
 !"#$%&%'()*"#$%+,-."/01 2345/'(0#0#+,6%72"/6/589:6;"/0<=4>?+@>
AB3C0#D%)E'FGHI:D%)JK.'(L2M/NOM(PQP(R4NSTU".74'(>

149–168

c© 2004 Technika ISSN 1392-6292

AN IMPROVED HYBRID OPTIMIZATION

ALGORITHM FOR THE QUADRATIC

ASSIGNMENT PROBLEM

A. MISEVIČIUS

Kaunas University of Technology, Department of Practical Informatics

Studentu̧ St. 50–400a, 3031 Kaunas, Lithuania

E-mail: V;WXY;Z([4\(V/\]^_`abQ\(cXdSb(e;bfgC\(h(i.jXgk^lWmj

Received November 20, 2003; revised January 29, 2004

Abstract. In this paper, we present an improved hybrid optimization algorithm, which was

applied to the hard combinatorial optimization problem, the quadratic assignment problem

(QAP). This is an extended version of the earlier hybrid heuristic approach proposed by the

author. The new algorithm is distinguished for the further exploitation of the idea of hybridiza-

tion of the well-known efficient heuristic algorithms, namely, simulated annealing (SA) and
tabu search (TS). The important feature of our algorithm is the so-called "cold restart mech-
anism", which is used in order to avoid a possible "stagnation" of the search. This strategy
resulted in very good solutions obtained during simulations with a number of the QAP in-
stances (test data). These solutions show that the proposed algorithm outperforms both the
"pure" SA/TS algorithms and the earlier author’s combined SA and TS algorithm.

Key words: hybrid optimization, simulated annealing, tabu search, quadratic assignment
problem, simulation

1. Introduction

The quadratic assignment problem (QAP) is the famous combinatorial optimization

problem. It is formulated as follows. Let two matrices A = (aij)n×n and B =
(bkl)n×n and the set Π of permutations of the integers from 1 to n be given. Find a

permutation π =
(

π(1), π(2), . . . , π(n)
)

∈ Π that minimizes

z(π) =

n
∑

i=1

n
∑

j=1

aijbπ(i)π(j). (1.1)

One of the important applications of the QAP is computer-aided design (CAD),

namely, the placement of electronic components [23, 26, 40]. In this context, the en-

tries of the matrix A = (aij)n×n can be interpreted as the numbers of connections



150 A. Misevičius

(nets) between components. The entries of the matrix B = (bkl)n×n represent dis-

tances between locations (positions). The permutation π =
(

π(1), π(2), . . . , π(n)
)

corresponds to a certain placement of components to locations (π(i) denotes the lo-

cation that component i is placed into). Thus, z, or more precisely 1
2z, can be treated

as an estimation of total wire length obtained when n components are placed into n
locations (see Fig. 1). Description of the other applications of the QAP one can be

found in [7, 8, 10].

Figure 1. Graphical interpretation of the quadratic assignment problem. For
given matrices A and B the permutation corresponding to optimal assignment
is as follows:(2,3,1,4). The connection length that corresponds this assignment
is equal to 12.

It has been proved that the QAP (like many other combinatorial optimization

problems) is NP-hard [38]. For example, QAPs of size n > 36 are not, to this date,

practically solvable in terms of obtaining exact solutions. Therefore, heuristic tech-

niques have to be used for solving medium- and large-scale QAPs (see, for exam-

ple, [14, 15, 16, 29, 32, 41]; for a more detailed list of heuristics for the QAP, see

[8, 10, 37]).

First we introduce some basic definitions related to the combinatorial (discrete)

optimization. So, let S be a set of solutions of a combinatorial optimization problem

with an objective function f : S → R1 (without loss of generality, we assume that

f seeks a global minimum). Furthermore, let N : S → 2S be a neighbourhood

function which defines for each s ∈ S a set N(s) ⊆ S – a set of neighbouring

solutions of s. Each neighbouring solution s′ ∈ N(s) can be reached directly from

the current solution s by an operation, which is called a move. Usually, the move

follows the objective function evaluation which is called a trial. An iteration is said

to be performed when |N(s)| trials are done.

Regarding the QAP, Π = {π|π = (π(1), π(2), . . . , π(n))}, where |Π | = n!,
corresponds to S, and z (defined according to (1.1)) plays a role of the objective

function. In the case of the QAP, the commonly used neighbourhood function is so-

called 2-exchange (pairwise exchange) function N2 which can be defined as follows:

N2(π) = {π′|π′ ∈ Π, ρ(π, π′) = 2}, (1.2)



An improved hybrid optimization algorithm for the QAP 151

where π ∈ Π and ρ(π, π′) is a "distance" between the current permutation π and the

neighbouring one π′ :

ρ(π, π′) =

n
∑

i=1

sgn|π(i) − π′(i)| .

In this case, a move from the permutation π to the permutation π′ can formally be

defined by using a 2-way perturbation operator

pij : Π → Π
(

i, j = 1, 2, . . . , n; i 6= j
)

,

which exchanges ith and jth elements in the current permutation (notation π′ =
π ⊕ pij means that π′ is obtained from π by applying the perturbation pij). For a

permutation π and a perturbation pij , it is more efficient to compute ∆z(π, i, j) =
z(π ⊕ pij)− z(π) than z(π ⊕ pij) : the direct computation of z(π ⊕ pij) needs time

O(n2), whereas ∆z(π, i, j) can be calculated in O(n) operations:

∆z (π, i, j) = (aij − aji)
(

bπ(j)π(i) − bπ(i)π(j)

)

+
∑

k=1,k 6=i,j

[

(aik − ajk)

×
(

bπ(j)π(k) − bπ(i)π(k)

)

+ (aki − akj)
(

bπ(k)π(j) − bπ(k)π(i)

)]

, (1.3)

where aii(bii) = const, i = 1, 2, . . . , n. Moreover, for two consecutive permuta-

tions π and π′ = π ⊕ puv, if all the values ∆z(π, i, j) have been stored (i.e. already

calculated in previous iteration), then the values

∆z(π′, i, j) = z(π′ ⊕ pij − z(π′), i 6= u, v, j 6= (u, v)

can be computed in time O(1) [42]:

∆z (π′, i, j) = ∆z (π, i, j) + (aiu − aiv + ajv − aju)(bπ(i)π(u)

− bπ(i)π(v) + bπ(j)π(v) − bπ(j)π(u)) + (aui − avi + avj − auj)

(bπ(u)π(i) − bπ(v)π(i) + bπ(v)π(j) − bπ(u)π(j)) . (1.4)

However, if i = u or i = v or j = u or j = v, then the formula (1.3) should be

applied.

