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Abstract. Viscous two-fluid channel flows arise in different kinds of coating technologies.
The corresponding mathematical models represent two-dimensional free boundary value prob-
lems for the Navier-Stokes equations. In this paper the solvability of the related stationary
problems is discussed and computational results are presented.
Furthermore, it is shown that depending on the flow parameters like viscosity or density ratios
and on the fluxes there can happen nonexistence of steady-state solutions. For other parameter
sets the solution is even unique.

Key words: Free boundary value problems, viscous channel flows, two-fluid flows, Navier-
Stokes equations

1. Introduction

In this contribution we consider the plane stationary flow of two viscous incompress-
ible fluids (with kinematic viscosities ν i > 0 and densities %i > 0, i = 1, 2) through
a special uniform channel (cf. Fig.1). Emphasize that the corresponding problem
will be formulated in dimensionless form. The concrete transition to that formulation
can be found in [11]. The flow is steady-state and has some features of a slot coat-
ing process. The channel is horizontal, unbounded in both directions and contains a
semi-infinite inner wall (cf. Fig.1). The lower wall S1 := {x ∈ R

2 : −∞ < x1 <
+∞, x2 = 0} is moving with constant velocity R = (R, 0)T (R > 0). The upper
wall S2 := {x ∈ R

2 : −∞ < x1 < +∞, x2 = 1} is at rest. Furthermore, the partial
inner wall S3 := {x ∈ R

2 : −∞ < x1 < 0, x2 = h1 (0 < h1 < 1)} is given. Thus,
in fact we have two separated parallel channels for negative values of x1. Both vis-
cous fluids are flowing out of the two channels and behind the pointQ(0, h 1) they are
joining and creating a free interface Γ := {x ∈ R

2 : 0 < x1 < +∞, x2 = ψ(x1)}
whereψ is unknown a priori and has to be found. It is supposed that the free interface
Γ separates from the inner wall S3 at its endpointQ.
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By G1 := {x ∈ R
2 : 0 < x2 < h1, if − ∞ < x1 6 0, and 0 < x2 <

ψ(x1), if 0 < x1 < +∞} we denote the flow domain of the lower fluid. By G 2 we
denote the flow domain of the upper fluidG 2 := {x ∈ R

2 : h1 < x2 < 1, if −∞ <
x1 6 0, and ψ(x1) < x2 < 1, if 0 < x1 < +∞}. Finally, by G := G1 ∪ G2 we
mean the union of both fluid layers.

Figure 1. Two–fluid channel flow with partial inner wall.

The direction eg of the gravitational force is the vector eg = (0,−1)T . We study
the two-fluid flow within the channel G caused by pressure gradients downstream
and by the motion of the lower channel wall. This means mathematically that the
positive flux F i in each liquid layer Gi (i = 1, 2) is prescribed and the final fluid
layer thicknesses h∞ and (1− h∞) are to be determined. Note, that our (mathemat-
ical) fluxes F i are in fact the real physical fluxes divided by the constant densities of
the fluids.

An interpretation of such a flow could be the flow of two liquids coming from
different reservoirs (i.e. slots or chambers) and flowing commonly in one channel
after their unification. In slot coaters such flows occur on some parts of the coater.
The corresponding motion as well as the final layer thicknesses are important there.

Let h∞ with 0 < h∞ < 1 be the constant limit of ψ(x1) at infinity. The
problem under consideration has the following form: find a vector of velocity
v = (v1(x1, x2), v2(x1, x2))

T , a pressure p(x1, x2) and a function ψ(x1) satisfy-
ing in the domain G the Navier-Stokes system of equations





(v · ∇)v − ν4v + 1
%
∇p = g eg ,

∇ · v = 0 ,
(1.1)

and the boundary and integral conditions

v|S0
= R = (R, 0)T , v|S2

= 0, v|S±

3

= 0 , (1.2)





