
���������	�
�����
�������������	�����
����������������������� �
!"�#��$��%�'&)(�$��+*��	,�-#.0/	121	3�.546�����	�

209–222
c© 2004 Technika ISSN 1392-6292

A REVIEW OF NUMERICAL ASYMPTOTIC
AVERAGING FOR WEAKLY NONLINEAR
HYPERBOLIC WAVES 1

A. KRYLOVAS and R. ČIEGIS
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Abstract. We present an overview of averaging method for solving weakly nonlinear hyper-
bolic systems. An asymptotic solution is constructed, which is uniformly valid in the "large"
domain of variables t + |x| ∼ O(ε−1). Using this method we obtain the averaged system,
which disintegrates into independent equations for the nonresonant systems. A scheme for
theoretical justification of such algorithms is given and examples are presented. The averaged
systems with periodic solutions are investigated for the following problems of mathematical
physics: shallow water waves, gas dynamics and elastic waves. In the resonant case the ave-
raged systems must be solved numerically. They are approximated by the finite difference
schemes and the results of numerical experiments are presented.

Key words: small parameter method, perturbations, hyperbolic systems, averaging, reso-
nance, finite difference schemes, numerical solution, gas dynamics, shallow water, elastic
waves

1. Introduction

We consider a hyperbolic system of weakly nonlinear differential equations with a
small positive parameter ε:

Ut +A(U)Ux = εB(t, x, εt, εx, U, Ux, Uxx, Uxxx) , (1.1)

where
U(t, x; ε) = (u1, u2, . . . , un)

T
, A(U) = ‖aij(U)‖n×n .

Let define a constant solution U0, which satisfies the equation

1 This work was supported by by the Lithuanian State Science and Studies Foundation (V-27)
within the framework of the Eureka project OPTPAPER E!-2623, E-2002.02.27



210 A. Krylovas, R. Čiegis

B(t, x, εt, εx, U0, 0, 0, 0) = 0.

We assume that all coefficients in (1.1) are sufficiently smooth functions. Our
goal is to find a small amplitude solution

U(t, x; ε) = U0 + εU1(t, x; ε).

The system (1.1) must be solved in the "large" domain:

(t, x) ∈
[

0,
τ0
ε

]

×

[

−
ξ0
ε
,
ξ0
ε

]

−→
ε→0

[0,+∞) ×R.

For small ε the problem of solving (1.1) numerically is a very difficult task. Asymp-
totic methods are used for the analysis of such problems. Often (but not always) the
asymptotic solution satisfies some simple equations. If a problem for asymptotic so-
lution is still complicated, then a combination of numerical and asymptotic methods
can be used (see [1]).

In this article we present an overview of new asymptotic methods for solution
of problems with a small parameter. Recent developments in theoretical analysis, as
well as numerical algorithms are discussed. We present numerical algorithms for
solving the averaged systems which are obtained applying the asymptotic avera-
ging method for the system (1.1) with periodic initial conditions. Three examples
of applied problems are investigated, including resonant interaction of shallow water
waves, one dimensional waves of gas dynamics and resonances in elastic waves. The
theoretical aspects of the asymptotic analysis of these examples where considered in
our papers [16, 17, 18, 19]. In this article we focus our attention on the investigation
of finite difference schemes for solving the averaged systems of equations.

Note, that analogous integro-differential systems were also investigated in [21,
22, 23]. However numerical algorithms were not considered in these papers and no
computational examples were given.

2. The Method of Averaging

Let assume that the problem is hyperbolic in neighborhood ofU0, thus we can rewrite
the system using the well know Riemann invariants

Λ = diag{λ1, λ2, . . . , λn} = RA(U0)R
−1 ,

V (t, x; ε) = RU1(t, x; ε) = (v1, v2, . . . , vn) ,

then we get:

Vt + ΛVx = εF (t, x, εt, εx, V, Vx, Vxx, Vxxx) + o(ε) . (2.1)

If the parameter ε = 0, then system (2.1) disintegrates into independent equa-
tions, which describe linear waves vj(x − λj t). If ε 6= 0 and t + |x| ∼ ε−1, then
the exact solution of (2.1) is not close to these simple waves. For example, the initial
value problem
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{

vt + vx = εvvx ,

v(0, x) = sin(x)

describes a nonlinear wave, which can be obtained from the implicit relation

v = sin(x− t− εtv) .

