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Abstract. The problem of Schrödinger equation with complex boundary conditions for
modelling a motion of electrons in gyrotrons is considered. Numerical results obtained by
using Fourier, Finite Differences (FD) and Degenerate Matrices (DM) methods are compared
in the simplest case. For DM methods they are analysed also in more general cases, when FD
can not be applied because of fast oscillations of the solution.
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1. Formulation of the problem

When modelling the motion of electrons in gyrotrons, it is necessary to solve the
following initial-boundary value problem:























i
∂u

∂t
=

∂2u

∂x2
+ δ(x)u, x ∈ (0, L), t > 0,

u|t=0 = u0(x), (initial values),

u|x=0 = 0, ∂u
∂x

∣

∣

x=L
= −iγu

∣

∣

x=L
, (boundary conditions),

(1.1)

where u = u(t, x) is an unknown complex function, δ(x) and u0(x) are given func-
tions, γ > 0 is a given constant, i =

√
−1.

Quasi-stationary solutions in the case δ(x) = δ0 = const were considered in
[1, 5]. They are given by:

u(t, x) = g(x) exp
(

it(α − δ0)
)

, (1.2)
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where α = α1 + iα2 are complex eigenvalues and g(x) are the corresponding eigen-
functions. Denoting α = λ2, z = λL we obtain the equation

z cos z = −iγL sin z (1.3)

for finding z. Each complex root z = z1 + iz2 of (1.3) generates a solution in the
form (1.2) with

Reα = α1 =
z2
1 − z2

2

L2
, Imα = α2 =

2z1z2

L2
, g(x) = sin

(zx

L

)

. (1.4)

Using the argument principle for analytical complex functions it is possible to prove
that all roots of equation (1.3), except z = 0, are disposed only in domains

{Rez > 0, Imz > 0 }, {Rez < 0, Imz < 0 },

symmetrically with respect to z = 0 [7]. Therefore the roots can be calculated only
in the first quadrant of z-plane. We use the software package "Maple" for |z| not
large and asymptotic formulas in the case of large |z|. These asymptotic formulas
can be found by the method of indeterminate coefficients. The method is often used
to solve equations with entire analytic functions. For roots zn, n → ∞, they are
given as follows:

zn = sn +
a1

sn

+
a2

s3
n

+
a3

s5
n

+
a4

s7
n

+ O
( 1

s9
n

)

, sn = π
(

n +
1

2

)

,

a1 = iτ, a2 = τ2
(

1 +
iτ

3

)

, a3 =
4τ4

3
+

iτ3(τ2 − 10)

5
,

a4 = τ4
(47

36
τ2 − 3

)

+
iτ5

120
(17τ2 − 440), τ = γL.

Let λk =
z(k)

L
, where (z(k)), k = 1, 2, . . . , be the sequence of roots of (1.3)

numbered according to the increase of Re(z(k)). Then the solution of problem (1.1)
can be expended into the following convergent infinite Fourier series:

u(t, x) =

∞
∑

k=1

ckgk(x) exp
(

i(λ2
k − δ0)t

)

, (1.5)

gk(x) = sin(λkx), ck =

L
∫

0

gk(s)u0(s) ds

L
∫

0

g2
k(s) ds

.

Moreover, numerical results obtained by (1.5) are accurate enough only for very
large number of the summands in (1.5), especially if t is not large. Therefore, in
the following sections we will consider other methods for numerical solving of the
problem (1.1).
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2. Application of the finite difference method

We consider the uniform space grid in the x-direction with the interior grid points

xj = jh, j = 1, N − 1, x0 = 0, xN = L,

and the time grid with the grid points tn = nτ, n = 1, 2, . . . , here h, τ are the
steps of the grids. We replace the continuous solution u = u(t, x) of the problem
(1.1) by the discrete grid function y = y(t, x) with values y(tn, xj) = yn

j .

An approximation of the problem (1.1) is based on the following finite difference
scheme:























i
yn+1

j − yn
j

τ
= σΛyn+1

j + (1 − σ)Λyn
j , j = 1, N − 1,

yn+1
0 = 0, lyn+1

N = −iγyn+1
N ,

y0
j = u0(xj), j = 0, N,

(2.1)

where σ ∈ [0, 1] is a parameter of the scheme. Λyj denotes a central difference

expression of the second order approximation for the derivative
∂2u

∂x2
at the grid point

xj :

Λyj =
yj+1 − 2yj + yj−1

h2
+ δ0yj ,

lyN denotes a difference expression of the first order approximation for the derivative
∂u

∂x
in one of the following forms:

a) using the two points difference for the first order approximation

lyN =
yN − yN−1

h
; (2.2)

b) using the three points difference for the second order approximation

lyN =
1.5yN − 2yN−1 + 0.5yN−2

h
. (2.3)

The approximation order (AO) of the difference equations (2.1) with respect to
time and space coordinates is equal to two if σ = 0.5, and equal to one with respect
to time if σ 6= 0.5. Approximation order of boundary conditions is 1 (formula (2.2))
and 2 (formula (2.3)).