Two main alternatives exist when exploring the neighbouring solutions. First,

choose the next potential solution at random. Second, explore the neighbourhood

in a systematic way. In the case of the 2-exchange neighbourhood function N2, the

order of search can be established by a sequence {pi(k)j(k)}. The indices i(k), j(k)

are easily determined by the following expression

{

i(k) = iif(j(k−1) < n, i(k−1), iif(j(k−1) < n − 1, i(k−1) + 1, 1)),

j(k) = iif(j(k−1) < n, j(k−1) + 1, i(k) + 1),

where

iif(x, y1, y2) =

{

y1, if x is true

y2, otherwise;



152 A. Misevičius

k is the current trial number (k = 1, 2, . . .); i(k), j(k) are new indices; i(k−1), j(k−1)

are old indices (i(0) = 1, j(0) = 1), K = |N2| = n(n − 1)/2 trials are needed in

order to explore all the solutions of N2.

The remaining part of this paper is organized as follows. In Section 2 hybrid

optimization strategies (paradigms) are outlined, whereas in Sections 3, 4 we survey

the simulated annealing (SA) and tabu search (TS) techniques, which were used in

our hybrid approach. Section 5 describes an improved hybrid optimization algorithm

for the quadratic assignment problem. The results of simulations are presented in

Section 6. Finally, Section 7 completes the paper with concluding remarks.

2. Hybrid optimization strategies

Over the last years, hybrid optimization algorithms have become very popular among

researchers in combinatorial optimization. First of all, this is due to promising re-

sults obtained by using hybrid (combined) approaches. Combinations of both single-

solution algorithms (such as greedy heuristic search, simulated annealing, tabu

search) and population-based algorithms (such as genetic, evolutionary algorithms)

have been proven to be extremely efficient for many combinatorial optimization

problems [17, 19, 36]. Different hybrid meta-heuristics, i.e. paradigms of hybridiza-

tion of heuristics can be proposed [43]. Further, two simple paradigms are outlined

very roughly: first, a sequential hybridization, second, an embedded hybridization.

Without loss of generality, we discuss the hybrid scheme that consists of two heuris-

tics only.

procedure sequential_hybridization /* H1 + H2 + . . . */
. . .
apply heuristicH1;
apply heuristicH2;
. . .

end

Figure 2. Pseudo-code for the framework of the sequential hybrid meta-heuristic.

So, in the first case, the self-contained heuristics H1 and H2 are executed in a

sequence (one after other), the heuristic H2 using the output of the heuristic H1 as

its input (i.e. the heuristics act in a pipeline fashion). Here, H2 can also be thought

of as a "post-analysis" procedure which is applied to the solution found by H1. For

example, a greedy (or more sophisticated) heuristic can be used to generate good

initial solutions for the genetic/evolutionary algorithm [19]. In the second variant,

the heuristic H2 is embedded into heuristic H1 (i.e. heuristics act as cooperating

agents). For example, deterministic local search technique may be embedded into

simulated annealing (as proposed in [31]) or genetic algorithm (see, for example,

[12, 17, 19]). For a more formal presentation of the above paradigms, see Figures

2,3.



An improved hybrid optimization algorithm for the QAP 153

procedure embedded_hybridization /*H1(H2(. . .))∗/
. . .
apply heuristicH1;
. . .

end

procedureH1

. . .
apply heuristicH2;
. . .

end

Figure 3. Pseudo-code for the framework of the embedded hybrid meta-heuristic.

However, disposing of these two hybridization paradigms only may be insuffi-

cient for complex combinatorial problems, like the quadratic assignment problem.

These problems can be seen as highly "discontinuous": if one "walks" in a ficti-

tious solution space, the qualities of the solutions can differ dramatically, i.e. the

"landscapes" of these problems are very rugged. Another distinguishing feature is

a presence of a big number of local optima, which are often spread over the whole

solution space (see Figure 4).

Figure 4. Example of a complex "landscape".

In these situations, the strategies described above usually face a phenomenon

called a "stagnation" of the search (also known as a "chaotic attractor" [5]). This

means that the search trajectory is confined in a limited part (region) of the solution

space: if this part does not contain the global optimum, it will never be found.

An enhanced hybrid strategy (we call it an iterative hybridization) is designed

in order to try to overcome these difficulties. In fact, this hybridization strategy is

an extension of the sequential hybridization. The extension is constructed in such a

manner that self-contained heuristics, say H1 and H2, are used in a cyclic (iterative)

way, i.e. the heuristic H2 uses the output of the heuristic H1, and the heuristic H1

uses the output of the heuristic H2 (starting from the second iteration). The paradigm

of the iterative hybrid strategy is shown in Fig. 5.

In our hybrid optimization algorithm for the QAP, which will be presented in

Section 5, we use simulated annealing approach based procedure in the role of



154 A. Misevičius

procedure iterative_hybridization

/*(H1 + H2 + · · · ) + (H1 + H2 + . . .) + . . .*/
. . .
repeat

apply heuristicH1;
apply heuristicH2;
. . .

until termination criterion satisfied

end

Figure 5. Pseudo-code for the framework of the iterative hybrid meta-heuristic.

the heuristic H1, and tabu search approach based procedure as the "post-analysis"

heuristic H2. Note that hybridization of SA and TS was also used for solving the

other problems (see, for example, [18, 36, 45].) Before describing the details of our

hybrid algorithm, we give short overviews of SA and TS approaches.

3. Simulated annealing

Simulated annealing originated in statistical mechanics. It is based on a Monte Carlo

model that was used by Metropolis et al., 1953 [33], to simulate energy levels in

cooling solids. Boltzmann’s law was used to determine the probability of accepting

a perturbation resulting in a change ∆E in the energy at the current temperature t :

P =

{

1, ∆E < 0,

e−∆E/Ct, ∆E ≥ 0,

where C is a Boltzmann’s constant. Cerny, 1982 [11], and Kirkpatrick et al., 1983

[27] have applied firstly SA to solve combinatorial optimization problems. Several

researchers tested SA on the QAP, as well [6, 13, 35, 44]. The principle of the sim-

ulated annealing is simple: start from a random solution. Given a solution s select

a neighbouring solution s′ and compute the difference of the objective function val-

ues, ∆f = f(s′)− f(s). If the objective function value is improved (∆f < 0), then

replace the current solution by the new one, i.e. perform a move, and use resulting

configuration as a starting point for the next trial. If ∆f ≥ 0, then accept a move

with probability

P (∆f) = e−∆f/t, (3.1)

where t is the current temperature (Boltzmann’s constant is not required when we

apply the algorithm to combinatorial problems). Regarding the above probabilistic

acceptance, it is achieved by generating a random number in [0,1] and comparing it

against the threshold e−∆f/t (here, the exponential function plays a role of an accep-

tance function). The procedure is repeated until a termination criterion is satisfied,

for example, a predefined number of trials has been performed. As a resulting solu-

tion, usually the "best so far" (BSF) solution (instead of so-called "where you are"

(WYA) solution) is returned by the algorithm. The paradigm of SA in a high-level

algorithmic language form is presented in Fig. 6.