For εt = O(1) the solution v(t, x; ε) can not be approximated by a simple wave
sin(x − t) and thus it is a nontrivial task to construct an asymptotic approximation,
which is uniformly valid in the region t+ |x| = O(ε−1).

The key idea of all asymptotic methods for solving problem (2.1) (or (1.1)) is
to introduce new slow variables, e.g., τ = εt, ξ = εx, and to define explicitly the
dependence on fast variables (principle of multiple scales, see [8, 24]). For example
in [28] the solution of the system (2.1) is obtained in the following form

uj = ψj(η, ζj), η = ε1+at, ζj = εa(x− λjt+ ε1−aϕ(t, x)) .

Substituting these expressions into (1.1), using the Taylor expansion with respect to
ε, and collecting equal powers of εk, we get equations for unknown functionsψj . The
Burgers and Korteweg – de Vries equations are examples of such problems. We will
show, that these asymptotics are not uniformly valid in the region t+ |x| = O(ε−1)
for the systems with periodic initial conditions in the case of resonant interaction of
waves, therefore some modifications of such algorithms should be proposed.

2.1. Formulation of the integro-differential system

Our method of asymptotic integration is based on principles of multiple scales and
averaging. We introduce slow variables τ = εt, ξ = εx and fast characteristic vari-
ables yj = x− λjt, j = 1, 2, . . . , n. Our goal is to construct the asymptotic solution
in the following form

vj(t, x; ε) = Vj(τ, ξ, yj) + o(1), j = 1, 2, . . . , n, ε→ 0 .

The basic idea of our method is the special averaging along characteristics:

Mj [g(τ, ξ, t, x, y1, y2, . . . , yn)] ≡ lim
T→+∞

1

T

∫ T

0

g
(

τ, ξ, s, yj + λjs, (2.2)

yj + (λj − λ1)s, . . . , yj + (λj − λn)s
)

ds .

We also will use the following notation

< g >j (τ, ξ, yj) = Mj [g(τ, ξ, t, x, y1, y2, . . . , yn)] .

The asymptotic solution satisfies the averaged system:

∂Vj

∂τ
+ λj

∂Vj

∂ξ
= Mj [fj(t, x, τ, ξ, V1, V2, . . . , Vn, . . .)] (2.3)

with periodic initial conditions
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Vj(0, ξ, yj) = voj(ξ, yj) = v0j(ξ, yj + 2π), j = 1, 2, . . . , n .

Our method also can be used for the non-periodic solutions, e.g., for almost pe-
riodic functions or for functions vj(τ, ξ, yj), which satisfy conditions

lim
yj→±∞

v0(τ, ξ, yj) = 0 .

In the 2π-periodic case with integer coefficients λ1, λ2, . . ., λn the operator (2.2) can
be written in the simpler form:

< g >j=
1

2π

∫ 2π

0

g(τ, ξ, s, yj + λjs, yj + (λj − λ1)s, . . . , yj + (λj − λn)s) ds.

After averaging each function depends only on one fast characteristic indepen-
dent variable yj . The new feature of this method is that the averaging operator
is applied for functions, which themselves are solutions of the obtained averaged
equations. Thus we get integro-differential problems (see [12], where our averaging
scheme is compared with the other averaging methods). This idea was presented in
[27] and developed in papers of the first author of this article [9, 10, 11] (see also
[2, 5, 21, 22, 23] and a survey of mathematical results in [7]). The aspects of mathe-
matical substantiation of our method were considered in [13, 14, 15].

The method of [21] is very close to the method of averaging along characteristics
from [9, 27] but only quadratic nonlinearities were considered in [21]. A mathematic
substantiation of the asymptotic method and especially the construction of higher
order terms in the asymptotic series leads to the problem of small denominators:

δjl = l1(λj − λ1) + l2(λj − λ2) + · · · + ln(λj − λn) ,

where l = (l1, l2, . . . , ln) is a vector with integer components. In [27] all com-
binations λj−λi

λj−λk
were rational numbers and therefore δjl were equal to zero or

|δjl| > const. In a general case

min
||l||=L, δjl 6=0

|δjl| = o(1), L→ ∞ ,

therefore numbers λ1, λ2, . . ., λn, satisfying the following condition

min
‖l‖=L, δjl 6=0

|δjl| >
c

L r ,

where c and r are some positive constants, were considered in [9] (see also [6]). The
properties of

min
‖l‖=L, δjl 6=0

|δjl|

were studied in [10], here small perturbations of numbers λj = λj0 + λj1(ε) were
investigated. In [21] the conditions of resonant interaction of waves were given only
for quadratic nonlinearities, more general relations of resonance δjl = 0 were pro-
posed in [11].
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2.2. Numerical algorithms

The integro-differential system (2.3), must be solved numerically in the compact
domain of variables:

(τ, ξ, y1, y2, . . . , yn) ∈ [0, τ0] × [−ξ0, ξ0] × [0, 2π]n .

