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Abstract. Several propositions on A\-boundedness for generalized Riesz method
(R, Pn), where P, are linear bounded operators from Banach space X into X, are
proved. These results are applied to study convergence acceleration using generalized
Riesz method and generalized Zygmund method.
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1. Introduction and Lemmas

Let X,Y be Banach spaces and £ (X,Y) be a space of all bounded linear
operators from X into Y. A sequence x = (§) (& € X) is called A\-bounded
if

Jlimé, =6 A Br= (& —&) A BrL=0(1),

whereas A = (A\g) with 0 < A .

Let m? be the set of all \-bounded sequences. If A, = O (1), then m} =
cx, while cx is a set of convergent sequences with &, € X. A sequence x =
(&) is called summable (see [3, 13]) by a generalized method A = (An),
Ak € L(X,Y) if y = (n,) with

M = Z Ankgk (1'1)
k=0

is convergent. Let p = (ug) with 0 < pg . The transformation A is called
accelerating A-boundedness if Amﬁ‘( C mh- with lim pg /A, = oo.
A method A = (Apk) with (Ap, € £ (X, X)) is called regular if Acx C cx
and
limn, = 1i]£H§k7
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while (¢) € ¢x and 7, is defined by (1.1). Let I € £ (X, X) denote identity
operator.

Kornfeld [6] proved that any regular numerical method of summability
can not accelerate the convergence. Nevertheless of nonexistence of a regular
summability method improving A-boundedness in applied mathematics linear
methods are used to accelerate the convergence (see [10]). Such an acceleration
is possible if we use some subsets of m?;. Also for acceleration it is possible to
use nonregular methods or in some cases the pseudosummability (see [10]).

In [12] Kornfeld’s result is generalized for several methods A = (A,;) with
(Apk € £(X,X)). In [9] certain numerical summability methods are com-
pared by rates of convergence. In [2] are presented main results of convergence
acceleration using nonlinear methods.

Let us denote by (R, P,) or shortly by # the generalized Riesz method
(see [1, 7]), defined by

Rnpk (k:0717"'7n)a
0 (k>n),
where Py, R, € L (X, X), while R,, is determined by

R, Pl=( (C€X, neNy). (1.2)

k=0
Let {B,} be a sequence of operators B,, € £ (X, X) satisfying the condi-
tions

(n+1) [ Bn1 = Bul = O(I[Bull)  (n €N) (1.3)

and
By=6, B,#0 (neN).

Let us denote by (Z, B,,) or shortly by Z the generalized Zygmund method
as a generalized Riesz method (R, P,) with P, = B,,11 — B,.

Lemma 1. ([7]). The conditions

lim ||R,|| =0 (1.4)
and .

1Rl I[Pl = O(1) (1.5)
k=0

imply that the method R is regular.
Lemma 2. If B! € £L(X,X) (n € N),

lim || B, '|| =0 (1.6)

and

[ Be|
HBn+1|| Z k—:l ), (1.7)

then (Z, B,,) is regular.
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Proof. Using the definition of the method (Z, B,,) and Lemma 1 we get that
(1.6) implies (1.4). Using (1.3) and (1.7) we get

1Ra S 1PN = || Bk | Z IBisr — Byl
k=0

IIB I
= Il o = o0

Thus the condition (1.5) is satisfied and by Lemma 1 the method (Z, B,,) is
regular. B

Lemma 3. ([12]). If A = (Ang) with(An, € L(X, X)) is a regular triangular
matriz method satisfying the condition

n

> A =1 (neNy),
k=0

then A can not accelerate the convergence.

Using Lemmas 2 and 3 we get the next corollary.

Corollary 1. The method Z, satisfying the conditions (1.6) and (1.7), can not
accelerate the convergence.

In the sequel Ay " oo, ux /" o0 and 73, / c0.
Lemma 4. ([11]). The conditions (1.4), (1.5) and

" P
PRIVl i TSy
k=0 Ak

are sufficient for the inclusion Rm?y C m'y.

Corollary 2. 1f B! € £ (X, X) (n € N), then the conditions (1.6), (1.7) and

|| Bl Z

B
are sufficient for the inclusion ZmAX C m’;(.

T. Sormus (see [8]) studied an inverse problem and proved so-called Tauberian
theorem for generalized Riesz method R in the case \,, = O(1) and p,, = O (1)
and got the next result.

Lemma 5. Let P, ', R;' € £(X, X) and generalized Riesz method R be reg-
ular. If x = (&) is (R, P,,)—summable to n and

PR A, = o(1),

whereas A&, = &k — Ex—1, then & — 1.
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The following so-called Tauberian remainder theorem for generalized method
of summability A is proved in [12].