An improved hybrid optimization algorithm for the QAP 155

procedure simulated_annealing

/* input: s(0) – the initial solution; output: s∗ – the best solution found */
set s = s(0), s∗ = s;
determine the initial temperature t0, set t = t0;
repeat /* main cycle */

select new solution s′ from the neighbourhood

of the current solution s;
calculate∆f = f(s′) − f(s);
generate uniform random number r from the interval [0,1];
if (∆f < 0) or (r < e−∆f/t) then set s = s′;
/* replace the current solution by the new one*/
if f(s) < f(s∗) then set s∗ = s; /* save the best so far solution */
update the temperature t;

until stopping condition is satisfied

end

Figure 6. Pseudo-code for the simulated annealing.

SA algorithms differ mainly with respect to a cooling (annealing) schedule im-

plemented. The cooling schedule, in turn, is specified by:

a) an initial (and final) value of the temperature,

b) an updating function for changing the temperature.

The most important thing is how the initial temperature t0 is specified. If the

initial value of the temperature is chosen too high, then too many bad uphill moves

are accepted, while if it is too low, then the search will quickly drop into a local

optimum without possibility to escape form it. Thus, an optimum initial temperature

must be somewhere between these two extremes.

The temperature is not a constant, but changes over time according to the updat-

ing function. One of the popular updating functions (known as Lundy-Mees sched-

ule) is characterized by the following relation [30]:

tk+1 =
tk

1 + βtk
, k = 0, 1, . . . , t0 = const, β << t0 . (3.2)

It is easy to relate the coefficient β and the number of trials, i.e. the schedule length,

L, under condition that the initial and final values of the temperature (t0, tf ) are

predefined:

β =
t0 − tf
Lt0tf

. (3.3)

In theory, the simulated annealing procedure should be continued until the final

temperature tf is zero, but in practice the other stopping criteria are applied, for

example:

a) the value of the objective function has not decreased for a large number of

consecutive trials;

b) the number of accepted moves has become less than a certain small threshold

for a large number of consecutive trials;



156 A. Misevičius

c) a fixed a priori number of trials/iterations has been executed.

For more details about simulated annealing, the reader is referred to [1, 2, 28].

4. Tabu search

Tabu search technique was developed by Hansen and Jaumard, 1987 [24], and

Glover, 1989, 1990 [20, 21]. TS has been proven to be a powerful tool for solving

many combinatorial problems, among them the QAP (see, for example, [5, 14, 39,

42]). Tabu search, like simulated annealing, is based on the neighbourhood search

with local-optima avoidance but in a rather deterministic way. The key idea of tabu

search is allowing climbing moves when no improving neighbouring solution exists.

However, some moves are to be forbidden at a present search iteration in order to

avoid cycling.

TS starts from an initial solution s, maybe, randomly generated in S and moves

repeatedly from a solution to a neighbouring one. At each step of the procedure, a set

(subset) N(s) of the neighbouring solutions of the current solution s is considered

and the move that improvesmost the objective function value f is chosen. If there are

no improving moves, TS algorithm chooses one that least degrades (increases) the

objective function, i.e. a move is performed to the best neighbour s′ in N(s) (even if

f(s′) > f(s)).

In order to avoid returning to the local optimal solution just visited, the reverse

move must be forbidden (prohibited). This is done by storing this move (or an at-

tribute of the move) in a memory (or more precisely short-term-memory) managed

like a circular list T and called a tabu list. The tabu list keeps information on the last

h (h = |T |) moves which have been done during the search process (the parameter

h is called a tabu list size). Thus, a move from s to s′ is considered as tabu if it (or

its attribute) is contained in the list T. This way of proceeding hinders the algorithm

from returning to a solution reached in the last h iterations. However, it might be

worth returning after a while to a solution visited previously to search in another di-

rection. Consequently, an aspiration criterion is introduced to permit the tabu status

to be dropped under certain favourable circumstances. Typically, a tabu move from

s to s′ is permitted if f(s′) < f(s∗), where s∗ is the best solution found so far.

The resulting decision rule within TS may thus be described as follows: replace the

current solution s by the new solution s′, if

f(s′) < f(s∗) or (s′ = arg min
s′′∈N(s)

f(s
′′

) and s′ is not tabu). (4.1)

The whole process is stopped as soon as a termination criterion is satisfied (for exam-

ple, a fixed a priori number of trials has been performed). The tabu search paradigm

is shown in Figure 7.

The TS algorithms differ mainly with respect to the basic ingredients discussed

above (i.e. tabu list, aspiration criterion) and other additional features (for example,

a long-term-memory, diversification mechanisms, etc.). The main forms of the tabu

search are: deterministic tabu search (strict tabu search, fixed tabu search, reactive

tabu search) and stochastic tabu search (probabilistic tabu search, robust tabu search).

For more details on the TS technique, the reader is addressed to [22, 25].



An improved hybrid optimization algorithm for the QAP 157

procedure tabu_search

/*  !"#$#%&'() s(0) – '*+,-. !"# /'* 0123456783!%,'* !78"9:;72%,'*$#%&'() s∗ < '*+,-.=>-?5@'A56783!%&'* 072"BCD72%#"#E */
set s = s(0), s∗ = s;
initialize the tabu list T ;
repeat /* main cycle*/

given neighbourhood function N,
tabu list T and aspiration criterion,

find the best possible solution s′ ∈ N(s);
set s = s′; /* F*-?$,3G1HI?-J'*+#-.IK%,F6F*-?"L'M56783!%&'* 072"N=LOP'*+#-.",-KQR78"#- */
insert the solution s (or its attribute)

into the tabu list T ;
if f(s) < f(s∗) then set s∗ = s /* 5*1ST8-U'*+#-J=>-?5@'M567VCD1HFA56783!%&'* 072" */
update the tabu list T (or its size) (if necessary)

until stopping condition is satisfied

end

Figure 7. Pseudo-code for the tabu search.

5. An improved hybrid simulated annealing and tabu search

algorithm for the QAP

Now we describe details of our hybrid strategy for the QAP. It is distinguished for

the following structure: 1) simulated annealing algorithm, 2) tabu search algorithm,

and 3) hybridization scheme.

