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Abstract. A linearized problem of dynamics for small perturbations of the gas
bubble rising in the Hele-Shaw cell filled with magnetic liquid is considered. It is
reduced to searching of eigenvalues and eigenfunctions for a linear operator with
periodic boundary conditions. The obtained operator is presented as a sum of two
linear operators: the second order differential operator with varying coefficients and
the integro — differential operator with the singularity of the Cauchy type. The spec-
tral problem is solved by the Degenerate Matrices (DM) method using Chebyshev
polynomials of the first and second kind.
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1. Introduction

The free surface flows in Hele-Shaw cells have caused great interest recently
[2, 18]. This is due to extremely rich pattern formation phenomena existing in
these systems. Such phenomena obtain new features if one of the liquids in the
Hele-Shaw cell is magnetic. In early eighties it was found that self-magnetic
field forces cause the formation of the intricate labyrinthine patterns in those
systems [6, 7]. Extension of those phenomena for the case of continuous energy
supply was carried out in [5, 11, 12, 15|, where the influence of the self-
magnetic forces on the development of the Saffman-Taylor instability was
considered both theoretically [5, 11] and experimentally [12, 15] for plane and
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circular geometries [5, 8]. Essential feature of these phenomena consists in
the formation of the magnetic liquid finger, which dynamics and properties
except some qualitative numerical experiments [7] remains poorly understood.
This is not the case of the non-magnetic liquid fingers, which starting from
pioneering work by Saffman and Taylor were extensively investigated [1, 10,
13, 14, 16, 17].

A related problem of the free interface dynamics describes the dynamics
of the bubble rising in the vertical Hele-Shaw cell under action of the gravity
[19]. Saffman and Taylor have found that for this case the family of the steady
bubble shapes exists in the absence of the surface tension [19]. It is natural
to assume that in the presence of surface tension the circular shape of the
rising bubble is selected though its stability remain poorly understood. The
preliminary numerical experiments [4] have shown that in the case of the
bubble rising in the Hele-Shaw cell filled with magnetic liquid, the different
families of rising bubble — pearlike or bent dumb-bell may arise. The stability
of the rising bubble in the presence of magnetic forces is not investigated yet.

In the present paper we find numerically the eigenvalues and eigenvectors
of the linear operator, which determines the evolution of small perturbations.
By using the Degenerate Matrices (DM) method we have constructed two
algorithms, that are based on the unsaturated approximation technique by
Lagrange interpolations [8, 9]. The problem formulation and derivation of the
operators in an explicit form are given in Section 2. Numerical approximation
technique is described in Section 3. Numerical results and their discussion are
given in Section 4.

2. Mathematical Formulation of the Problem

We consider a bubble in an infinite layer of the magnetic liquid. Let

7= R(l + C(a,t))

be the equation of the free interface for a bubble in polar coordinates (7, «)
connected with its moving center, where ((«,t) is the dimensionless interface
perturbation of the circular bubble 7 = R in the Hele-Shaw cell. Taking the
kinematic boundary condition from the Darcy equation accounting for the
magnetic forces [3] and linearizing it with respect to ¢ we obtain the following
problem in the dimensionless form:

a a¢ o
Fri —nglnoza— —2Bgcosa (+ = D ey’ (2.1)
2
92¢ / ¢(r,t) — ((a, 1)
Plret = ~503 — (2Bgcosa + a) C+ 572 |s1n a—T)/2\
B (7, t) } dr, (2.2)

V/sin® (@ — 7)/2 + h2/4
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Ap=0ifr>1, p=clnr+0Q) ifr - +o0. (2.3)
Here ¢ = ¢(t) generally depends on ¢ and it is determined by the equality

i ¢(r,t)dr =0 (2.4)

—7
and equations (2.1) and (2.3). After simple computations it can be shown that
™

1
c=— cosT ((7,t) dT.
2

—T

Initial value should be specified for ¢ function at ¢ = 0:

(@, 0) = Go(a). (2.5)
Here the follovying dimensionless parameters were introduced: r = % is

the radius, h = % the thickness of the Hele-Shaw cell, Bm the magnetic
Bond number [2, 3]; Bg the gravitational Bond number; p = p(rei®,t) the
effective pressure in the magnetic liquid outside the bubble. The constant a
is determined as

a=1

_2Bm 2+/’T/2 cos 27 dr (2.6)
0

Th2 . |
h \/sin® 7 + h2/4
or by elliptic functions

o120 2 (2 ),

where
w/2 d /2
- | N
0 1—k2sin’ 7 0
are full elliptic integrals of the first and second kind respectively, £ =

