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Abstract. Numerical stability of the spline collocation method for the 2nd order Volterra
integro-differential equation is investigated and connection between this theory and corre-
sponding theory for the 1st order Volterra integro-differential equation is established. Results
of several numerical tests are presented.
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1. Introduction

We study the numerical stability of the spline collocation method for the 2nd order
Volterra integro-differential equation (VIDE). Stability means here the boundedness
of approximate solutions in the uniform norm in case of the test equation when the
number of knots increases. Basic ideas in the numerical solution of Volterra inte-
gral equation (VIE) and VIDE are given in [2]. First results about stability of the
collocation method by polynomial splines for Volterra integral equation are given in
[3] and the most adequate ones seems to be given in [5]. A special case of smooth
splines is treated in [4] and special case of piecewise polynomial splines, i.e. splines
with possible discontinuities in knots, is presented in [6]. There is a standard reduc-
tion of the 1st order VIDE to VIE considering the derivative of the solution as a
new unknown solution. But then the test equation with constant kernel transforms
into an equation with nonconstant kernel and the results obtained for VIE are not
directly extendable to the 1st order VIDE. Similar phenomena takes place if we try
to reduce the problem of stability for the 2nd order VIDE to that for the 1st order
VIDE. Another possibility is to present the 2nd order VIDE as a system consisting
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of a first order VIDE and a first order differential equation or as a first order VIDE
in product space. The components of unknown in this product space are the solution
of the initial 2nd order VIDE and its derivative. The notion of stability for this VIDE
in product space means boundedness of approximate solutions for both components
which is, however, different from the notion of stability given in Section 4. These
two circumstances motivate our investigations.

2. The spline collocation method

Consider the 2nd order Volterra integro-differential equation

y′′(t) = f(t, y′(t), y(t)) +

∫ t

0

K(t, s, y′(s), y(s))ds, t ∈ [0, T ], (2.1)

with initial conditions
y(0) = y0, y′(0) = y1 .

The functions f : [0, T ]×R → R and K : S ×R → R (where S = {(t, s) : 0 ≤ s ≤
t ≤ T}), and numbers y0 and y1 are supposed to be given. In order to describe this
method, let 0 = t0 < t1 < . . . < tN = T (with tn depending on N ) be a mesh on
the interval [0, T ]. Denote

hn = tn − tn−1, σn = (tn−1, tn], n = 1, . . . , N, ∆N = {t1, . . . , tN−1} .

Let Pk denote the space of polynomials of degree not exceeding k. Then, for given
integers m ≥ 1 and d ≥ −1, we define

Sd
m+d(∆N ) = {u : u|σn

= un ∈ Pm+d, n = 1, . . . , N − 1 ,

u(j)
n (tn) = u

(j)
n+1(tn + 0), tn ∈ ∆N , j = 0, 1, . . . , d}

to be the space of polynomial splines of degree m + d which for d ≥ 1, are d-times
continuously differentiable on [0, T ], for d = 0 are continuous on [0, T ] and for
d = −1 may have jump discontinuities at the knots ∆N .

An element u ∈ Sd
m+d(∆N ) as a polynomial spline of degree not greater than

m + d for all t ∈ σn, n = 1, . . . , N , can be represented in the form

un(t) =

m+d∑

k=0

bnk(t − tn−1)
k. (2.2)

To find coefficients bnk we suppose that a fixed selection of collocation parameters
0 < c1 < . . . < cm ≤ 1 is given. Then we define collocation points tnj = tn−1 +
cjhn, j = 1, . . . , m, n = 1, . . . , N , forming a set X(N). In order to determine the
approximate solution u ∈ Sd

m+d(∆N ) of the equation (2.1) we impose the following
collocation conditions

u′′(t) = f(t, u′(t), u(t)) +

∫ t

0

K(t, s, u′(s), u(s))ds, t ∈ X(N). (2.3)
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Starting the calculations by this method we assume also that we can use the initial
values u

(j)
1 (0) = y(j)(0), j = 0, . . . , d, that is justified by the requirement u ∈

Cd[0, T ]. Another possible approach is to use initial conditions u1(0) = y(0) and
u′

1(0) = y′(0) and more collocation points (if d ≥ 1) to determine u1. Thus, on every
interval σn we have d + 1 conditions of smoothness and m collocation conditions
to determine m + d + 1 parameters bnk. This allows us to implement the method
step-by-step going from an interval σn to the next one.