5.1. Simulated annealing algorithm for the QAP (SA-QAP)

One of the important features of our implementation of the simulated annealing is

that we use an extended approach of determining the values of the initial and final

temperatures (these values are crucial for the SA algorithm, as mentioned in Section

3). Typically, the initial (and final) temperature is a function of the minimum and

maximum differences in the objective function values obtained by performing a fixed

number of moves before starting the annealing [13]. In our SA algorithm, we ignore

the maximum difference; instead, we use the average difference. The formula of

calculating the initial and final temperatures (t0, tf ) looks, thus, as follows:

{

t0 = (1 − λ1)∆zmin + λ1∆zavg,

tf = (1 − λ2)∆zmin + λ2∆zavg ,
(5.1)

where ∆zmin, ∆zavg are, respectively, the minimum and average differences in the

objective function values; λ1 ∈ (0, 1]; λ2 ∈ [0, 1); λ1 > λ2. In fact, the execution

of the algorithm is controlled by operating with these factors. By choosing appropri-

ate values of λ1 and λ2, one can control the cooling process flexibly. For example,

having λ2 = const it is obvious that the larger the value of λ1, the higher the initial

temperature; on the other hand, the larger the difference λ1 − λ2, the more "rapid"

the cooling. We use λ1 = 0.5 and λ2 = 0.05.



158 A. Misevičius

Another property of the SA algorithm is related to an intelligent annealing tech-

nique. The key idea is that the temperature is not monotone decreasing, but oscil-

lating; that is, a re-annealing (a repeating sequence of coolings and heatings) is

considered instead of the straightforward annealing (see also [3, 6]). We propose

the re-annealing technique which is based on so-called dynamic cooling schedule.

The parameters of this schedule (schedule length, initial and final temperatures) are

adaptively changed during execution of the algorithm. We use a Lundy-Mees func-

tion based temperature oscillation (LM-oscillation) that is "process-dependent", i.e.

it depends upon the former "behaviour" of the (re)annealing. The schedule is as fol-

lows: set the schedule length L to QSAn(n − 1)/2 (QSA ≥ 1) and start with the

initial temperature defined by the formula (5.1). The temperature is then being up-

dated according to the formula (3.2), the coefficient β is known from the formula

(3.3). When 0.5|N2| = n(n−1)/4 consecutive moves are rejected, stop the (prelim-

inary) cooling. After cooling is stopped, the temperature is immediately increased

(i.e. the system is "heated up"), and the annealing with the new parameters starts.

Additionally, a deterministic downhill search procedure CRAFT [4] is applied to the

best solution found. The process is continued until a stopping criterion is satisfied,

i.e. the current iteration number exceeds QSA, where QSA is the maximum number

of iterations.

The detailed template of the SA algorithm for the QAP (SA-QAP) is presented

in Figure 8 (see also [35]).

5.2. Tabu search algorithm for the QAP (TS-QAP)

Our version of the tabu search algorithm for the QAP is based on a slightly modified

robust tabu search (RTS) procedure due to Taillard [42]. Very roughly, our algorithm

consists of maintaining the tabu list T by constructing and updating it. The tabu list is

organized as an n × n integer matrix T = (tij)n×n, where n is the problem size. At

the beginning, all the entries of T are set to zero. As the search progresses, the entry

tij stores the current number of the iteration plus the tabu list size, h, i.e. the number

of the future iteration starting at which ith and jth elements of the permutation may

again be interchanged. In this case, a move consisting of exchanging ith and jth
elements is tabu if the value of tij is equal or greater than the current iteration number

(this means that ith and jth elements were interchanged during the last h iterations).

The tabu list size h is not a constant – it is changed randomly during the search

process. In our implementation, h is chosen between hmin = 0.4n and hmax = 0.6n
and changed every 2hmax iterations. The standard aspiration criterion is used, i.e. the

tabu status of a move is ignored (a tabu move is allowed to be selected) if the move

results in a solution (permutation) that is better than the best one found so far.

In addition, we use the formula (1.4) to accelerate the evaluation of the neigh-

bouring solutions of the current solution. Thus, the complete evaluation of the 2-

exchange neighbourhood takes O(n2) operations, except the first iteration, which

takes O(n3) operations (see formula (1.3). The run time of the tabu search proce-

dure is controlled by the number of iterations, QTS.

The detailed template of the TS algorithm (TS-QAP) is presented in Figure 9.



An improved hybrid optimization algorithm for the QAP 159

procedure SA-QAP /* 56  ! %#301S'*-(EB1H"#"#-?123! !""# 123 #272F* /'*+"! CD7HFM'*+#-$%&'() */
/* input: π – the current (initial) permutation, n – the problem size */
/* QSA – the number of iterations (QSA ≥ 1) */
/* λ1, λ2 – the initial and final temperature factors
(0 < λ1 ≤ 1, 0 ≤ λ2 < 1, λ1 > λ2) */
/* output: π∗ – the best permutation found */
π∗ = π;
found ∆zmin, ∆zavg by performing n(n − 1)/2 random moves

starting from π;
M := QSAn(n − 1)/2, L0 := M ;
/* M – the number of trials, L0 – the initial cooling schedule length */
initialize cooling schedule parameters L, t0, tf , β;
t := t0, i := 1, j := 1, rejected_count := 0, oscillation :=′ FALSE′;
for k := 1 to M do begin /* main loop */

i := iif(j < n, i, iif(i, n − 1, i + 1, 1)), j := iif(j < n, j + 1, i + 1);
calculate ∆ = ∆z(π, i, j);
/* ∆z(π, i, j) is the current difference of the objective function values */
if ∆ < 0 then accept :=′ TRUE′

else begin

generate uniform random number r from the interval [0,1];
if r < exp(−∆/t)
then accept :=′ TRUE′ else accept :=′ FALSE′

end /* else */
if accept =′ TRUE′ then begin

π := π ⊕ pij ; /* replace the current permutation by the new one */
if z(π) < z(π∗) then π∗ := π;
/* save the best permutation found so far */
if ∆ 6= 0 then rejected_count := 0
end

else rejected_count := rejected_count + 1;
if (rejected_count ≥ n(n − 1)/4) or (t is at lowest point)

then begin

if oscillation =′ FALSE′

then begin L∗ := k, t∗ := t, oscillation :=′ TRUE′ end

update cooling schedule parameters L, t0, tf , β;
t := t0; /* F*-?56- 'A'*+,-JI?%,F6F*-K" ' '*-*!P$>-KF 1H'*%&F*- */
apply CRAFT to π∗

end

else t := t(1 + βt) /* decrease the current temperature */
end /* main loop */

end

Figure 8. Pseudo-code of the simulated annealing algorithm for the QAP. Here ∆z(π, i, j) is
calculated according to (1.3).