[v]|Γ = 0, v · n|Γ− = 0, [t · S(v)n]|Γ = 0,

d

dx1

ψ′(x1)√
1 + ψ′(x1)

2
=

1

σ
[−p+ n · S(v)n]|Γ ,

limx1→+∞ ψ(x1) = h∞,
∫

δ1(bq)
v1(q̂, x2) dx2 = F1,

(1.3)
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∫

δ2(bq)

v1(q̂, x2) dx2 = F2. (1.4)

In problem (1.1) – (1.4) the symbol δi(q̂) denotes the intersection of Gi with the
vertical line x1 = q̂ and σ > 0 is the surface tension at Γ . We further emphasize that
from a physical point of view in (1.3), (1.4) only positive values of Fi make sense.

In problem (1.1) – (1.4) the following notations have been used: n and t are unit
vectors normal and tangential to Γ and oriented as x2, x1, respectively. By a · b
we mean the inner product of a,b ∈ R

2, ∇ = (∂/∂x1, ∂/∂x2)
T is the gradient

operator, ∇p = grad p, ∇ · v = div v, %|Gm
= %m (m = 1, 2) is the restriction

of % to Gm (analogously for ν). 4 = ∇2 denotes the Laplace operator. By S(v) we
denote the deviatoric stress tensor, i.e. a matrix with elements

Sij(v) = %ν

(
∂vi

∂xj

+
∂vj

∂xi

)
, i, j = 1, 2 .

The symbol [w]|Γ expresses the jump of w crossing the free interface Γ , i.e.

[w(x0)] |Γ := lim
y→x0

w(y) − lim
x→x0

w(x), (x0 ∈ Γ, y ∈ G1, x ∈ G2),

and the symbolw|Γ− denotes the limit from below at the interface Γ , more precisely

w(x0)|Γ− := lim
y→x0

w(y), (x0 ∈ Γ, y ∈ G1).

An analogous statement is true for S±
3 (and also for Σ±

3 in Section 4). Note that the
left-hand side of (1.3)2 (i.e. of the second equation in (1.3)) is equal to the curvature
K(x1) of Γ . The fluid layer thickness h∞ has also to be determined. Obviously, it
should hold 0 < h∞ < 1.

Mathematical problems for the stationary flows of a viscous incompressible fluid
with a free boundary were investigated by many authors. Numerous references on
this field can be found, e.g., in the bibliographies of [4, 6, 12, 13]. Coating flows
with the static or dynamic contact angles were studied in [1, 2, 5, 10, 11, 14, 15].
In all these papers considering either compact or semi-infinite free boundary value
problems the same general scheme developed in [3, 9] has been used.

Let us shortly recall this scheme and apply it to problem (1.1)–(1.4). The starting
problem is divided into two problems: the boundary value problem for the Navier-
Stokes system of equations in a fixed domain and the problem of finding the free
boundary Γ from the equation

K(x1) = σ−1[−p(x) + n · S(v)n]|Γ (1.5)

with the corresponding boundary conditions. The solution of the free boundary prob-
lem can be found by the method of successive approximations. At every step of suc-
cessive approximations the Navier-Stokes system is solved in a fixed domain. The
obtained solution is substituted into the right-hand side of (1.5) and by solving this
equation one obtains the next iteration for the free boundaryΓ . Thus, one gets a new
domain in which the Navier-Stokes system has to be solved again. So, this scheme
can be illustrated by the diagram
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Γ (0) → G(0) → (v(1), p(1)) → Γ (1) → G(1) → (v(2), p(2)) → . . .

Note that in this method at every step of successive approximations the construction
of (v, p) is separated from the construction of the free boundary Γ . On the other
hand, for free boundary problems in which the unknown flow domain is unbounded
in two directions the described scheme is not applicable (cf. [4, 6, 7] and others).