It is important to note that the averaged system is solved only once and the obtained
solution later can be used for all ε.

We always try to split the operators Mj into a sum of two operators

Mj(V1, . . . , Vn) = LjVj +Nj(V1, . . . , Vn)

and LjVj is included into the differential part of (2.3). For many applications we get
systems of nonlinear differential equations such that efficient numerical methods al-
ready exist for solving this type of equations. In some cases even numerical software
is available and this fact provides a possibility to tackle real-life problems at small
programming cost. The remaining integral part of the integro-differential system is
approximated explicitly. A fixed-point iteration method can be used to improve the
stability of the obtained numerical algorithm.

3. Theoretical Justification of the Method

In this section we describe the main steps of the theoretical analysis. First we show
that the averaging operator Mj [g(τ, ξ, t, x)] takes out secular terms, which were ob-
tained after integration of the equation

∂u

∂t
+ λj

∂u

∂x
= εg(τ, ξ, t, x)

along the characteristic x− λjt = const. Thus the following equality

lim
ε→0

ε

∫ t

0

(

g −M [g]
)

(t = s, x = x− λjt+ λjs) ds = 0 (3.1)

should be valid uniformly in |x| + t 6
c0
ε

.

Let us denote

F (ε) = max
j = 1, 2, . . . , n
τ + ξ ∈ [−c0, c0]
t+ |x| ∈ [0, c0/ε]

ε

∫ t

0

(fj −M [fj ]) ds. (3.2)

Here fj are functions from (2.1). Let us assume that in (1.1) the right-hand side
vector B = B(U) =

(

b1(U), . . . , bn(U)
)

and all functions bj(U) are continuously
differentiable functions. If the averaged system satisfies condition (3.1), i.e.

F (ε) = o(1), ε→ 0,
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then a solution of system (1.1) is approximated uniformly in the region |x|+ t 6
c0
ε

by a solution of the averaged system, i.e.:

uj(t, x; ε) = vj(τ, ξ, yj) +O
(

F (ε)
)

.

Secondly, we should prove that averaged system (2.1) has a solution, which sa-
tisfies condition (3.1). In case of periodical initial conditions it is sufficient to note
the following property of operatorMj .

Let us denote by C1
2π([−c0, c0] × [0, 2π]) a class of 2π – periodical functions

u(τ, y), which have a continuous derivative with respect to y. Let assume that

fj(v1, v2, . . . , vn) ∈ C1(Rn), vj(τ, yj) ∈ C1
2π([−c0, c0] × [0, 2π]) .

Then we obtain, that

Mj [fj(v1, . . . , vn)] = gj(τ, yj) ∈ C1
2π([−c0, c0] × [0, 2π]) .

We see that all averaged functions preserve properties of continuity and periodicity,
thus we can prove the existence and uniqueness of the solution of averaged system
(2.1) by using the standard Picard method.

The proposed averaging method can be used not only in case of periodical func-
tions. This scheme can be applied to construct almost periodical asymptotical ap-
proximations or to consider functions decreasing at infinity

lim
yj→±∞

v0(τ, ξ, yj) = 0 .

The other generalization of the method is obtained for a case when the averaging
operator is nonuniform with respect to the arguments of functions:

vj(τ, ξ, yj) ≈ v+

0j(τ, ξ, yj), yj → +∞,

vj(τ, ξ, yj) ≈ v−
0j(τ, ξ, yj), yj → −∞.

If functions v+

0
, v−

0
are periodical or almost periodical with respect to yj or de-

creasing at infinity, then averaging operator can be applied in each region (t, x) ∈
λit < x < λi+1t. Therefore we can consider not only the initial value problem, but
also to formulate initial – boundary value problem in t = 0, x > 0 and x = 0, t > 0
(see [13, 14, 15]).