5.3. Hybridization scheme

The hybridization scheme used is as follows. At the beginning, an initial solution is

generated in a random way with the subsequent improving by means of the simulated

annealing algorithm (SA-QAP). Then, an iterative hybrid process starts. It consists



160 A. Misevičius

procedure TS-QAP /* tabu search algorithm for the QAP */
/*input: π – the current permutation, n – the problem size */
/* QTS – the number of iterations (QTS ≥ 1), */
/* hmin, hmax – lower and higher tabu list sizes (hmin < hmax) */
/* output: π∗ – the best permutation found */
π∗ := π;
for i := 1 to n − 1 do for j := i + 1 to n do

calculate δij = ∆z(π, i, j);
T := 0, i := 1, j := 1;
for q := 1 to QTS do begin /* main loop */
if q mod 2hmax = 1 then h := randint(hmin, hmax);
∆min := ∞;
for k := 1 to |N2| do begin /* find the best move */

i := iif(j < n, i, iif(i < n − 1, i + 1, 1)), j := iif(j < n, j + 1, i + 1);
tabu := iif(tij ≥ q, ′TRUE′,′ FALSE′),
aspired := iif(z(π) + δij < z(π∗),′ TRUE′,′ FALSE′);
if ((δij < ∆min) and (tabu =′ FALSE′)) or (aspired =′ TRUE′)
then begin

u := i, v := j;
if aspired =′ TRUE′ then ∆min := −∞ else ∆min := δij

end /* if */
end /* for */
if ∆min < ∞ then begin

/* perform the move: replace the current permutation by the new one */
π := π ⊕ puv

for l := 1 to n − 1 do for m := l + 1 to n do

update the difference δlm;
tuv := q + h; /* update the tabu list */
if z(π) < z(π∗) then π∗ := π /* save the best so far permutation */
end

end /* main loop */
end

Figure 9. Pseudo-code of the tabu search algorithm for the QAP, here∆z(π, i, j) is calculated
according to the formula (1.3), while the difference δlm is updated according to (1.4). The
function "randint(x, y)" returns a random integer, uniformly distributed between x and y.

of two main phases, as mentioned in Section 2: simulated annealing (SA-QAP) and

tabu search (TS-QAP). In addition, a diversification mechanism is used. The role of

such a mechanism play mutations that can be seen as strings of random elementary

perturbations (pairwise interchanges), like pij . The mutations may also be viewed as

moves in higher-order neighbourhoods Nµ, where 2 < µ ≤ n, here, the parameter

µ is referred to as a mutation level (rate). It is obvious that the large value of µ, the

stronger the mutation, and vice versa. The template of the mutation procedure based

on random interchanges is presented in Figure 10.

A corresponding example is shown in Figure 11.

We can add more robustness to the mutation process by letting the parameter µ
vary in some interval, say [µmin, µmax] ⊂ [3, n]. In our implementation, µ varies in

the following way: at the beginning, µ is equal to µmin; once the maximum value



An improved hybrid optimization algorithm for the QAP 161

procedure ri-mutation

/* random interchanges based mutation operator (ri-mutation) for the QAP */
/* input: π – the current permutation, n – the problem size,
µ – the mutation lavel (µ ∈ [3, n]) */
/* output: π – the mutated permutation */
for k := 1 to µ do begin

choose i, j, randomly, uniformly, 1 ≤ i, j ≤ n, i 6= j
π := π ⊕ pij /* interchange ith and jth elements in the current permutation */
end /* for k */

end

Figure 10. Pseudo-code of the random interchanges based mutation.

Figure 11. Example of ri–mutation.

µmax has been reached (or a better locally optimum solution has been discovered),

the value of µ is immediately dropped to the minimum value µmin, and so on. Note

that the mutations are to be applied to the locally optimum solutions only.

The specific feature of our hybridization scheme is that if the current locally

optimum solution remains unchanged for a long time (a "stagnation" of the search

takes place), then a "cold restart" of the search is carried into effect. As a "cold

restart", we use the construction (generation) of a new random solution coupled with

the simulated annealing algorithm – the same that it used at the initialization phase.

The purpose of such a restart is to add more diversity to the search, more precisely,

to explore new regions of the solution space: continuing the search from the new

random solution may allow to escape from a "deep" local optimum and to find better

ones. The frequency of "cold restarts" is controlled by means of a special parameter,

a restart interval, v, which can be related to the problem size, n, i.e. v = ωn, where ω
is a factor of the restart frequency (0 < ω < Q/n, Q is the total number of iterations

of the hybridized algorithm.

The template of the resulting hybrid optimization algorithm entitled as IH-SA-

TS-QAP (improved hybrid SA and TS algorithm for the QAP) is shown in Figure

12.

6. Simulation results

We have carried out a number of simulations in order to test the performance of our

improved hybrid algorithm IH-SA-TS-QAP. The well-known QAP instances (test

data) taken from the quadratic assignment problem library QAPLIB [9] (see also



162 A. Misevičius

procedure IH-SA-TS-QAP

/* improved hybrid simulated annealing-tabu search algorithm for the QAP */
/* input: A, B – the connection and distance matrices, n – the problem size */
/* Q – the number of cycles (global iterations) of the hybrid algorithm */
/* QSA – the number of iterations of the simulated annealing procedure */
/* QTS – the number of iterations of the tabu search procedure */
/* λ1, λ2, hmin, hmax, µmin, µmax, – the control parameters */
/* output: π∗ – the best permutation found */
generate random (initial) permutation π̄;
apply SA-QAP to π̄ with the parameters QSA, λ1, λ2, and

get the resulting permutation π•;
π∗ := π•;
q∗ := 0; /* q∗ is the current number of iteration at which
the new local optimum has been found */
µ := µmin − 1; /* µ is the current mutation level */
v := ωn; /* v is the restart interval (period) */
for q := 1 to Q do begin /* main cycle */
apply TS-QAP to π• with the parameters QTS, hmin, hmax, and

get the resulting permutation π∆;
if z(π∆) < z(π∗) then begin

π∗ := π∆, q∗ := q, µ := µmin − 1
/* save the best so far permutation and reset the control parameters*/

end

if q − q∗ > v then begin

generate new random permutation π◦; /* perform a "cold restart" */
apply SA-QAP to π◦ with the parameters QSA, λ1, λ2, and

get the resulting permutation π•;
if z(π•) < z(π∗) then π∗ := π•; /* save the best so far permutation */
q∗ := q, µ := µmin − 1

end

else begin

µ := iif(µ < µmax, µ + 1, µmin);
apply mutation to π∗ with the level µ,
/*i.e. perform µ random perturbations */
and get the permutation π̃;
π• := π̃ /* π• is the mutated permutation to be processed by TS procedure */
end

end /* for q */
end

Figure 12. Pseudo-code of the improved hybrid simulated annealing and tabu search algo-
rithm for the QAP.