2. Function Spaces

Let B be an arbitrary domain in R
2 and N ⊂ B a manifold of dimension less

than 2. The symbol %N (x) denotes (in this section only) the distance dist (x, N) :=
infy∈N |x − y|. Let β = (β1, β2) be a multiindex with

|β| = β1 + β2 and Dβu =
∂|β|u

∂xβ1

1 ∂xβ2

2

(βi ∈ N ∪ {0}).

The symbol brc will denote the integer part of r. Cr(B) (r > 0, non-integer) denotes
the Hölder space of functions defined in a domainB ⊂ R

2 with a finite norm

|u|
(r)
B =

∑

|β|<r

sup
x∈B

|Dβu| +
∑

|β|=brc

sup
x,y∈B

|Dβu(x) −Dβu(y)|

|x − y|r−brc
.

Let Ċr
s (B,N) be the weighted Hölder space of functions defined inB\N and having

a finite norm

|u|Ċr
s
(B,N) =

∑

|β|<r

sup
x∈B\N

%
|β|−s

N (x)|Dβu(x)|

+
∑

|β|=brc

sup
x∈B\N

%r−s
N (x) sup

|x−y|< 1
2
%N (x)

|Dβu(x) −Dβu(y)|

|x − y|r−brc
.

Cr
s (B,N) (r > s > 0; r, s non-integer) denotes the space of functions with a finite

norm

|u|Cr
s
(B,N) := |u|

(s)
B +

∑

s<|β|<r

sup
x∈B\N

%
|β|−s

N (x)|Dβu(x)|

+
∑

|β|=brc

sup
x∈B\N

%r−s
N (x) sup

|x−y|< 1
2
%N (x)

|Dβu(x) −Dβu(y)|

|x − y|r−brc
.

Clearly, Ċr
s (B,N) is a subspace of Cr

s (B,N) consisting of functions vanishing on
N together with their derivatives of order up to bsc. For s < 0 assume Cr

s (B,N) :=
Ċr

s (B,N).
Finally we define the weighted Hölder spaces to which the generalized solutions

to the problem (1.1)–(1.4) belong. We use the following notations:

G0 := {x ∈ G : |x1| < 2}, G+ := {x ∈ G : x1 > 1} ,

G− := {x ∈ G : x1 < −1}, J0 := (0, 2), J+ := (1,+∞) .
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For an arbitrary real number z > 0 we define the space

Cr
s,z(G) =

{
u(x), u|G0 ∈ Cr

s (G0, Q∗), exp(zx1)u(x)|G+ ∈ Cr(G+),

exp(−zx1)u(x)|G− ∈ Cr(G−)
}

with the norm:

‖ u ‖r,z
G,s:= |u|Cr

s
(G0,Q) + | exp(zx1)u|

(r)
G+ + | exp(−zx1)u|

(r)
G− .

For functions f(x1) defined in R
1
+ we introduce the space Cr

s,z(R
1
+) with the norm

‖ f ‖r,z

R
1
+

,s
= |f |Cr

s
(J0,0) + |f(x1) exp(zx1)|

(r)
J+ .

The spaces of vector-fields u are denoted by bold letters. The corresponding norms
are the sum of the norms of the coordinate functions.

3. Analytical Results

By straightforward calculations one can determine the exact Poiseuille flows

{v(−)(x), p(−)(x)}, x ∈ G−
i , i = 1, 2 .

The corresponding velocities do not depend on x1. In G−
1 (i.e. if 0 6 x2 6 h1) one

obtains




v
(−)
1 (x) =

(
3R

h2
1

−
6F1

h3
1

)
x2

2 +

(
−

4R

h1
+

6F1

h2
1

)
x2 +R,

v
(−)
2 (x) ≡ 0,

p(−)(x1, x2) = 2ν1%1

(
3R

h2
1

−
6F1

h3
1

)
x1 − %1gx2 + k1 .

