0 Ergyt (€)dE,

where g = uk(ﬁkhk + Zk_l,t), g,': = Uk+1 (zk-',-l — fkhk_H,t).
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Let us consider the approximation of the integral I = fol £g(&)d¢ by using
the interpolation quadrature formulas

I = Aog(0) + A1g(1) +0.5Cog" (€), € € (0,1),

where Ag, A1, Co are undetermined coefficients.

Choosing functions g in the form g(¢) = ¢, i = 0,1, 2, we obtain the system
of three equations

1 1 1
§=A0+A1, §=A1, Z=A1+Co-

It is easy to prove that Ag = }, A1 = %, Co = —7; is the solution of the
system.

Thus we find

r

- 1. 1, hi 9k (n ,t)

R, = ckpkhk(guk(zk_l,t) + guk(zk,t) - QT)’

- 1.

Ry = cht1pr+1hitr <_uk+1(zka t)
_ h%:-i—l 82@1:(772_;15))

\ 24 072 ’

1.
+ g Ukt (Zh41,1)

where 0, € (2k—1,2k), 0} € (2k, 2h41)-

After omitting the residual members in (5.2), we find the system of N +1
ODE:s of the first order

r

cputs (iol0) + i (®) = 3% (1(0) — w(®) - a1 (uo(t) — b0) ~ I

1. 1. 1. 1.
crprh (gwc—l(t) + gl (t)) + Cry1prr1hrp1 (guk(t) + guk+1(t))
Akl

o (wesr (t) —wal)) - 2—’; (un(®) —wea(®)) = Iy = I, k=T, N =1,

1. 1.
CNpNhN(guN—l(t) + gUN(t))
N

\ H(uN(t) —UN—l(t)) —aN(UN(t) _GN) — Iy,

(5.3)
where dg_1(t) = U (zp—1,t), Ur(t) = Ur(2g,t). Here the continuity condi-
tions of functions ug(z,t), ux(z,t) on joints of layers are used.

We find the distribution of the initial temperature at ¢ = 0 in the form

u®(2) = Bz + C,

coordinating it with the boundary conditions (1.3). Thus we obtain the
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Table 1.

Dependence of temperatures on time:

a) b)
t ug (t) u1 (t) U2 (t) ’u,g(t) t uo (t) ul(t) u (t) u;»,(t)
0.0 275.87 276.41 263.17 254.71 0.0 275.87 267.41 263.17 254.71
0.2 276.70 265.71 264. 86 253.91 0.2 276.56 266.00 265.14 253.77
0.4 276.82 265.40 265.17 253.82 0.4 276.55 265.96 265.73 253.56
0.6 276.82 265.34 265.22 253.86 0.6 276.42 266.18 266.06 253.48
0.8 276.79 265.33 265.23 253.92 0.8 276.27 266.44 266.34 253.44
1.0 276.76 265.32 265.23 253.98 1.0 276.20 266.58 266.48 253.42

system of two algebraic equations for the determination of two constants B, C

aran(@n — 6o) A
 C=fp+ LB
ai1(AN +anzy) + anAy Ty

B =

Then initial conditions of the system (5.3) can be presented in the form

up(0) =u(2), k=0,N.

6. NUMERICAL RESULTS

Let us consider numerical experiments in the case ¢ = 0, N = 3. We use
the following values of plate parameters (in the wall of a house consisting of
3 layers: brick, metal, brick): hy = hz = 0.4m, hs = 0.2m are the thickness
of layers, p1 = p3 = 16007—';%, p2 = 78007—’;% - the density of layers, ¢; =
c3 = 501>, ¢o = 500,@% - specific thermal capacities of layers, \; =

kg. K’
A3 = O.Sm.iK, Ao = 59% - factors of heat conductivity of layers, a; =
1Y% a3 = 10—%— - the convective heat transfer coefficients and 6y =
m2. K m2. K

293K, 63 = 253K - the air temperatures, respectively, on the bottom and top
of the plate in Kelvin degree.

Calculations and their graphic visualization were made by means of math-
ematical system MAPLE - 5 RELEASE 4. From Table 1a) we can see the
dependence of temperature on time.

We also solved the inverse problem. From (4.7) the convective heat transfer
coefficients oy, as and temperature on a joint of layers u;, us were found,
when air temperatures around a plate 6y, 63 and on boundary of a plate
up, uz were known (see Table 2). The results for the case ¢y = 0, g2 =
2000 %, gs = 0 are presented in Table 1b).

7. THE CONCLUSION

1. The proposed method allows us to reduce 1D heat transfer problem to the
system of the ordinary differential equations (5.3).
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Table 2.
The results of the inverse problems in the stationary case.

0o 03 uQ us u1 u2 [o %1 ag

293 300 296 299 297.99 298.01 1.04 11.43
293 253 274 255 264.43 264.37 1.00 10.09
293 310 296 300 297.99 298.01 1.34 0.40
293 243 274 255 264.53 264.47 1.01 1.60
293 297 295 296 295.50 295.50 0.50 1.01
203 298 295 297 296.00 296.00 1.01 2.02
293 300 295 299 297.00 297.00 2.02 4.04
293 302 296 300 298.00 298.00 1.35 @ 2.02

2. The method allows us to find the distribution of temperature both on a
joint of layers and in any place of a horizontal plate.

3. By means of the stationary solution formulas (4.5), (4.6), it is possible to
solve an inverse problem, i.e., to determine oy, ay for known temperatures
on the bottom and top surface of a plate ug, uny and external temperatures
6o, On , i.e., to solve the system of N + 1 algebraic equations (4.5), (4.6),
concerning unknown values ay, ay, ug, k=1, N — 1.
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Paprastieji inZinerinio skai¢iavimo metodai $ilumos laidumo uZda-
viniams spresti

H. Kalis, I. Kangro

Darbe nagrinéjami du — baigtiniy skirtumy ir kraStiniy elementy — metodai §ilumos pa-
siskirstymo daugiasluoksnéje aplinkoje uzdaviniams spresti. Siais metodais dviejy kintamyjy
uzdavinys dalinémis i§vestinémis pakei¢iamas pradiniu — kraStiniu paprastyjy diferencialiniy
lygCiy sistemos uzdaviniu. Tokia procedura suteikia galimybe gauti paprastus inZineri-
nius algoritmus, skirtus spresti Silumos laidumo lygtj daugiasluoksnéje srityje. Stacionariu
atveju jmanoma nustatyti tiksly skirtumy schemos sprendinj. Darbe nagrinétas atvirks¢ias
uzdavinys. Skaitinio eksperimento metu gauti Silumos laidumo koeficientai ir temperaturos
vidiniuose sluoksniuose priklausomai nuo iSoriniy plok§tés duomeny.