An improved hybrid optimization algorithm for the QAP 163

http://www.seas.upenn.edu/qaplib/) were used. The following algorithms were used

for comparison:

1) The simulated annealing algorithm by Boelte and Thonemann (coded by the

author according to the description presented in the paper of Boelte and Thonemann

[6]; the algorithm is entitled as TB2M-QAP);

2) The robust tabu search algorithm by Taillard [42] (it is entitled as RTS-QAP);

3) The combined simulated annealing and tabu search algorithm by Misevičius

[34] (entitled as SA-TS-QAP).

Table 1. Comparison of the algorithms for the QAP. The values of the average deviation (Θ̄),
the percentage of 1% optimality (P1%), and the CPU time (in seconds) are given. The values
of the best average deviations are printed in bold face.

Instance n BKV
TB2M-QAP RTS-QAP SA-TS-QAP IH-SA-TS-QAP Average

name Θ̄ P1% Θ̄ P1% Θ̄ P1% Θ̄ P1%
CPU time

nug30 30 6124 0.94 63 0.73 72 0.70 78 0.52 90 0.12
sko42 42 15812 0.66 83 1.03 55 0.55 88 0.46 90 0.29
sko49 49 23386 0.67 86 0.85 64 0.54 94 0.46 97 0.45
sko56 56 34458 0.66 84 0.95 55 0.53 93 0.50 96 0.65
sko64 64 48498 0.57 92 0.93 61 0.48 100 0.45 99 1.00
sko72 72 66256 0.60 97 0.99 53 0.52 95 0.48 98 1.34
sko81 81 90998 0.46 100 0.93 60 0.41 100 0.40 99 1.87
sko90 90 115534 0.49 99 0.96 60 0.43 100 0.43 100 2.55
sko100b 100 153890 0.39 100 0.97 61 0.34 100 0.29 100 3.44
sko100c 100 147862 0.46 98 1.15 36 0.34 99 0.32 99 3.46
sko100d 100 149576 0.49 100 0.96 57 0.43 100 0.41 100 3.44
sko100e 100 149150 0.52 99 1.06 45 0.45 100 0.41 100 3.43
sko100f 100 149036 0.54 100 0.95 62 0.46 100 0.40 100 3.44
tho30 30 149936 1.07 54 1.41 45 0.90 70 0.91 69 0.13
tho40 40 240516 1.33 31 1.30 34 1.09 46 0.94 54 0.26
wil50 50 48816 0.26 100 0.52 84 0.19 100 0.16 100 0.47
wil100 100 273038 0.25 100 0.55 69 0.22 100 0.22 100 3.45

The performance measures used are the following:

1) the average deviation from the best known solution Θ̄ = 100(z̄ − z̃)/z̃[%],
where z̄ is the average objective function value over W = 1, 2, . . . restarts (i.e.

single applications of the algorithm to a given instance) and z̃ is the best known

value (BKV) of the objective function, BKVs are from [9];

2) the percentage of solutions that are within 1% optimality P1% = 100C1%/W,
where C1% is the total number of solutions that are within 1% optimality over W
restarts.

All the simulations were carried out on 300 MHz Pentium computer by using the

optimization package (sub-system) OPTIQAP (OPTImizer for the QAP) developed



164 A. Misevičius

by the author at Dept. of Practical Informatics of Kaunas Univ. of Technology. The

computations were organized in such a way that all the algorithms use identical ini-

tial assignments and require similar CPU times (the execution time is controlled by

the number of iterations). The results of the comparison, i.e. the average deviations

from BKV and percentage of solutions that are within 1% optimality for each of

the algorithm tested, as well as CPU times per restart are presented in Table 1. The

parameters of IH-SA-TS-QAP used in simulation are as follows:

Q = 1, QSA = 50, QTS = 5QSA = 250 ,

λ1 = 0.5, λ2 = 0.05, µmin = 0.35, µmax = 0.45 .

Let us note, that as long as the number of cycles, Q, is equal to 1, the parameter ω
can be omitted. The number of restarts, W, is equal to 100.

Table 2. Computational results of IH-SA-TS-QAP with the various numbers of iterations.
The values of the average deviation (Θ̄), and the CPU time (in seconds) are given.
In addition, in parenthesis we give the numbers of times that BKV is found.

Instance
Θ̄, time

name
1st (W = 30) 2nd (W = 30) 3rd (W = 20) 4th (W = 2) 5th (W = 10)

nug30 0.060[9] 5.0 0.002[29] 30.0 0 88 0 150 0 360
sko42 0.075[11] 10.5 0.003[28] 63.0 0 180 0 330 0 720
sko49 0.128[2] 14.9 0.044[6] 90.0 0.009[16] 250 0 470 0 1200
sko56 0.168[1] 20.5 0.049[3] 118 0.001[19] 340 0.001[14] 570 0 1380
sko64 0.156[3] 27.4 0.020[8] 162 0.000[19] 460 0 800 0 1800
sko72 0.304[0] 35.0 0.117[0] 210 0.012[0] 570 0.012[2] 1020 0.002[6] 2250
sko81 0.191[0] 46.0 0.074[0] 275 0.016[2] 720 0.013[2] 1260 0.007[4] 2700
sko90 0.300[0] 57.0 0.133[0] 330 0.042[1] 930 0.027[0] 1440 0.004[5] 3200
sko100a 0.233[0] 72.0 0.114[0] 420 0.048[1] 1180 0.026[2] 1980 0.019[1] 4300
sko100b 0.221[0] 72.0 0.094[0] 420 0.020[0] 1200 0.011[1] 1950 0.004[1] 4200
sko100c 0.209[0] 72.0 0.061[0] 420 0.014[1] 1190 0.007[1] 1940 0.001[5] 4100
sko100d 0.299[0] 72.0 0.130[0] 420 0.042[0] 1180 0.028[0] 1960 0.011[2] 4300
sko100e 0.243[0] 72.0 0.118[0] 420 0.014[1] 1210 0.010[1] 1980 0.005[2] 4400
sko100f 0.278[0] 72.0 0.125[0] 420 0.049[0] 1180 0.020[1] 1970 0.010[2] 4300
tho30 0.074[22] 4.9 0 30.0 0 90.0 0 145 0 370
tho40 0.196[1] 9.2 0.023[6] 56.0 0.012[6] 165 0.005[8] 270 0.002[8] 660
wil50 0.054[4] 16.0 0.008[19] 92 0.002[19] 264 0.001[14] 420 0 1290
wil100a 0.175[0] 72.0 0.084[0] 420 0.011[0] 1200 0.004[2] 1990 0.001[4] 4500

It turns out that the efficiency of the algorithms depends on the QAP instance be-

ing solved. Nevertheless, the results from Table 1 show that our hybrid optimization

algorithm IH-SA-TS-QAP appears to be superior to other three efficient algorithms

with respect to both performance measures, especially, the average deviation. The

difference in efficiency on particular instances is quite significant (see, for example,

the results of RTS-QAP and IH-SA-TS-QAP obtained for the instances sko100a–

sko100f, or wil50, wil100).