4. Shallow Water Equations

4.1. Averaged system

In this section we consider the system of shallow water equations:
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(

Z
W

)

t

+

(

0 1
1 0

)(

Z
W

)

x

(4.1)

= −ε

(

1

3
Wxxx + (H(x)W )x + (ZW )x

WWx

)

.

Here Z denotes the water surface level, W denotes the horizontal velocity of the
fluid, L∗ is some typical horizontal size, H∗ is some typical vertical size, ε =
(

H∗

L∗

)2

<< 1, H = 1 + εh(x) is the bottom equation.

The asymptotic solution of (4.1) satisfies the averaged system of two equations:


















∂V +

∂τ
+

3

2
V +

∂V +

∂y+
+

1

6

∂3V +

∂y+3
= −

1

2

∂

∂y+
〈H(x)V −〉

+
,

∂V −

∂τ
−

3

2
V − ∂V

−

∂y−
−

1

6

∂3V −

∂y−3
=

1

2

∂

∂y−
〈H(x)V +〉− .

(4.2)

Here we use notation

W = v+ − v−, Z = v+ + v−, y± = x∓ t ,

and V ± are approximations of v±:

v±(t, x; ε) = V ±(τ, ξ, y±) + o(1) .

In the nonresonant case the expressions on the right hand side of (4.2) are equal
to zero and we get two independent Korteweg de Vries equations. We consider the
resonant interaction of 2π-periodic waves:



















































V +
τ +

3

2
V +V +

y+ +
1

6
V +

y+y+y+

= −
1

4π

∂

∂y+

2π
∫

0

H(y+ + s)V −(τ, y+ + 2s) ds,

V −
τ −

3

2
V −V −

y− −
1

6
V −

y−y−y−

=
1

4π

∂

∂y−

2π
∫

0

H(y− − s)V +(τ, y− − 2s) ds.

(4.3)

4.2. Finite difference scheme

We define the space ωh and time ωτ meshes and assume that the space mesh size h
and time mesh size τ are uniform. We denote by vn

j = v(tn, yj) a discrete function
defined on ωh × ωτ . The following common notations of difference derivatives are
used in our paper (see, e.g., [25]):

vτ =
vn+1 − vn

τ
, vȳ =

vj − vj−1

h
,

vy =
vj+1 − vj

h
, v◦

y
=
vj+1 − vj−1

2h
.
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The finite difference approximation of system (4.3) is defined as follows (see also
[4]):

Pτ = −
1

6

(

Pn+1 + Pn

2

)

ȳy
◦
y

−
3

4

(

(

Pn+1
)2

+ Pn+1Pn + (Pn)2

3

)

◦
y

−
F+

(

Mn+1,Mn, j + 1
)

− F+

(

Mn+1,Mn, j − 1
)

4h
,

Mτ =
1

6

(

Mn+1 +Mn

2

)

ȳy
◦
y

+
3

4

(

(

Mn+1
)2

+Mn+1Mn + (Mn)
2

3

)

◦
y

+
F−

(

Pn+1, Pn, j + 1
)

− F−

(

Pn+1, Pn, j − 1
)

4h
,

where the integrals are approximated as follows:

F+

(

Mn+1,Mn, j
)

=
1

2π

N
∑

i=1

H(yj − ih)
Mn+1

j−2i +Mn
j−2i

2
h ,

F−

(

Pn+1, Pn, j
)

=
1

2π

N
∑

i=1

H(yj + ih)
Pn+1

j+2i + Pn
j+2i

2
h .

Here P and M approximate V +, V −, respectively.

The approximation error of this finite finite difference scheme is estimated as
O
(

τ2 + h2
)

. Numerical methods for solving the Korteweg-de Vries equation are
investigated in [3, 26]. A special formula for averaging in time is used in order to
satisfy some conservation properties, which are valid for the solution of the differen-
tial problem.

4.3. Linear dispersion problem

In this section we consider a linear problem






Zt + (HW )x = −
ε

3
Wxxx,

Wt + Zx = 0.
(4.4)

First we will prove that system (4.4) defines an ill-posed problem. Let consider the
case H = 1. After simple computations we get the equation for W :

Wtt −Wxx =
ε

3
Wxxxx. (4.5)

Considering the k-th Fourier mode we get that the solution of (4.5) is unstable for
k2ε ≥ 3. In order to define a stable solution we use the following regularized problem







Zt + (HW )x = −
ε

3
Wxxx −

ε2

20
Wxxxxx,

Wt + Zx = 0.