Lemma 6. Let A = (A,) with A, € L(X,X) be a regular triangular gen-
eralized method of summability satisfying the conditions

A D A Akl = O(1), (1.8)
k=0

k

Z A’ILV

v=0

Ak 14| = O Ankll)  (k<n, neNo),  (1.9)

An [nll = O (1) (1.10)

k=0

Then Ax € m% implies x € m’.

Lemma 7. ([5]) If a numerical regular Riesz method (R, P) with Py, > 0 and
R’y '=0 (Rklll)
is preserving \-boundedness and
TRy AL = O (Py),

then Rx € myy implies x € m3,, whereas
R R

A
1< T—: Ty AT T, e =V ATk

2. Main Results

Proposition 1. The conditions (1.4), (1.5) and

n P
a3 12— o) 2.1)
k=0 "k
imply
An [ Bl
=0(1) (v<n), (2.2)
ARy
and
An [[Bnll =0(1). (2.3)
Proof. As

v

NN . 1 -
3 >3 > =N P = = 1R 1P
=0 )\k =0 )\k )\u k=0 )\V HRVH k=0
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and (1.2) implies

IR 1P > 1, (2.4)
k=0
then
—~ || 2] 1
> (2.5)
25 2 NIR
Using (2.1) and (2.5) we get (2.2). The condition (2.2) implies

An[[Rall = O(1).

Therefore there exists such m > 0, that
L > Rl (2.6)
N2 m||Ry| - .
From (2.6) and (2.4) it follows that

[ [P
An

n

> 1Pl
k=0

Zm || Rull [Pl = m

From (1.4) and (2.4) we get

n
> Pl — 0.
k=0

Therefore the series Y 7~ || Pe|l /Ax is divergent. Using (2.1) we get (2.3). W
Corollary 3. The conditions R ' € £ (X, X), (1.4), (1.5), (2.1) and
- -1
122 = 0 ([7:2.)

imply
An =0 (A1) .

Remark 1. In case of numbers a result, similar to Proposition 1, was proved
by Kangro (see [4]).

Proposition 2. If
[P
An || Bl Z N o(1),
— k
k=0
then R is accelerating \-boundedness.

Proof. Let x € m% and {n,} is defined by (1.1) — (1.2). Since

f: R.Py =1
k=0
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and using (2) we get

> RuPili — > RnPit

A1 =il = An

k=0 k=0
= [ RaPi (& = O < A D IRl I Pill 16k — €]
k=0 k=0

o Py
< AullBal Z Bl s el < Al Z o
< 0(1)0(1) = 0(1)7
then the method (R, P,,) is accelerating A-boundedness. W

Corollary 4. 1f B,' € £L(X,X) (n € N) and

B
34 3 Pl = o)

then the method Z is acceleratmg A—boundedness.

Next we formulate the following problem:

Problem 1. Is it possible to find a simple nonregular generalized method, sa-
tisfying the conditions of Proposition 2 or Corollary 4?7

In the sequel we get Tauberian remainder theorems for the methods # and
Z.

Proposition 3. Let the conditions (1.4), (1.5), (2.1) and

M |Bo B[ 1Ak = O (IR Pxll) - (k< n. neNo) (2.7)
be satisfied. Then Rx € m’, implies v € m’.
Proof. We will get a proof of this assertion using Lemma 6. By Lemma 1 the
conditions (1.4) and (1.5) imply that the method R is regular. Using (2.1) we
get that the condition (1.8) is satisfied. The condition (2.7) implies that (1.9)

is fulﬁlled Using (1.2) we get that (1.10) is fulfilled. So Rz € m? implies
z€my. B

Corollary 5. Let B,! € L£(X,X) (n€ N) and the conditions (1.4), (1.7),
(1.8),

B
n||Bn+1||Z el —on)

and
M || Brga Bia || 1A¢k N = O (|| Byty (B — Bi)||) (k<n, neNo)
be satisfied. Then Zx € m? implies z € m%.

Remark 2. As the form and the assertion of Tauberian theorems essentially
depend on the method used for proof it would be interesting to compare the
assertions of Lemma, 5, Proposition 3 and Lemma, 7.
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Apibendrintas Riesz metodas ir konvergavimo pagreitis
I. Tammeraid

Straipsnyje jirodyta keletas teiginiy, susijusiy su A apréZtumu apibendrintam Rieszo
metodui, kai P, yra tiesinis apréZtasis operatorius Banacho erdvéje X. Sie rezultatai
taikomi tiriant Rieszo ir apibendrinto Zygmundo metody konvergavimo pagreit;.