An improved hybrid optimization algorithm for the QAP 165

The results of IH-SA-TS-QAP can be improved even more by increasing the

values of the control parameters Q and/or QSA (QTS) but at the cost of a longer

processing time. Five long runs were carried out in order to demonstrate the im-

provement of the quality of solutions. At each long run, the different values of the

parameters Q, QSA, QTS are used:

1st run : Q = 30, QSA = 50, QTS = 250, ω = 0.3;

2nd run : Q = 100, QSA = 50, QTS = 500, ω = 0.3;

3rd run : Q = 200, QSA = 300, QTS = 1000, ω = 0.1;

4th run : Q = 200, QSA = 500, QTS = 1500, ω = 0.05;

5th run : Q = 300, QSA = 1000, QTS = 3000, ω = 0.03;

the values of the other control parameters remain the same, except the parameter ω.
Table 2 shows the results obtained.

These results are very promising (see 5th column of Table 2): for small and

medium instances (n ≤ 64) (except the instance tho40), the average deviation from

the best known values of the objective function is equal to zero; while, for large in-

stances (n = 100), the deviation is less than 0.02%. It can be seen from the results

of 5th run that, for all the large instances tested, at least one restart (out of ten) of IH-

SA-TS-QAP resulted in finding the best known solution. Moreover, for the instances

sko100c and wil100, BKV was reached 5 and 4 times, respectively. This indicates

that the solutions obtained for these instances are, most likely, pseudo-optimal. To

our knowledge, the pseudo-optimality of the solutions for these instances has not

been reported yet in the literature. It also should be stressed that even finding BKV

for these instances is quite complicated task, for example, in [16], it was reported

that to improve on the best known solutions for the instances sko100* on SPARC 10

processor, it took almost 24 hours of computation time. In a more recent work [29],

an efficient genetic algorithm could not find BKV for any of these instances. It took

up to 900 seconds on DEC Alpha Server 8400 to find the solutions with the average

deviation around 0.3% only.

7. Concluding remarks

The quadratic assignment problem is one of hard combinatorial optimization prob-

lems. In order to obtain near-optimal or optimal solutions for this problem within

reasonable times, heuristic techniques are to be applied. One of them, an improved

hybrid optimization algorithm, has been proposed in this paper.

Based on the well-known simulated annealing and tabu search approaches, as

well as the intelligent hybridization strategy, we have developed an effective algo-

rithm for the QAP – IH-SA-TS-QAP (improved hybrid SA and TS algorithm for

the QAP), which is an extension of the earlier author’s hybrid algorithm. IH-SA-TS-

QAP is distinguished for the so-called iterative hybridization scheme – a result of the

elaborations of possible hybrid heuristic paradigms.



166 A. Misevičius

The additional features of our algorithm are the diversification and "cold restart"

mechanisms that are used in order to try to avoid a possible "stagnation" of the search.

These mechanisms and the refined hybridization scheme resulted in high quality

solutions obtained during the simulations with a number of the QAP instances (test

data) from the QAP library – QAPLIB. These solutions indicate that, for the QAP

instances examined, the proposed algorithm appears to be superior to the "pure"

simulated annealing and tabu search algorithms, as well as the earlier author’s hybrid

(combined) SA and TS algorithm. Thus, it may be considered to be one of the most

efficient single-solution algorithms for the QAP.

Regarding the future work, the emphasis on the further extensions of the pro-

posed hybrid approach should be made. Both the elaboration of the hybridization

scheme and improvements of its basic components (i.e. SA and TS procedures) are

possible, for example:

a) introducing new cooling schedules for the SA algorithm;

b) applying other tabu conditions/aspiration criteria for the TS algorithm;

c) trying a more accurate adjustment (tuning) of the control parameters (the initial

and final temperatures, the tabu list sizes, etc).

It might also be worthy to incorporate the proposed hybrid algorithm into other

(population-based, hybrid) meta-heuristics, for example, genetic and evolutionary

algorithms, as a very efficient local search procedure.

References

[1] E.H.L. Aarts and J.H.M. Korst. Simulated Annealing and Boltzmann Machines. Wiley,
Chichester, 1989.

[2] E.H.L. Aarts, J.H.M. Korst and P.J.M.van Laarhoven. Simulated annealing. In: E. Aarts
and J.K. Lenstra(Eds.), Local Search in Combinatorial Optimization, Wiley, Chichester,
91 – 120, 1997.

[3] S. Amin. Simulated jumping. Annals of Operations Research, 86, 23–38, 1999.
[4] G.C. Armour and E.S. Buffa. A heuristic algorithm and simulation approach to relative

location of facilities. Management Science, 9, 294 – 304, 1963.
[5] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Computing, 6,

126 – 140, 1994.
[6] A. Boelte and U.W. Thonemann. Optimizing simulated annealing schedules with genetic

programming. European Journal of Operational Research, 92, 402 – 416, 1996.
[7] R.E. Burkard. Quadratic assignment problems. European Journal of Operational Re-

search, 15, 283 – 289, 1984.
[8] R.E. Burkard, E. Çela, P.M. Pardalos and L. Pitsoulis. The quadratic assignment prob-

lem. In: Handbook of Combinatorial Optimization, volume 3, Kluwer, Dordrecht, 241 –
337, 1998.

[9] R.E. Burkard, S. Karisch and F. Rendl. QAPLIB – a quadratic assignment problem
library. Journal of Global Optimization, 10, 391 – 403, 1997.

[10] E. Çela. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer, Dor-
drecht, 1998.

[11] V. Cerný. A thermodynamical approach to the traveling salesman problem: an efficient
simulation algorithm. In: Tech. Report, Comenius University, Bratislava, CSSR, 1982.



An improved hybrid optimization algorithm for the QAP 167

[12] H. Chen and N.S. Flann. Parallel simulated annealing and genetic algorithms: a space of
hybrid methods. In: Proceedings of Third Conference on Parallel Problem Solving from

Nature, Berlin, Springer, Jerusalem, Israel, 428 – 436, 1994.
[13] D.T. Connolly. An improved annealing scheme for the QAP. European Journal of

Operational Research, 46, 93 – 100, 1990.
[14] Z. Drezner. Heuristic algorithms for the solution of the quadratic assignment problem.