In this paper we will analyse the stability of the collocation method where the
splines are at least continuously differentiable. Thus, we suppose in the sequel that
d ≥ 1.

3. The method in the case of a test equation

Let us consider the test equation

y′′(t) = αy(t) + βy′(t) + λ

∫ t

0

y(s)ds + f(t), t ∈ [0, T ], (3.1)

where α, β and λ may be any complex numbers. The equation (3.1) is called the
basis test equation (see [1]) and it has been extensively used for studying stability
properties of several methods. Assume that the mesh sequence {∆N} is uniform,
i.e., hn = h = T/N for all n. Representing t ∈ σn as t = tn−1 + τh, τ ∈ (0, 1], we
have on σn the equality:

un(tn−1 + τh) =

m+d∑

k=0

ankτk, τ ∈ (0, 1], (3.2)

where we passed to the new parameters ank = bnkhk.
The smoothness conditions (for any u ∈ Sd

m+d(∆N ))

u(j)
n (tn − 0) = u

(j)
n+1(tn + 0), j = 0, . . . , d, n = 1, . . . , N − 1,

can be expressed in the form

an+1,j =

m+d∑

k=j

k!

(k − j)!j!
ank, j = 0, . . . , d, n = 1, . . . , N − 1. (3.3)

The collocation conditions (2.3), applied to the test equation (3.1), give

u′′(tnj) = f(tnj) + αy(tnj) + βu′(tnj) + λ

∫ tnj

0

u(s)ds,

j = 1, . . . , m, n = 1, . . . , N . (3.4)

From (3.2) we get
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un(tnj) =

m+d∑

k=0

ankck
j , u′

n(tnj) =
1

h

m+d∑

k=1

ankkck−1
j

and

u′′
n(tnj) =

1

h2

m+d∑

k=2

k(k − 1)ankck−2
j .

Now the equation (3.4) becomes

1

h2

m+d∑

k=0

k(k − 1)ankkck−2
j = α

m+d∑

k=0

ankck
j + β

1

h

m+d∑

k=0

kankck−1
j

+
n−1∑

r=1

λ

∫ tr

tr−1

ur(s)ds + λ

∫ tnj

tn−1

un(s)ds + f(tnj)

= α

m+d∑

k=0

ankck
j + β

1

h

m+d∑

k=0

kankck−1
j +

n−1∑

r=1

λh

∫ 1

0

(m+d∑

k=0

arkτk
)
dτ

+λh

∫ cj

0

(m+d∑

k=0

ankτk
)
dτ + f(tnj)

= α

m+d∑

k=0

ankck
j + β

1

h

m+d∑

k=0

kankck−1
j +

n−1∑

r=1

λh
(m+d∑

k=0

1

k + 1
ark

)

+λh

m+d∑

k=0

ank

ck+1
j

k + 1
+ f(tnj). (3.5)

Using the notation αn = (an0, . . . , an,m+d), we write (3.5) as follows:

m+d∑

k=0

ankk(k − 1)ck−2
j − αh2

m+d∑

k=0

ankck
j − βh

m+d∑

k=0

ankkck−1
j

− λh3
m+d∑

k=0

ank

ck+1
j

k + 1
= λh3

〈
q,

n−1∑

r=1

αr

〉
+ h2f(tnj), (3.6)

where q = (1, 1/2, . . . , 1/(m + d + 1)) and
〈
· , ·
〉

denotes the usual scalar product
in Rm+d+1. The difference of the equations (3.6) with n and n + 1 yields
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m+d∑

k=0

an+1,kk(k − 1)ck−2
j − βh

m+d∑

k=0

an+1,kkck−1
j − αh2

m+d∑

k=0

an+1,kck
j

−λh3
m+d∑

k=0

an+1,k

ck+1
j

k + 1
=

m+d∑

k=0

ankk(k − 1)ck−2
j − βh

m+d∑

k=0

ankkck−1
j

−αh2
m+d∑

k=0

ankck
j − λh3

m+d∑

k=0

ank

ck+1
j

k + 1
+ λh3

〈
q,

n−1∑

r=1

αr

〉

+h2f(tn+1,j) − h2f(tnj), j = 1, . . . , m, n = 1, . . . , N − 1. (3.7)