(3.1)

In G−
2 (i.e., if h1 6 x2 6 1) one gets, respectively,





v
(−)
1 (x1, x2) = −

6F2

(1 − h1)3
x2

2 +
6(1 + h1)F2

(1 − h1)3
x2 −

6h1F2

(1 − h1)3
,

v
(−)
2 (x) ≡ 0,

p(−)(x1, x2) = −
12ν2%2F2

(1 − h1)3
x1 − %2gx2 + k2.

(3.2)

It is well-known that the pressure p can be determined only up to an additive constant
in channel flows (cf. k 1, k2).

In [6, 7] the Poiseuille flow {v (+), p(+)} for the united channel G+ was deter-
mined by straightforward calculations, too. The corresponding flow fields are given
by the following formulae [cf. also equations (32) – (34) in [7] (p. 206, 207) or
equations (A.11′), (A.12′) in [6] (p. 41)]
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



v
(+)
1 (x2) =

{
0.5a1x

2
2 + b1x2 +R, 0 6 x2 6 h∞

0.5a2(x
2
2 − 1) + b2(x2 − 1), h∞ 6 x2 6 1

,

v
(+)
2 (x2) ≡ 0,

p(+)(x) =

{
p0x1 − %1g + k, 0 6 x2 6 h∞

p0x1 − %2g(x2 − 1) − %1h
2g + k, h∞ 6 x2 6 1

,

(3.3)

where the coefficients have the representations

a1 = −3F1−Rh∞

h2
∞

− 3 F2

r(1−h2
∞) , b1 = (2 + h∞)F1−Rh∞

h2
∞

+ h∞
F2

r(1−h2
∞) ,

a2 = −3rF1−Rh∞

h2
∞

− 3 F2

1−h2
∞

, b2 = r(2 + h∞)F1−Rh∞

h2
∞

+ h∞
F2

1−h2
∞

,

and r :=
%1ν1
%2ν2

in this section. For the pressure gradient, i.e.
∂p

∂x1
= p0, it holds

p0 = a1ν1%1 = a2ν2%2.
Note that in [6] the viscous two-fluid flow through a perturbed uniform channel

(without a partial inner wall) was studied by different functional-analytic methods
(cf. also [8]). An essential part of the determination of {v(+), p(+)} consisted in
the calculation of the value h∞ from the following 5th degree polynomial equation
(cf. also equation (A.14) in [6], p. 43).

r(r − 1)Rh5
∞ + [−4r(r − 1)R− r(r − 1)F1 − (r − 1)F2]h

4
∞

+ [r(6r − 5)R+ 2r(2r − 3)F1 − 2rF2]h
3
∞ + [2r(−2r + 1)R (3.4)

+ 3r(−2r + 3)F1 + 3rF2]h
2
∞ +

[
r2R+ 4r(r − 1)F1

]
h∞ − r2F1 = 0.

Note that the final thickness h∞ is a function of F1, F2, R and the rheological param-
eters of the fluids. It can have up to three different values within (0, 1) for the same
parameter set (cf. [6, 7]). Let ĥ∞ be one of these values. Furthermore, by ψ̂(x1)
we denote the associated infinitely differentiable solution of the following boundary
value problem





−
d

dx1

ψ′(x1)√
1 + ψ′(x1)

2
+
g(%1 − %2)

σ
ψ(x1) =

g(%1 − %2)

σ
ĥ∞,

ψ(0) = h1, lim
x1−→+∞

ψ(x1) = ĥ∞,

(3.5)

which can be obtained from the second line of (1.3) by setting v = 0 and p = const
as the initial solution for F1 = F2 = R = 0. Let ξ = ξ(x1) be a smooth cut-
off function vanishing for |x1| 6 1 and being equal to 1 for |x1| > 2. Finally,
suppose that %1 > %2 is fulfilled. This assumption is physically sensefull. Now we
can formulate the main result of this section.