Journal of Applied Mathematics and Decision Sciences, 6, 163 – 173, 2002.
[15] Z. Drezner. A new genetic algorithm for the quadratic assignment problem. INFORMS

Journal on Computing, 2003. (in press)
[16] C. Fleurent and J.A. Ferland. Genetic hybrids for the quadratic assignment problem. In:

Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, volume 16. AMS, Providence, 173–188, 1994.
[17] C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph coloring. Annals

of Operations Research, 63, 437 – 461, 1996.
[18] B.L. Fox. Integrating and accelerating tabu search, simulated annealing and genetic

algorithms. Annals of Operations Research, 41, 47 – 67, 1993.
[19] B. Freisleben and P. Merz. A genetic local search algorithm for solving symmetric and

asymmetric traveling salesman problems. In: Proceedings of the IEEE International

Conference on Evolutionary Computation (ICEC’96), Nagoya, Japan, 616 – 621, 1996.
[20] F. Glover. Tabu search: part I. ORSA Journal on Computing, 1, 190 – 206, 1989.
[21] F. Glover. Tabu search: part II. ORSA Journal on Computing, 2, 4 – 32, 1990.
[22] F. Glover and M. Laguna. Tabu search. Kluwer, Dordrecht, 1997.
[23] M. Hanan and J.M. Kurtzberg. Placement techniques. In: Design Automation of Digital

Systems: Theory and Techniques, volume 1. Prentice-Hall, Englewood Cliffs, 213 – 282,
1972.

[24] P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. RUTCOR
Search Report 43-87, Rutgers University, USA, 1987.

[25] A. Hertz, E. Taillard and D. de Werra. Tabu search. In: Local Search in Combinatorial

Optimization, Wiley, Chichester, 121 – 136, 1997.
[26] T.C. Hu and E.S. Kuh (Eds.). VLSI Circuit Layout: Theory and Design. IEEE Press,

New York, 1985.
[27] S. Kirkpatrick, Jr. C.D. Gelatt and M.P. Vecchi. Optimization by simulated annealing,

volume 220. Science, 1983.
[28] P.J.M.van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Applications.

Reidel, Dordrecht, 1987.
[29] M.H. Lim, Y. Yuan and S. Omatu. Efficient genetic algorithms using simple genes ex-

change local search policy for the quadratic assignment problem. Computational Opti-
mization and Applications, 15, 249 – 268, 2000.

[30] M. Lundy and A. Mees. Convergence of an annealing algorithm. Mathematical Pro-

gramming, 34, 111 – 124, 1986.
[31] O. Martin and S.W. Otto. Combining simulated annealing with local search heuristics.

Annals of Operations Research, 63, 57 – 75, 1996.
[32] P. Merz and B. Freisleben. Fitness landscape analysis and mimetic algorithms for the

quadratic assignment problem. IEEE Transactions on Evolutionary Computation, 4, 337
– 352, 2000.

[33] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A.Teller and E.Teller. Equation of state
calculation by fast computing machines. Journal of Chemical Physics, 21, 1087 – 1092,
1953.

[34] A. Misevičius. Combining simulated annealing and tabu search for the quadratic assign-
ment problem. Information Technology and Control, 3(20), 37 – 50, 2001.



168 A. Misevičius

[35] A. Misevičius. A new simulated annealing algorithm for the quadratic assignment prob-
lem. In: Materials of the International Conference on Production Research (ICPR-16)

(Prague, Czech Republic), Prague, Czech Association of Scientific and Technical Soci-
eties, 2001.

[36] I.H. Osman and N. Christofides. Capacitated clustering problem by hybrid simulated
annealing and tabu search. International Transactions in Operational Research, 1, 317
– 336, 1994.

[37] P.M. Pardalos, F. Rendl and H. Wolkowicz. The quadratic assignment problem: a survey
and recent developments. In: Quadratic Assignment and Related Problems. DIMACS

Series an Discrete Mathematics and Theoretical Computer Science, volume 16. AMS,
Providence, 1 – 41, 1994.

[38] S. Sahni and T. Gonzalez. p-complete approximation problems. Journal of ACM, 23,
555 – 565, 1976.

[39] J. Skorin-Kapov. Tabu search applied to the quadratic assignment problem. ORSA Jour-

nal on Computing, 2, 33 – 45, 1990.
[40] L. Steinberg. The backboard wiring problem: a placement algorithm. SIAM Review, 3,

37 – 50, 1961.
[41] T. Stuetzle. Iterated local search for the quadratic assignment problem. Technical report,

Darmstadt University of Technology, 1999.
[42] E. Taillard. Robust taboo search for the QAP. Parallel Computing, 17, 443 – 455, 1991.
[43] E.G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8, 541 – 564,

2002.
[44] M. Wilhelm and T. Ward. Solving quadratic assignment problems by simulated anneal-

ing. IIE Transactions, 19, 107 – 119, 1987.
[45] Q. Zeng and K.C. Mouskos. Heuristic search strategies to solve transportation network

design problem. Tech. Report, New Jersey Dept. of Transportation and the National
Center for Transportation and Industrial Productivity, USA, 1997.

Patobulintas hibridinis optimizavimo algoritmas kvadratinio paskirstymo uždaviniui

A. Misevičius

Šiame straipsnyje pasi ūlytas patobulintas hibridinis euristinis optimizavimo algoritmas gerai
žinomam, sudėtingam kombinatorinio optimizavimo uždaviniui, b ūtent, kvadratinio paskirsty-
mo (KP) uždaviniui. Tai – pagerinta autoriaus ankstesnio hibridinio algoritmo versija. Naujasis
algoritmas pasižymi tuo, jog čia išplėtota efektyvių euristikų (atkaitinimo modeliavimo (AM)
(angl. simulated annealing) ir tabu paieškos (TP) (angl. tabu search) "hibridizacijos" idėja.
"Hibridizacija" remiasi vadinamąja iteracine schema: TP algoritmas panaudojamas kaip post-
analizės proced ūra AM algoritmo gautajam sprendiniui, savo ruožtu, AM algoritmas taikomas
sprendinių sekai, gautai sprendinių diversifikavimo/generavimo keliu. Svarbi pasi ūlyto algo-
ritmo savybė yra ir ta, kad jame realizuotas vadinamasis "šaltojo pakartotinio starto" principas,
kurio paskirtis padėti išvengti galimų paieškos "stagnacijos" situacijų. Naujasis algoritmas
išbandytas su KP uždavinio duomenimis iš testinių pavyzdžių bibliotekos QAPLIB. Gauti
eksperimentų rezultatai liudija, jog nagrinėtiems KP uždavinio pavyzdžiams si ūlomas algorit-
mas yra pranašesnis už ankstesnius atkaitinimo modeliavimo ir tabu paieškos algoritmus, taip
pat už ankstesnį autoriaus hibridinį algoritmą.