The discrete quasi-stationary solution has the following form:

yn
j = gj exp(inτα) , (2.4)

where the discrete eigenfunctions g
(k)
j are given by [1]:

g
(k)
j = sin(q(k)xj), k = 1, 2, . . . , N − 1.

Here q(k) are roots of one of the transcendent equations:
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1) Approximation (2.2)

sin(qL) = C1 sin
(

q(L − h)
)

, (2.5)

2) Approximation (2.3)

sin (qL) = C2

(

2 sin
(

q(L − h)
)

− 0.5 sin
(

q(L − 2h)
)

)

, (2.6)

C1 =
1

1 + iγh
, C2 =

1

1.5 + iγh
.

The parameter α in (2.4) can be obtained from expressions:

α = ln
1 − τα∗/(i + στα∗)

iτ
, α∗ =

2
(

1 − cos(qh)
)

h2
− δ0 .

The approximate values α
(k)
∗ are complex, i.e., α

(k)
∗ = Ak + iBk:

Ak =
2
(

1 − cos(akh)ch(bkh)
)

h2
− δ0, Bk =

2 sin(akh)sh(bkh)

h2
,

where q(k) = ak + ibk. Using the argument principle we can prove that all complex
roots of (2.5) or (2.6) for Req > 0 or ak > 0 are in the first quadrant of the complex
q-plane, and Bk ≥ 0.

The stability conditions for finite–difference schemes (2.1) – (2.2), and (2.1)–
(2.3) follow from [6]:

σ ≥ 0.5, Bk ≥ 0 .

The solution of finite-difference scheme (2.1)–(2.2) can be obtained also in the
discrete form of Fourier series:

yn
j = h

N−1
∑

k=1

ck sin(q(k)xj) exp(iα(k)nτ), (2.7)

where

ck =

N−1
∑

s=1

1

dk

sin(q(k)xs)u0(xs), dk =
1

2

(

L − h sin(q(k)L) cos
(

q(k)(L − h)
)

sin(q(k)h)

)

.

In this case the discrete eigenfunctions (2.4) are orthogonal:

(g(k), g(m)) = h

N−1
∑

j=1

g
(k)
j g

(m)
j = 0, k 6= m.
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3. Application of the Degenerate Matrix method

In this section we will consider another scheme for solving problem (1.1), which
can be used also in the case when δ(x) is not equal to a constant. The DM method
[3, 4] is based on using such differentiation matrices A for derivatives with respect
to x which ensure that the approximation of the unknown function u is nonsaturated.
Choosing the partitions xk, k = 0, 1, . . . , n + 1, on the interval (0, L) we form the
(n + 2) × (n + 2) matrix A with elements

amk =



















w′(xm)

(xm − xk)w′(xk)
, if m 6= k,

w′′(xk)

2w′(xk)
, if m = k ,

(3.1)

where w(x) =
n+1
∏

j=0

(x − xj).

Remark 1. We usually choose the nodes sk as zeroes of classical orthogonal polyno-
mials on the standard interval [−1, 1]. Then the mapping xk = L

2

(

sk + 1
)

gives the
required partition of (0, L), and the nonsaturatedness of approximations is ensured.

Contracting equation (1.1) on the nodes xk, k = 0, 1, . . . , n + 1, and applying the
matrix A we obtain the following equation

i
d~u

dt
= (A2 + D)~u, (3.2)

where ~u and D are the column-vector and the diagonal matrix, respectively, with
corresponding components u(xk) and diagonal elements δ(xk), k = 0, 1, . . . , n+1.
Matrix equation (3.2) holds only at the interior points x1, x2, . . . , xn of the interval
(0, L). Therefore, we must take off its first and last rows. Then we exclude values
u(x0) and u(xn+1) in the first and last columns from the remaining equations using
the discretized boundary conditions

u(x0) = 0,

n+1
∑

k=0

an+1,ku(xk) = −iγu(xn+1),

which are obtained after discretization of boundary conditions (1.1). This yields the
system of n homogeneous linear differential equations

d~u

dt
= S~u (3.3)

with initial values obtained by discretization of initial value in (1.1). Here (3.3) has
constant coefficient matrix S with elements sm,k, m, k = 1, 2, . . . , n:

smk = −i
(

a
(2)
mk + µa

(2)
m,n+1an+1,k + dmk

)

, (3.4)

where a
(2)
mk are the elements of the matrix A

2, an+1,k are the elements of the last
row of A,
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µ =
iγ − an+1,n+1

γ2 + a2
n+1,n+1

, dmk =

{

0, if m 6= k,

δ(xk), if m = k .
(3.5)

Finally, we solve system (3.3) exactly finding eigenvalues and eigenvectors for
the matrix S and using discretized initial values.