Now we may write equations (3.3) and (3.7) in the matrix form

(V − βhV1 − αh2V2 − λh3V3) αn+1 =
(
V0 − βhV1 − αh2V2

−λh3(V3 − V4)
)
αn + h2gn, n = 1, . . . , N − 1 , (3.8)

with (m + d + 1) × (m + d + 1) matrices V , V0, V1, V2, V3, V4 as follows:

V =

(
E
C

)
, V0 =

(
A
C

)
, E =

(
I 0

)
,

I being the (d + 1) × (d + 1) unit matrix, 0 is the (d + 1) × m zero matrix,

C =




0 0 2 6c1 . . . (m + d)(m + d − 1)cm+d−2
1

. . . . . . . . . . . . . . . . . .

0 0 2 6cm . . . (m + d)(m + d − 1)cm+d−2
m




,

A being a (d + 1) × (m + d + 1) matrix

A=




1 1 1 . . . . 1
0 1 2 . . . . m + d
. . . . . . . . . .

0 . . 1 . . .

(
m + d

d

)




, V1 =




0 0 0 . . . 0

0 1 2c1 . . . (m + d)cm+d−1
1

. . . . . . . . . . .
0 1 2cm. . . (m + d)cm+d−1

m


 ,

V2 =




0

1 c1 c2
1 . . . cm+d

1

. . . . . . . . . . . . .
1 cm c2

m . . . cm+d
m


 , V3 =




0

c1 c2
1/2 . . . cm+d+1

1 /(m + d + 1)
. . . . . . . . . . . .
cm c2

m/2 . . . cm+d+1
m /(m + d + 1)


 ,

V4 having the first d+1 rows equal to 0 and the last m rows the vector q, and, finally,
the m + d + 1 dimensional vector

gn =
(
0, . . . , 0, f(tn+1,1) − f(tn1), . . . , f(tn+1,m) − f(tnm)

)
.

Thus gn = O(h) for f ∈ C1.
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Proposition 1. The matrix V − βhV1 − αh2V2 − λh3V3 is invertible for sufficiently
small h.

Proof. Since

det V =det




(d + 1)dcd−1
1 . . . (m + d)(m + d − 1)cm+d−2

1

(d + 1)dcd−1
2 . . . (m + d)(m + d − 1)cm+d−2

2

. . . . . . . . .
(d + 1)dcd−1

m . . . (m + d)(m + d − 1)cm+d−2
m


=(d + 1)dcd−1

1

× . . . × (m + d)(m + d − 1)cd−1
m det




1 c1 . . . cm−1
1

. . . . . . . . . . . .
1 cd

m . . . cm−1
m


 6= 0,

and d ≥ 1, the matrix V is invertible. Such is also V − βhV1 − αh2V2 − λh3V3 for
small h. Although we have supposed, in general, that d ≥ 1, let us remark that in
cases d = 0 and d = −1 we may argue similarly to the proof in [6] and show that
det(V − βhV1 − αh2V2 − λh3V3) 6= 0, for small h. �

Therefore, the equation (3.8) can be written in the form

αn+1 = (V −1V0 + W )αn + rn, n = 1, . . . , N − 1, (3.9)

where W = O(h) and rn = O(h3) for f ∈ C1.

4. Stability of the method

We have seen that the spline collocation method (2.3) for the test equation (3.1) leads
to the recursion (3.9).

We distinguish the method with initial values u
(j)
1 (0) = y(j)(0), j = 0, . . . , d,

and another method which uses u1(0) = y(0), u′
1(0) = y′(0) and additional collo-

cation points t0j = t0+c0jh, j = 1, . . . , d−1, with fixed c0j ∈ (0, 1]\{c1, . . . , cm}
on the first interval σ1. Denote, in addition, d0 = max{d−2, 0} for the method with
initial values and d0 = 0 for the method with additional initial collocation.
���������	��
���
������

We say that the spline collocation method is stable if for any
α, β, λ ∈ C and any f ∈ Cd0 [0, T ] the approximate solution u remains bounded
in C[0, T ] in the process h → 0.