V1+h2/4
Since coefficients of problem (2.1) — (2.5) do not depend explicitly on time,
we represent, the solution in the form
C = e)\tu’(a)7 p|r:1 = eAt(Pu)(a% (27)

where P is a linear operator. This leads us to the following spectral problem
in the set {2 of twice continuously differentiable 27 periodic functions:

. du 1 T (Pu)(1) — (Pu)(«)
—A\u = Bgsina T + 2Bgcosau — E(V.p.) /_ﬂ RNy m—T dr
_bm cosT u(T)dr, (2.8)
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2
(Pu)(a) = —% (a + 2Bgcos ) / m)dr
@ \/51n2(7—a/2+h2/4
Bm u(t) — u(w@)
— ————d 2.
onz | Tsmr—aya i 39
with the complementary condition
/ u(a)da = 0. (2.10)

Proof. Equation (2.9) follows from (2.2) and the representations (2.7). A
bounded harmonic function p(re'®) for » > 1 can be represented by the
Schwarz integral. Differentiating p we get

T r?)cos(a—7) = 2r »
g (,,,eia) — _l/ (1+ ) ( ) 2 p(e”) dT,

or ) x (1—2rcos(a—7')+r2)2

which can be transformed for » > 1 as

9 el s T (1+7%)cos(a—1T)—2r STV ()] dr
(') = ——( .p.>/ﬂ(I_QTCOS(Q_THﬂ)Q[p( )~ ple)] dr,

(2.11)
since

/” (14 72)cos (7 — ) —2r dr—0
(1 —2rcos (1 — )+ 12)2
The last equality can be obtained using the substitution £ = exp( (a — T))

and residue’s theory for complex integrals. Taking the limit » — 1+0in (2.11)
gives

) Ly [ RUO P,

orle=1  4r sin? (7 — «) /2

For unbounded harmonic functions satisfying (2.3) we must add a constant

0
cto 8_]9‘ _, in (2.1). This constant can be determined by integrating (2.1) and
T T=
using (2.4). This gives us (2.8). B

3. Numerical Solution of Problem (2.8) — (2.10)

In this section we present an efficient method for numerical solution of the
spectral problem (2.8) — (2.10). It is based on nonsaturated approximations
of eigenfunctions with the Chebyshev polynomials — analogous to how it was
done in [8] for the Mathieu functions. The method is different for even and
odd eigenfunctions u™ (a), u™ («), where

u(a) + u(—a)

a) = 5 ,
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Separation of even and odd parts of (2.8) — (2.10) gives two spectral problems:

+ . + _ +
—\ut = Bgsina du” +2Bgcosau® — (v.p.) / (Pu )(TQ) (Pu”)(a) dr
da 47 (sin® (1 — @) /2)
Bm g +
- — 1
o | cosTu™*(7)dr, (3.1)
2,,+
(Put)(a) = _du — (a4 2Bgcosa)u / T)dr
dOéQ 2h2 2
sin? (1 — a)/2 4+ h2/4
Bm [T u* (1) —u*(a)
— _— 2
2n2 [__ |sin(T —«)/2| dr, (32)
with the complementary condition
/ w*(0) da = 0. (3.3)

In the case of even eigenfunctions we use Chebyshev polynomials of the
first kind, but in the case of odd eigenfunctions, Chebyshev polynomials of the
second kind are used. As a result we obtain two eigenvalue and eigenvector
problems for N x N matrices AZ. The approximate solutions of (2.8) — (2.10)
can be represented by means of the solutions of spectral problems for these
matrices. In general, the accuracy of approximations increases when N is in-
creased.