Comments

1
0. Now we prove that for finding eigenvalues λ and eigenfunctions u, which are

defined by the following problem:
{

u′′ + δ(x)u = −λu,

u(0) = 0, u′(L) = −iγu(L),
(3.6)

it is appropriate to use matrices for derivatives with nodes sk = 1, 2, . . . , N as zeroes
of one of the classical orthogonal Jacobi polynomials P

(α,β)
N (s) supplemented with

s0 = −1 and sN+1 = 1.
Let L be the eigenvalue xk = L

2

(

sk + 1
)

, k = 0, 1, . . . , N + 1. Let λ be the
eigenvalue and u(x) is the eigenfunction of (3.6) corresponding to given λ . We
denote v(s) = u

(

L
2 (s+1)

)

and consider the following Fourier series for s ∈ [−1, 1]:

v(s) =
∞
∑

k=0

ckP
(α,β)
k (s), ck =

1

‖ P
(α,β)
k ‖2

1
∫

−1

ρ(s)v(s)P
(α,β)
k (s) ds , (3.7)

where ρ(s) = (1 − s)α(1 + s)β is the weight function. Series (3.7) converges very
rapidly because v(s) is analytical. Therefore,

v(s) =
N

∑

k=0

ckP
(α,β)
k (s) + RN (s), RN (s) = O

(

exp(−νN)
)

, (3.8)

when N → +∞ with some constant ν > 0. Replacing the integral in (3.7) by the
Gauss-Lobatto quadrature formula, substituting it into (3.8) and using the classical
Christoffel-Darboux formula for Jacobi polynomials it is possible to prove that [2]

v(s) =

N+1
∑

k=0

pN+2(s)v(sk)

(s − sk)p′N+2(sk)
+ R̂N (s), R̂N (s) = O

(

exp(−νN)
)

, (3.9)

where pN+2(s) = (1−s2)P
(α,β)
N (s), and the remainder in (3.9) has the same asymp-

totic estimate as in (3.8). This follows from the asymptotic behaviour of a difference
between the integral in (3.7) and its quadrature formula in the case when v(s) is
an analytical function on [−1, 1]. Therefore, (3.9) gives also the nonsaturated ap-
proximation of v(s). Returning to the variable x and using matrices for derivatives
according to the scheme given at the beginning of the section, we obtain the equation

(

SN +
(

λ + O(exp(−νN))
)

EN

)

~uN = 0 . (3.10)
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All elements of the matrix SN can be computed by analogy with (3.4) and (3.5).
Therefore, the eigensystem for the matrix SN is close to the one for the matrix

SN + O
(

exp(−νN)
)

EN , if N → +∞ .

2
0. The computing scheme described above can be used not only for (1.1), but

also for solving different linear problems of heat or wave equations.

3
0. A possibility to compute the matrix S in (3.3) efficiently and to calculate

its eigenvalues gives very simple criterion of the stability of the DM-methods for
linear problems. They are stable if all n eigenvalues of S have negative real parts.
For example, the DM-method for (1.1) with uniformly distributed nodes is unstable
even for n ≥ 5. The choice of nodes as zeroes of classical orthogonal polynomials
leads to stable schemes for very large n. For example, the method with nodes as
zeroes of Chebyshev polynomials of the second kind is stable at least for n ≤ 240,
for Legendre polynomials – at least for n ≤ 120.

4. Numerical results

Table 1. Values of |u(x, t)| for x = L = 15, γ = 2 and δ(x) = 0.

t F FD DM

0.1 0.05087 0.05082 0.05058
0.2 0.06217 0.06224 0.06209
0.3 0.06871 0.06862 0.06868
0.4 0.07289 0,07286 0.07277
0.5 0.07574 0.07593 0.07572
0.6 0.07806 0.07827 0.07799
0.7 0.08041 0.08013 0.08019
0.8 0.08103 0.08164 0.08105
0.9 0.08214 0.08291 0.08226
1.0 0.08310 0.08398 0.08303
10 0.09468 0.09526 0.09466
20 0.08996 0.08994 0.08996
30 0.10289 0.10299 0.10288
40 0.09560 0.09561 0.09560
50 0.09127 0.09127 0.09127

In Table 1 we present absolute values of the numerical solutions on the boundary
x = L of problem (1.1) with δ(x) = 0 and simple initial conditions u0(x) = sin πx

L
.