Let us notice that the boundedness of ||u||C[0,T ] is equivalent to the boundedness of
||αn|| in n and h in any fixed norm of R

m+d+1.
The principle of uniform boundedness allows us to establish

Proposition 2. The spline collocation method is stable if and only if

||u||C[0,T ] ≤ c ||f ||Cd0 [0,T ] ∀f ∈ Cd0 [0, T ], (4.1)

where the constant c may depend only on T , α, β, λ and on parameters cj and c0j .
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In order to formulate and prove the results concerning the numerical stability prop-
erties of the polynomial spline collocation method, we need the following results
for VIE (see [5]) and for the 1st order VIDE (see [7]). The step-by-step collocation
method for VIE is supposed to determine the approximate solution in Sd

m+d(∆N )
by the collocation conditions similarly to (2.3) at the points tnj .

1. The stability for VIE depends on the matrix M̃ = Ũ−1
0 Ũ , where Ũ0 and Ũ are

(m + d + 1) × (m + d + 1) matrices as follows:

Ũ0 =

(
E

G̃

)
, Ũ0 =

(
A

G̃

)
, G̃ =




1 c1 . . . cm+d
1

. . . . . . . . . . . .

1 cm . . . cm+d
m




,

E and A being defined as in V and V0.
2. If all eigenvalues of M̃ are in the closed unit disk and if those which lie on

the unit circle have equal algebraic and geometric multiplicities, then the spline
collocation method is stable.

3. If M̃ has an eigenvalue outside of the closed unit disk, then the method is unsta-
ble (u has exponential growth: ‖ u ‖∞≥ c eKN , for some constants K > 0 and
c > 0).

4. If all eigenvalues of M̃ are in the closed unit disk and there is an eigenvalue
on the unit circle with different algebraic and geometric multiplicities, then the
method is weakly unstable (u may have polynomial growth: ‖ u ‖∞∼ c Nk, c >
0, k ∈ N).

5. For fixed cj the eigenvalues of M = U−1
0 U for the 1st order VIDE in the case m

and d + 1 and eigenvalues of M̃ for VIE in the case m and d coincide and have
the same algebraic and geometric multiplicities, except µ = 1 whose algebraic
multiplicity for VIDE is greater by one than for VIE. Here U0 and U are (m +
d + 1) × (m + d + 1) matrices as follows:

U =

(
E
G

)
, U0 =

(
A
G

)
, G =




0 1 2c1 . . . (m + d)cm+d−1
1

. . . . . . . . . . . . . . .

0 1 2cm . . . (m + d)cm+d−1
m




,

E and A being defined as in V and V0.

Theorem 1. For fixed cj the eigenvalues of M for the 2nd order VIDE in the case
m and d + 2 and eigenvalues of M for the 1st order VIDE in the case m and d + 1
coincide and have the same algebraic and geometric multiplicities, except µ = 1
whose algebraic multiplicity for the 2nd order VIDE is greater by one than for the
1st order VIDE.

Proof. The eigenvalue problem for M is equivalent to the generalized eigenvalue
problem for V0 and V , i.e. (M − µI)v = 0 for v 6= 0 if and only if (V0 − µV )v = 0



86 M. Tarang

and (M−µI)w = v takes place if and only if (V0−µV )w = V v. Denote ν = 1−µ.
Then for the 2nd order VIDE with the parameters m and d + 2 we have

V0 − µV = (4.2)

=




ν 1 1 1 . . . . . . 1

0 ν 2 3 . . . . . . m + d + 1

0 0 ν

(
3

2

)
. . . . . .

(
m + d + 2

2

)

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . ν . . .

(
m + d + 2

d + 2

)

0 0 ν · 2 ν · 6c1 . . . . . . ν(m + d + 2)(m + d + 1)cm+d
1

. . . . . . . . . . . . . . . . . . . . .

0 0 ν · 2 ν · 6cm . . . . . . ν(m + d + 2)(m + d + 1)cm+d
m




.