(4.6)
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We note that the averaged system (2.3) also gives a nontrivial regularization of
this ill-posed problem.

Extensive computational results are presented in [16, 18].

5. One Dimensional Gas Dynamics Equations

5.1. Averaged system

Let ρ denotes the gas density, u is the velocity and θ is the temperature. We introduce
a vector U = (ρ, u, θ)T and matrixes

A =













u ρ 0

Rθ

ρ
u R

0
Rθ

cv

u

cvρ













, B =
1

ρ















0

γ
∂2u

∂x2

κ

cv

∂2θ

∂x2
+
γ

cv

(

∂u

∂x

)2















, (5.1)

where cv is the specific heat at constant volume,R is the gas constant for a politropic
ideal gas:

p = Rρθ ,

κ and γ are small viscosity and heat conduction coefficients (i.e. ∼ O(ε) as ε → 0).
Then the gas dynamics problem can be formulated as system (1.1).

In this case the averaged system (2.3) is described by the linear Burgers equations
coupled through integral terms:






































∂V1

∂τ
− f111V1

∂V1

∂y1
− f11

∂2V1

∂y1
2

=

〈

f123V2

∂V3

∂y3
+ f132V3

∂V2

∂y2

〉

1

,

∂V2

∂τ
− f22

∂2V2

∂y2
2

= 0 ,

∂V3

∂τ
− f333V3

∂V3

∂y3
− f33

∂2V3

∂y3
2

=

〈

f321V2

∂V1

∂y1
+ +f312V1

∂V2

∂y2

〉

3

.

(5.2)

The explicit expressions for coefficients in (5.2) are presented in [17].

5.2. Finite difference scheme

The averaged system (5.2) is approximated by the following finite difference scheme:


















V1,τ = f11V
n+1

1,ȳy + 1

2
f111 (V n+1

1 )2◦
y

+ f123 S1(V2, V3) + f132 S1(V3, V2) ,

V2,τ = f22V
n+1

2,ȳy ,

V3,τ = f33V
n+1

3,ȳy + 1

2
f333 (V n+1

3 )2◦
y

+ f312 S2(V1, V2) + f321 S2(V2, V1) ,

where the integrals are approximated as follows:
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Si(Vj , Vk) =
1

4π

N
∑

l=1

(

Vk

(

yi + ((λi − λk)l + 1)h
)

− Vk

(

yi + ((λi − λk)l − 1)h
)

)

Vj

(

yi + ((λi − λj)l − 1)h
)

.

The approximation error is given by O(τ + h2).

5.3. Numerical experiments

In this section we present results of numerical experiments. The following coeffi-
cients

cv = 1, R = 1, ν = 1, κ = 1

are used in all tests. Initial conditions are selected as

v01(x) = cosx, v02(x) = sin 2x, v03(x) = cosx.

Figure 1 shows the solution of system (5.1) and the asymptotic solution at t =
1

ε
for

two different values of the small parameter ε. We present graphics of the density and
velocity functions.

0 1 2 3 4 5 6
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15 ρ
ρ

asympt

U
U

asympt

0 1 2 3 4 5 6
0.9

0.95

1

1.05

1.1
ρ
ρ

asympt

U
U

asympt

ε = 0.1 ε = 0.05

Figure 1. Asymptotic and exact solutions of Euler problem (5.1) for t =
1

ε
.

6. Elastic Waves Equations

6.1. Averaged system

We consider a problem of wave propagation in two dimensional elastic materials
and assume that displacements do not depend on the y coordinate. Restricting our
attention to the axial displacements along x and y directions, we have equations
[20]:
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{

ρutt = σx ,

ρvtt = τx ,

where ρ is the density of material, u and v denote the displacements along two direc-
tions, σ and τ ate longitudinal normal and shear stresses along the x-axes. The linear
wave equation can be obtained from this equations if we use assumptions

σ = (λ+ 2µ)ux, τ = µvx, (6.1)

where λ and µ are the Lamé coefficients. The equations (6.1) are obtained by using
the simple approximation for the full energy of the system

F ≈ F0 + F11u
2
x + F22v

2
x,

then σ = ∂F
∂ux

and τ = ∂F
∂vx

(see [20]). In order to get high order approximations we
use more terms in a Taylor series of F (see [24]):







σ = (λ+ 2µ)ux + 4ρ(a1u
2
x + a2uxvx + a3v

2
x),

τ = µvx + 4ρ(b1u
2
x + b2uxvx + abv

2
x).