Proposition 1. A computation of even eigenfunctions u* () leads to the fol-
lowing spectral problem

(AE—F/\JrEN)’LU:O, W= (wl,wg,...,wN)T, (34)
A} = Bg[{diag(z} — 1)}A + 2{diag 24 }] — G P,

Gy = gy [2Hf — {ding(s} — D}IAW)? ~ {ding ry} AV,

Py = {diag(xi - 1)}(A§\}))2 + {diag J;k}Ag\l,)

B
— {diag(a + 2Bg x1)} + —m{—4{diag oA

+ 1[ — {diag s} }A 1)]}
Here {diag p1} is a diagonal matrix with elements uy, £ =1,2,..., N,
(2k — D)m
=—cos——, k=1,2,...,N
ajk COb 2N 3 9 ) 7 9

N
st= Y (w;— )k, x5,0),
i=L#k
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1— &+ h2/24+ /(€ —2)? + (1 — 26)h2 + hij4]"/?

b(z,&,h) = , (3.5
(@6 h) (€22 + (1 —2&)h% T hi/4 (3:5)
A%) is the Chebyshev differentiation matrix with elements
T4 (1) . ) Ty(zg)
s AIN@TR) e s INTE)
T G TG TR T ey
Hj; and M}, are matrices with elements
1—z,xy x2 N2 -1
hio=—"37% ifj£k, ki = k :
N ey 7 R 41— 22) 3
m'ij = PD(zp,x5,0) — P(ag, xj, h), if j#Kk,
N
my,, = —P(zk, xp, h) — Z D(xy, x5,0)
J=1,j#k
Let At and w(m) = (w1 (m),...,wy(m))T,m =1,2,..., N, be the eigenval-

ues and corresponding eigenvectors of (3.4). Then the approximate eigenfunc-
tion u;! () corresponding to A, can be represented as follows

N
ut (arccos ) & ]; m, T = cosa, (3.6)

or
~ cos Na Z N+k )Sln[(2k B 1) /(2N)] ) (37)

cosa + cos[(2k —1)w/(2N)]

Proof. We introduce new variables © = cosa, & = cos7 in (3.1) — (3.3) for
At wt(«), and observe that rapidly convergent series for the eigenfunction
ut () according to {coska},k = 0,1,... transforms into series with respect
to {Tk(x)}. Denoting u™ (arccosx) = u(x) and after some elementary mani-
pulations, we obtain

—Mu(x) = Byg[(2? — 1)/ (x) + 2zu(z)]
. b Pw)(©) — (Pu)(@)](1 — x&)de
(v-p)— [1 N eI : (3.8)

The linear operator P is defined by the equality (Pu)(arccosz) = (Pu)(x).
Therefore,

(Pu)(z) = (2% — D" () + zu/(z) — (a + 2Bg x)u(z)

4 Bm b [u(§) — u(@)]@(x,€,0) — u(€)P(x, & h)
) i-e

e, (3.9)
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where @(x, £, h) is defined by (3.5). Since

1 dé— B
) e =l
we have
1 -

1 ~ ~ ~
[(Pw)(§) - (Puw)(@)A ~2f) .. [ Pu)E) — (Pu)(z)
o) [ e g

ey [ P = Pu)E) — (€~ 2)(Pu)()
e )L VI-@ (o) ’

£

¢.

On the other hand

" u(g) — ul) el
[ﬁé(%fvo)df— dzu’(z)

. /1 u(§) —u(x) — (£~ 2)u'(2) 4

-1 V1-=&2
Evaluating (3.8) — (3.9) at xj, which are zeroes of the Chebyshev polynomial
Tn(z), evaluating all derivatives according to the differentiation matrix A%),
and approximating integrals by the following quadrature formula

(2,€,0)d¢.

1 N
f(§) ™ ,
d§ ~ <= ) f(=cos[(2j — 1)m/(2N)]), (3.10)
/—1 V1-¢&2 N ;
we obtain the eigenvalue and eigenvector problem for matrix A7};. Each eigen-

value A} corresponds to the eigenvector (m), which have the components

wg(m) ~ u (arccoszy), k=1,...,N.