Let Ii,p be the diagonal matrix obtained from unit matrix, replacing the i-th diagonal
element by the number p. Thus, the products Ii,pA and AIi,p mean the multiplica-
tion of i-th row and i-th column of A, respectively, by p. The direct calculation and

observation that

(
p

q

)
q

p
=

(
p − 1

q − 1

)
, allows us to get from (4.2)

Id+3,d+2 . . . I3,2(V0 − µV )I3,1/2 . . . Id+m+3,1/(m+d+2) =

(
ν q

0 U0 − µU

)
,

or

S(V0 − µV )S−1 = R

(
ν q

0 U0 − µU

)
, (4.3)

where S = Id+3,d+2 . . . I3,2, R = Id+m+3,d+m+2 . . . Id+4,d+3,

q =

(
1,

1

2
, . . . ,

1

m + d + 2

)
.

Now (4.3) gives

det(V0 − µV ) = (d + 3) . . . (d + m + 2)ν det(U0 − µU) ,

which permits to get the assertion about algebraic multiplicities of eigenvalues of M
and M . Similarly to [5] we can prove that the eigenvalue µ = 1 of M and M has
geometric multiplicity m and similarly to [6] that geometric multiplicities of µ 6= 1
as an eigenvalue of M and M coincide. �
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Proposition 3. If M has an eigenvalue outside of the closed unit disk, then the spline
collocation method is not stable with possible exponential growth of approximate
solution.

Proof. The structure of the proof is similar to that of Prop. 5 in [5] and we will deal
only with main moments. Consider an eigenvalue µ of M +W such that |µ| ≥ 1+ δ
with some fixed δ > 0 for any sufficiently small h. For α1 6= 0, being an eigenvector
of M + W , we have here

(V − βhV1 − αh2V2 − λh3V3)α1 = h2g0, (4.4)

where g0 = (a10, . . . , a1d, f(t11), . . . , f(t1m)), a1j =
hjy(j)(0)

j!
, j = 0, . . . , d.

Because of

y′′(0) = αy(0) + βy′(0) + f(0) , (4.5)

y(j)(0) = αy(j−2)(0) + βy(j−1)(0) + λy(j−3)(0) + f (j−2)(0), j = 3, . . . , d,

the vector α1 determines via (4.4) and (4.5) the values

f (j)(0), j = 0, . . . , d − 1, f(t11), . . . , f(t1m).

We take f on [0, h] as the polynomial interpolating the values

f (j)(0), j = 0, . . . , d − 2, f(t1j), j = 1, . . . , m,

and f (j)(h) = 0, j = 0, . . . , d0 (if cm = 1, then f (j)(h) = 0, j = 1, . . . , d0). In the
case of the method of additional knots let f be on [0, h] the interpolating polynomial
by the data f(0), f(t0j), j = 0, . . . , d − 1, f(t1j), j = 1, . . . , m, and f (j)(h) = 0,
(here d0 = 0 and if cm = 1, then f(t1m) = f(h) is already given and we drop
the requirement f(h) = 0). In both cases we ask f to be on [nh, (n + 1)h], n ≥ 1,
the interpolating polynomial by the values f (j)(nh) = 0 and f (j)((n + 1)h) = 0,
j = 0, . . . , d0 (if cm = 1, then for j = 1, . . . , d0), and also f(tn+1,j) = f(t1j), j =
1, . . . , m. This guarantees that f ∈ Cd0 [0, T ] and rn = 0, n ≥ 1. The interpolant f
can be represented on [tn, tn+1] by the formula:

f(t) = f(tn + τh) =
κ∑

i=0

( ki∑

l=0

hslpilf
(sl)(ξl)

) i−1∏

r=0

(τ − br) (4.6)

with br being cj or c0j , ξl being tnj or tj , 0 ≤ sl ≤ d1, ki ≤ i, constants pil

depending on cj and c0j . In the case of initial conditions κ = m + d + d0 − 1
(κ = m + d + d0 − 2 if cm = 1) and in the case of additional knots κ = m + d + 1
(κ = m + d, if cm = 1) on the interval [0, h] and κ = m + 2d0 + 1 (κ = m + 2d0 if
cm = 1) on the interval [nh, (n + 1)h], n ≥ 1.