Let
P = ux, Q = vx, R = ut, S = vt, U = (P,Q,R, S)T .

Then we get the system (1.1) with

A(U) = −















0 0 1 0
0 0 0 1

λ+ 2µ

ρ
0 0 0

0
µ

ρ
0 0















, B = 4
∂

∂x









0
0

a1P
2 + a2PQ+ a3Q

2

b1P
2 + b2PQ+ b3Q

2









.

In this case the averaged system is given by the system of four equations:























































P±
τ −

2a1

c2p
P±P±

y± = −
2a3

c2s
My±

[

∂

∂x
(S+S−)

]

∓
a2

cscp
My±

[

∂

∂x
(P∓(S+ − S−))

]

,

S±
τ −

2b3
c2s
S±S±

z± = −
2b1
c2p
Mz±

[

∂

∂x
(P+P−)

]

∓
b2
cscp

Mz±

[

∂

∂x
(S∓(P+ − P−))

]

.

(6.2)

Here we use notation
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y± = x∓ cpt, z± = x∓ cst, cp =

√

λ+ 2µ

ρ
, cs =

√

µ

ρ
,

P± = R± cpP, S± = S ± csQ.

In the nonresonant case we get four independent nonlinear Burgers equations.

6.2. Finite difference scheme

The integrals on the right-hand side of (6.2) are approximated by the trapezoidal
rule, the derivatives of functions are computed using the central difference approxi-
mations.

The upwind method is used to approximate the Burgers equation

Un+1

j = Un
j + µ

τ

h

(

F (Un
j , U

n
j+1) − F (Un

j−1, U
n
j )
)

,

here F is the numerical flux function

F (v, w) =

{

0.5w2 if 0 6 w 6 v or (v < w and v + w > 0) ,

0.5v2 else.

Thus we get the explicit approximation for the system of integro-differential equa-
tions. We have used implicit approximations in two previous examples. Now our
goal is to show that explicit schemes also can be used to solve averaged equations, if
such approximations are efficient for solving the differential part of the system (i.e.
the Burgers equations for this example).

6.3. Numerical experiments

The results of numerical experiments are presented in Fig. 2. Here we present only

one wave p+ and its asymptotic approximation P+ for t =
1

ε
, ε = 0.01.

We see that the averaged system approximates uniformly the differential problem

till time moments t = O
(1

ε

)

and the effect of resonant interaction of waves is also

identified correctly.

7. Conclusions

For weakly nonlinear hyperbolic systems with internal resonances the analysis can
be done using the combination of numerical and asymptotic methods. The proposed
method for constructing asymptotic solution of weakly nonlinear hyperbolic system
can be used in nonresonant and in resonant cases. This solution is uniformly valid
in large domain 0 6 t 6 O(ε−1). The averaging of system (2.1) reduces it to the
integro-differential system of averaged equations (2.2). The averaged problem gives
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Figure 2. Asymptotic and exact solutions of P
+ wave for ε = 0.01.

a system of integro-differential equations. However, in the nonresonant case the so-
lution can be obtained as independent nonlinear waves. In the resonant case the so-
lution is a superposition of waves, which satisfy the averaged system of nonlinear
integro-differential equations. Such systems are solved numerically in the compact
domain of variables (τ, x) ∈ [0, τ0] × [0, 2π]).
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Silpnai netiesinių hiperbolinių sistemų skaitinio asimptotinio vidurkinimo apžvalga

A. Krylovas, R. Čiegis

Darbe nagrinėjamas silpnai netiesinių hiperbolinių sistemų ilgųjų bangų asimptotinis spren-
dinys. Si ūlomas jo konstravimo metodas, pagrįstas vidurkinimu bei dviejų mastelių principu.
Užrašytos skirtuminės schemos suvidurkintų lygčių sistemoms spręsti. Ištirti trys periodinių
asimptotinių sprendinių pavyzdžiai: sekliųjų vandenų modelis, dujų dinamikos lygtys bei tam-
priųjų bangų sąveika.