Therefore, formulas (3.6) and (3.7) are obtained as the Lagrange interpola-
tions. W

Proposition 2. A computation of odd eigenfunctions u™(«) leads to the fol-
lowing spectral problem for matrices

(A]_V—l—)\iEN)’U: 0, v= (Ul,vg,...,UN)T, (311)
Ay = By ({diag(z — 1)}AR + 3{diag 21}) — G Qw,

_ 1 _ 1, . 2 7 . 2
G = 1 [y — ldingtt — DHAR)? - (v - g A

Qu = {diag(z? — D}HAR)? + [3 — 4Bm/(3h%)]{diag 2} A
4Bm s
h? )} N+1

- {diag(ZBg zr+a—1— [—{diag s,;}Af,) + M;\z} .
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Here a is calculated from (2.6),

km
Zk COS(N+1), y 4y s

are zeroes of the Chebyshev polynomial of the second kind Uy (z), Ag\?) is

Chebyshev differentiation matrix with elements

U} (Zk) . 2 Uy (Zk)
82 = N if Ak, 6 = AR
A e ) A 7 =
H, and M, are matrices with elements
1—22 2k N%+2N +3
hyo=——2=, ifj#k, hy =— -
B PR e =) 3

my; = (1— z?)[?(zk,zj,O) —U(zk, 25, )], if j #k;

N
My, = —(1 = 2)W (2, 20, 0) — > (1= 2))W(2k, 25, h) .
J=1,j#k
Function ¥ is defined as
h? 1/2
(a6 h) = g(@,&h) |1 o€+ o +g(@, & h)]

where g(z,&,h) = [(€ —2)? + (1 — z€)h? 4 h* /4],

N
5, = Z (1- z?)(zj — 21)¥ (21, 25, 0).
=Lk
Here )\ and #(m) = (vi(m),...,vn(m))T,m =1,2,..., N, are the eigenval-

ues and corresponding eigenvectors of problem (3.11). The approximation of
eigenfunction u_ () can be represented as:

N
u, (arccosz) ~ /1 — 22 Un(z E

k=1

—, = , 3.12
@ — 20U (o8) x=cosa, (3.12)

where z;, = — cos[kn /(N + 1)], or

_sin(N +1a i D)N+k+Ly (m) sin[kr /(N + 1)] 313
- cosa + cos[km /(N + 1)] (3.13)
Proof. A proof of this case is analogous with the case of even eigenfunctions.
Only now for A~ and «~ () in (3.1), (3.2) we must use the substitutions of
variables

x=cosq, £ =cosT, u” (a)/sina = v(cos a). (3.14)
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Instead of the linear operator P we obtain the linear operator Q, which is de-
fined by equality (Pu™)(«) = V1 — 22(Qu)(z) and substitutions (3.14). Odd
eigenfunctions can be represented by rapidly convergent series with respect to
{sinka}, k=1,2,.... Since

sin[(n + 1)x]
sin x

=U,(x), n=0,1,...,

we obtain (3.12) — (3.13) by using substitutions in (3.1), (3.2) and evaluating
it for zeroes of the Chebyshev polynomial of the second kind Uy (z). B

It is difficult to estimate theoretically the error of the presented numerical
methods. Therefore, we judge about the errors by means of the following two
procedures:

1. The problem is solved with different N.

2. In the case Bg = 0, numerical results are compared with the exact
solution:

+

A=A, = -me(m), uf(a)=Creosma, u,(a)=Cysinma, (3.15)

m

where

9 4Bm ™/2 sin[(m + 1)7] sin[(m — 1)7)] dr
m)=m"—1+4+—11
#m) h? [ /0 \/sin27—|—h2/4

/2 .2
- / ST dT}, (3.16)
0

sinT

Cy and Cs are arbitrary constants. A validity of (3.15) and (3.16) can be
verified by substitution into (3.1) — (3.2).

4. Numerical Results

For the brevity, we present only numerical approximations of the eigenvalues of
the spectral problem (2.8) — (2.10). Numerical methods given in the previous
section allow us to compute the corresponding eigenfunctions also and then
to calculate the solution of (2.1) — (2.5) by manipulations typically used for
the Fourier method.

If Bm = Bg = 0 then it follows from (3.16) that
M= =—-m(m?—-1), m>1.

The presented numerical Degenerate Matrix (DM) method, which is based on
nonsaturated approximations of eigenfunctions with Chebyshev polynomials,
gives exact results in this case.

Positive eigenvalues are the most interesting for applications since the
instability in the interface dynamics of the rising gas bubble can develop
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Table 1. First eigenvalues of (2.8) — (2.10) for B¢ =0, Bm =5, h = 1, which
are obtained from (3.16) and by the DM method with N = 20 and N = 80.