Theorem 1. There exist positive real numbers s0,M0 and z0 6

√
g (%1−%2)

σ
such

that for arbitrary s ∈ (0, s0), z ∈ (0, z0),max [F1, F2, R] < M0 and for parameters
ĥ∞, F1, F2, R satisfying the condition
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∣∣∣h1 − ĥ∞

∣∣∣ <
√

2σ

g (%1 − %2)
, (3.6)

where ĥ∞ is one of the roots to equation (3.4), the free boundary value problem
(1.1) − (1.4) has a unique solution {v, p, ψ} which can be represented in the form

{
v = ξ(−x1)v

(−) + ξ(x1)v
(+) + w, ψ(x1) = ψ̂(x1) + ω(x1),

p = ξ(−x1)p
(−) + ξ(x1)p

(+) + p0(x),
(3.7)

where {v(−), p(−)} denotes the Poiseuille flow from equations (3.1), (3.2) in both
channels as x1 −→ −∞ and {v(+), p(+)} is the basic solution (3.3) for x1 −→
+∞. Moreover, w ∈ Cs+2

s,z (G), p0 ∈ Cs+1
s−1,z(G

0 ∪ G+),∇p0 ∈ Cs
s−2,z(G) and

ω ∈ C3+s
1+s,z(R

1
+) hold.

The proof of this theorem can be realized in the same way as in [10] applying the
above mentioned scheme. We omit here the proof. The condition (3.6) is a con-
sequence of solving the boundary value problem (3.5) and the physical restriction
%1 > %2 is also essential for the applied method. The weight parameter s0 in Theo-
rem 3.1 can be estimated studying a model problem for the Stokes system in a neigh-
bourhood of Q in the same way as in [10]. The exponential behaviour of w, p0, ω at
infinity is well-known (cf. [4, 10]).

4. Computational Results

For computational purposes it was necessary to truncate the theoretical unbounded
flow domain from Fig.1.

Figure 2. Computational (truncated) flow domain.

Therefore, one gets an artificial inlet Σ4 = Σ41 ∪Σ42 (i.e. an inflow region in both
channels) and an artificial outlet Σ5 = Σ51 ∪ Σ52 far enough from the separation
point Q. We obtain the following two free boundary value problems





(v · ∇)v − ν4v + 1
%
∇p = g eg,

∇ · v = 0 ,
(4.1)

v|Σ1
= (1, 0)T , v|Σ2

= 0, v|Σ±

3

= 0, v|Σ4k
= v(4,k), (k = 1, 2), (4.2)
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



[v]|Γ = 0, v · n|Γ− = 0, [t · S(v)n]|Γ = 0,

d

dx1

ψ′(x1)√
1 + ψ′(x1)

2
=

1

σ
[−p+ n · S(v)n]|Γ ,

(4.3)

with either
v1|Σ5k

= v
(5)
1 , v2|Σ5k

= 0, (k = 1, 2), (4.4D)

or

t · T(v)n|Σ5k
= 0 =

∂v1
∂x1

∣∣∣∣
Σ5k

, v2|Σ5k
= 0, (k = 1, 2). (4.4N)

AtΣ4 we pose Dirichlet boundary conditions (4.24) (i.e. the fourth equation in (4.2))
where v(4) is in fact the Poiseuille flow v (−) from (3.1), (3.2). At the outlet Σ5 we
set either Dirichlet boundary conditions (4.4D) with v(5)

1 = v
(+)
1 taken from (3.3) or

Neumann boundary conditions (4.4N) for the downstream velocity v1.
We were especially interested in the case, when h∞ has three different values

in (0, 1) for given fluxes F 1, F2. This happens if F1 = 0.41 and F2 = 0.01 hold
(cf. [6, 7]). The associated remaining parameters for this first example are ν1 =
10.0, ν2 = 2.0, %1 = 1.0, %2 = 0.5263, σ = 0.001. The partial inner wall Σ3 is
located at h1 = 0.5. The inflow region is situated at x 1 = 0.0, the separation point
Q at x1 = 4.0 and the outflow region was chosen at x 1 = 17.0.