Replacing h by h/k, k = 1, 2, . . . , and keeping ||α1|| = h2/k2, we have ||g0||∞
bounded which means that f(t1j), j = 1, . . . , m, and hjy(j)(0)/kj , j = 0, . . . , d,
or hjf (j)(0)/kj , j = 0, . . . , d0, are bounded too in the process k → ∞. Thus (4.6)
gives
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||f ||Cd0 [0,T ] ≤ c kd0 . (4.7)

On the other hand, ||αn+1|| ≥ (1 + δ)n||α1|| yields

||αkN || ≥
h

k
(1 + δ)kN−1 (4.8)

and (4.1) cannot be satisfied. The inequalities (4.7) and (4.8) mean also the expo-
nential growth of approximate solution if we keep the norm of f bounded in Cd0 .
�

5. Examples and numerical tests

Let us consider some special cases of d and m.
Case d = 1, m ≥ 1 being arbitrary. We have

V =

(
1 0 . . . 0

C

)
, V0 =

(
1 1 . . . 1

C

)

and det(V0 −µV ) = (1−µ)m+2 det C0 where C0 is obtained from C omitting first
two columns. This means that the method is always stable.

Case d = 2, m = 1 (cubic splines). The equation det(V0 − µV ) = 0 besides
µ = 1 has the solution µ = 1−1/c1. The method is stable if and only if 1/2 ≤ c1 ≤
1.

Case d = 2, m = 2. Now the equation det(V0 − µV ) = 0 has the root µ = 1
with geometric multiplicity 2. From the solution

µ(c1, c2) = 1 −
c1 + c2 + 1

c1c2

it follows that the method is stable if and only if c1 + c2 ≥ 1. In numerical tests we
explored the 2nd order integro-differential equation





y′′(t) = y(t) + y′(t) +
∫ t

0
y(s)ds − sin(t) − cos(t) − et ,

y(0) = 1, y′(0) = 1, t ∈ [0, 1] .

This equation has the exact solution y(t) = (sin t+cos t+ et)/2. As an approximate
value of ||u||∞ we actually calculated max1≤n≤N max0≤k≤10

∣∣un(tn−1 +kh/10)
∣∣.

The results are presented in Tables 1–4. From these numerical examples we can
observe a good conformity of theoretical results presented in the proceeding sections
and numerical results given in this section.
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Table 1. Case d = 1, m = 1 (quadratic splines).

N 4 16 64 256 4096

c1 = 0.5 2.053593 2.050242 2.050041 2.050028 2.050028
c1 = 1.0 2.112955 2.060136 2.052332 2.050591 2.050062

Table 2. Case d = 1, m = 2 (Hermite cubic splines).

N 4 16 64 256 4096

c1 = 0.4

c2 = 0.6
2.047625 2.049880 2.050018 2.050027 2.050028

c1 = 0.7

c2 = 1.0
2.042264 2.049630 2.050004 2.050026 2.050028

Table 3. Case d = 2, m = 1 (cubic splines).

N 4 16 64 256 512

c1 = 0.4 2.047252 2.049817 61.720406 1.60 · 1033
1.20 · 1077

c1 = 0.5 2.047590 2.049861 2.050017 2.050027 2.050027

c1 = 1.0 2.055555 2.050364 2.050048 2.050028 2.050028

Table 4. Case d = 2, m = 2.

N 4 64 256 512

c1 = 0.2

c2 = 0.5
2.049254 7.65 · 1026

2.89 · 10139
1.21 · 10292

c1 = 0.3

c2 = 0.7
2.049935 2.050027 2.050028 2.050028

c1 = 0.5

c2 = 1.0
2.050015 2.050028 2.050028 2.050028
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Antros eilės Volterra integro-diferencialinių lygčių splainų kolokacijos metodo stabilu-
mas

M. Tarang

Straipsnyje nagrinėjamas antros eilės Volteros integro-diferencialinių lygčių splainų kolokaci-
jos metodo skaitinis stabilumas ir nustatytas ryšys tarp šios teorijos ir atitinkamos pirmos eilės
Volterra integro-diferencialinių lygčių teorijos. Pateikti keleto skaitinių eksperimentų rezul-
tatai.