N =20 N =80
m (3.16) AF A A A

0.00000 0.00000  0.00000 0.00000  0.00000
1.73746 1.73746  1.73746 1.73746  1.73746
-2.70893  -2.70893 -2.70893  -2.70893 -2.70893
-21.14669 -21.14690 -21.14720 -21.14669 -21.14669
-60.71987 -60.72118 -60.72271 -60.71988 -60.71988
6-128.11744 -128.12218 -128.12677 -128.11746 -128.11748
7-229.76718 -229.78019 -229.79090 -229.76723 -229.76727
8-371.95106 -371.98103 -372.00245 -371.95117 -371.95125
9 -560.86741 -560.96723 -560.87106 -560.86764 -560.86778
10 -802.66397 -802.77857 -802.84284 -802.66439 -802.66464

Tl W N

on corresponding eigenforms. On the other hand, each eigenvalue becomes
positive for sufficienly large value of Bm. This conclusion follows from (3.16).

In Table 1 we present the first ten eigenvalues of the problem (2.8) — (2.10),
Bg =0, Bm =5, h = 1, which are calculated by (3.16) and DM methods
with orders of the matrices N = 20, N = 80. As we see, the maximal relative
error of the eigenvalues calculated by DM method is of the order 10~* for
N =20 and 1076 for N = 80.

Table 2. First eigenvalues of (2.8) — (2.10) for B¢ = Bm =5, h = 1, which are
obtained by DM methods with N =20, N =40 and N = 80.

N =20 N =40 N =80
m AL A AL A AL A
1 1.02788 1.02783 1.02788 1.02787 1.02788 1.02788
2 10.70114 10.70112 10.70109 10.70109 10.70109 10.70109
3 -4.83183 -4.83191 -4.83179 -4.83180 -4.83179 -4.83179
4 -22.11347 -22.11388 -22.11321 -22.11323 -22.11319 -22.11319
5 -61.14637 -61.14801 -61.14504 -61.14514 -61.14496 -61.14496

6 -128.33369 -128.33839 -128.32910 -128.32939 -128.32882 -128.32884
7 -229.89494 -229.90576 -229.88254 -229.88321 -229.88179 -229.88183
8 -372.04665 -372.06819 -372.01824 -372.01959 -372.01655 -372.01663
9 -560.96721 -561.06589 -560.90932 -560.91173 -560.90589 -560.90603
10 -802.80129 -802.86569 -802.69314 -802.69715 -802.68676 -802.68701

In Table 2 we present the first ten eigenvalues of of the problem (2.8) —
(2.10), Bg = 5, Bm = 1, h = 1, which are calculated by the DM method
with orders of the matrices N =20, N =40 and N = 80. Comparing results
obtained for A and A~, we see that the accuracy for N = 20 and N = 80 is
the same as in the Table 1 for Bg = 0.
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AW N e

Bm

Figure 1. The curves of the first five eigenvalues: A = A(Bm) for
Bg = 3.

In Figure 1 the dependence of the first five eigenvalues on the magnetic
Bond number Bm is shown (here Bg = 3).

5. Conclusions

The mathematical model for the dynamics of the gas bubble rising in the
vertical Hele-Shaw cell filled with magnetic liquid is formulated as a spectral
problem for the linear integro-differential operator with periodic boundary
conditions. The obtained spectral problem is solved by the Degenerate Matri-
ces methods, which are constructed by using differentiation matrices for the
Lagrange projector with Chebyshev nodes. The accuracy of numerical cal-
culations can be controlled easily by varying the order N of differentiation
matrices. Results of numerical experiments are presented and they prove the
efficiency of the developed method.
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Burbulo pavir$iaus maZy %adinimy dinamika vertikalioje Hele-Shaw las-
teléje, uZpildytoje magnetiniu skyséiu veikiamo normaliniu magnetiniu
lauku

T. Cirulis, O. Lietuvietis, A. Cebers

Dujy burbulo, judanéio vertikalia Hele-Shaw lastele uZpildan¢iu magnetiniu skysciu,

pavirSiaus dinamikos matematinis modelis yra suformuluotas kaip spektrinis uz-
davinys tam tikram tiesiniam operatoriui su periodinémis krastinémis salygomis.

Pastarasis uZzdavinys yra iSsprestas skaitmeniskai i§sigimstan¢iy matricy metodu.