We set parameters γ = 2 and L = 15. Such choice is very interesting for appli-
cations. In column (F ) of Table 1 we give results obtained by the classical Fourier
method (1.5) with N = 2000. In column (FD) we present the results obtained by Fi-
nite difference method (2.7) with space step h = 0.02 and time step τ = 0.01, and in
the last column (DM) the results obtained by the DM-method with 240 grid points
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Table 2. Values of |u(x, t)| obtained by the DM method with the Chebyshev
and Legendre nodes for x = L = 15, γ = 2 and δ(x) = tanh(7x − 3.5L).

n = 60 n = 120 n = 240

t Cheb.1 Leg. Cheb.2 Cheb.1 Leg. Cheb.2 Cheb.1 Cheb.2

0.1 0.0515 0.0498 0.0481 0.0511 0.0515 0.0514 0.0505 0.0506
0.2 0.0622 0.0632 0.0636 0.0628 0.0624 0.0613 0.0621 0.0621
0.3 0.0689 0.0698 0.0699 0.0685 0.0687 0.0683 0.0682 0.0685
0.4 0.0703 0.0710 0.0716 0.0729 0.0715 0.0718 0.0719 0.0718
0.5 0.0737 0.0734 0,0729 0.0745 0.0755 0.0746 0.0748 0.0745
0.6 0.0769 0.0768 0.0761 0.0762 0.0760 0.0751 0.0761 0.0759
0.7 0.0866 0.0858 0.0861 0.0847 0.0850 0.0848 0.0844 0.0843
0.8 0.0799 0.0801 0.0793 0.0789 0.0790 0.0787 0.0788 0.0788
0.9 0.0743 0.0757 0.0753 0.0761 0.0767 0.0760 0.0761 0.0760
1.0 0.0963 0.0949 0.0938 0.0939 0.0942 0.0942 0.0945 0.0944
10 0.1417 0.1417 0.1416 0.1422 0.1422 0.1422 0.1422 0.1422
20 0.1586 0.1586 0.1585 0.1577 0.1577 0.1577 0.1577 0.1577
30 0.1561 0.1561 0.1561 0.1549 0.1549 0.1549 0.1549 0.1549
40 0.1350 0.1350 0.1350 0.1339 0.1339 0.1339 0.1338 0.1338
50 0.0671 0.0671 0.0671 0.0684 0.0684 0.0684 0.0685 0.0685

distributed as zeroes of Chebyshev polynomials of the second kind are given. Nu-
merical results were obtained by means of mathematical systems Maple-5 (Fourier
series and Finite differences) and Mathematica 2.2 (the DM-method).

As we see, Finite differences and the DM-methods give the same order of accu-
racy, but such accuracy was achieved by the DM-method using approximately three
times less grid points than by Finites differences. Moreover, the DM-method was
very fast in calculations. It is due to the usage of the eigensystem of matrix S in
(3.3) which allows us to solve (3.3) exactly. Therefore, we can easily calculate the
numerical solution of (1.1) for any t without using discrete time integration. So, all
results in column (DM) were obtained in 47 seconds on a computer with Celeron
400 processor and 256 mb RAM.

In Table 2 we present numerical results obtained by the DM-method with

δ(x) = tanh(7x − 3.5L), γ = 2, L = 15

and for different sets of n grid points ( n = 60, 120, 240 ) distributed as zeroes of
Chebyshev polynomials of the first and second kind and as zeroes of Legendre poly-
nomials. We note that for δ(x) 6= const, the method of Finite differences (2.7) has
failed.

It is seen from Table 2, that all distributions of grid points with fixed n give
the same accuracy which rises by increasing n. The corresponding graph of |u(L, t|
for n = 240 and nodes distributed as zeroes of Chebyshev polynomial of the second
kind is shown in Fig.1, and the graphs of |u(x, t)| at various time moments are shown
in Fig.2.
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Figure 1. The graph of |u(L, t)| for δ(x) = tanh(7x − 3.5L).
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Figure 2. Evolution in time of |u(x, t)| for δ(x) = tanh(7x − 3.5L).

Thus we conclude that the DM method can be used efficiently to solve the prob-
lem (1.1) also for δ(x) 6= const.
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Baigtinių skirtumų ir DM metodo lyginamoji analizė linearizuotam girotrono uždaviniui

T. Cirulis, H. Kalis, O. Lietuvietis

Nagrinėjamas kraštinis uždavinys Šredingerio lygčiai, aprašantis elektronų judėjimą girotrone.
Darbe lyginami ir analizuojami Furje, baigtinių skirtumų ir degeneruotų matricų (DM) meto-
dais gauti skaitiniai rezultatai. Aptartas metodo taikymas greitų osciliacijų atveju.