The numerical simulations have been performed with the help of a FORTRAN
code that uses both the FEM and the method of support lines (or spines) for the
discretization of the flow domain (cf. [11]). The discretization has been performed
using 643 nodes, 288 triangular elements and 19 spines. Thus, the total number of
unknowns was 2345. More details on the discretization of similar problems can be
found in [6]. All computations presented below were realized on a PENTIUM III
personal computer with 450 MHz. The time per iteration was about 20 seconds.

In the first computation we posed Dirichlet boundary conditions for v1 at the
outlet and the x2 - value h∞ of Γ at x1 = 17.0 has not been fixed. Its starting value
has been h(0)

∞ = 0.6321, i.e. one of the three exact solutions to the problem without
inner wall in [6]. The position of Γ after 5 iterations is presented in Fig.3.

Figure 3. Computed free interface for h
(0)
∞ = 0.6321.

When taking h(0)
∞ = 0.8031 the following figure arises (see Fig.4) In the third
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Figure 4. Computed free interface for h
(0)
∞ = 0.8031.

Figure 5. Computed free interface of a two-fluid channel flow with Neumann bound-
ary conditions.

computation (cf. Fig.5) of the first example we have used Neumann boundary con-
ditions for v1 at the outlet and the position h∞ of Γ at the outlet has also not been
fixed. Its starting value for the iteration scheme has been h(0)

∞ = 0.5. Figure 5 shows
the computed position of the free interface Γ after 30 iterations.

Even if choosing the position h1 of the inner wall very close to one of the three
exact values of h∞, namely h1 = 0.8, the computational results did not become
better. Figure 6 represents the corresponding situation.

Figure 6. Computed free interface of a two-fluid channel flow with a different inner
wall.

In all these computations of the first example we could not reach convergence of the
iteration scheme. Moreover, one can recognize that in Figs.3 – 6 the free interface Γ
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turns off in front of the outlet. It cannot find a final thickness h∞. This was typical
for all similar computations. Therefore, it seems to us that there is no solution of
problems (4.1)− (4.4D) and (4.1)− (4.4N) for the above mentioned parameter set.

Let us introduce a second parameter set:

F1 = 0.534, F2 = 0.266, ν1 = 166.667, ν2 = 250.0 ,

%1 = 1.0, %2 = 0.9, σ = 0.0001 .

The location of the partial inner wall Σ3 is h1 = 0.3 (cf. Fig.7).

Figure 7. Computed free interface for a second parameter set.

It is well-known (cf. [6, 7]) that for this parameter set the uniform channel prob-
lem without inner wall possesses a unique solution which leads to the layer thickness
h∞ = 0.5027. We could show that our problem (4.1) − (4.4N) has also a unique
solution with the same h∞. The iteration scheme converges independently of the
starting value h(0)

∞ . Figure 7 shows the computed free interface after 30 iterations.
One can see the uniform behaviour of Γ . The last picture (Fig.8) represents the ve-
locity moduli at the nodes located on the free interface.

Figure 8. Velocities at the free interface for a two-fluid channel flow.

Note finally, that the pressure converges very well except at the neighbourhood of
the separation point Q where the pressure admits a singularity.
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Apie dviejų tekančių kanale skysčių srauto egzistavimą ir vienatį

J. Socolowsky

Dviejų, tekančių kanale, klampių skysčių srauto uždavinys iškyla taikant įvairias skirtingų
r ūšių paviršių padengimo technologijas. Atitinkamas matematinis modelis išreiškiamas dvi-
mačiu kraštiniu uždaviniu su laisvu paviršiumi Navje-Stokso lygtims.
Straipsnyje nagrinėjamas santykinai stacionaraus uždavinio išsprendžiamumas ir pateikiami
skaičiavimo rezultatai. Be to parodoma, kad priklausomai nuo srovės parametrų kaip ir nuo
klampumo ir tankio santykio stacionar ūs sprendiniai gali neegzistuoti. Su kitais parametrais
egzistuoja tiksliai vienas sprendinys.


