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J. SIEBER1, M. RADŽIŪNAS2 and K. R. SCHNEIDER2

1 University of Bristol

Dept. of Eng. Math., Queen’s Building, University of Bristol, Bristol BS8 1TR,
United Kingdom

E-mail: 9�:	;=<8>�?A@	B�@0C�D	B�C7?4>FE�G�HI<J:�KI<ML�N
2 Weierstrass Institute for Applied Analysis and Stochastics, Berlin

Mohrenstr. 39, 10117 Berlin, Germany

E-mail: C�:4O�P�?QL�;�:�>	DARS?A:�>�TUB�@0C�H�?Q;=<�O�@
VW>�K�X4;�@#?YO�@	C�D	RS?A:�>�TQB�@	C�H�?U;=<�O�@
Received October 10 2003; revised December 19 2003

Abstract. We investigate the longitudinal dynamics of multisection semiconductor lasers
based on a model, where a hyperbolic system of partial differential equations is nonlinearly
coupled with a system of ordinary differential equations. We present analytic results for that
system: global existence and uniqueness of the initial-boundary value problem, and existence
of attracting invariant manifolds of low dimension. The flow on these manifolds is approxi-
mately described by the so-called mode approximations which are systems of ordinary differ-
ential equations. Finally, we present a detailed numerical bifurcation analysis of the two-mode
approximation system and compare it with the simulated dynamics of the full PDE model.

Key words: laser dynamics, invariant manifold theory, hyperbolic systems of partial differ-
ential equations, model reduction, bifurcation analysis

1. Motivation

In commercial and public communication, the exchange of multimedial information
growths rapidly. Thus, the corresponding data traffic increases exponentially and is
characterized by the shift from voice communication to package oriented data traf-
fic. This fact implies a big challenge for a strong increase of the data transmission
rate. Due to their inherent speed, semiconductor lasers are of great interest as opti-
cal devices for fast data regeneration (reamplification, retiming, reshaping) in future
photonic networks. Typically, these devices have a non-stationary working regime.
As an example we mention the regime of high-frequency oscillations. Multisection
lasers allow one to generate and to control such nonlinear effects by designing the
longitudinal structure of the device (see, e.g., [16, 19, 25, 28]).
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However, prototyping of multisection semiconductor lasers is very expensive and
time consuming. The goal of this paper is to demonstrate that mathematical models
can be used to study the longitudinal dynamics of such lasers and to optimize their
working regime.

We focus on the traveling wave model, a linear hyperbolic system of partial dif-
ferential equations (PDEs) which is nonlinearly coupled with a system of ordinary
differential equations (ODEs). It models the longitudinal dynamics of edge emit-
ting multisection semiconductor lasers by the interaction of two physical variables:
the complex light amplitude (in fact, its spatially slowly varying envelope), which is
spatially resolved in the longitudinal direction of the laser and described by the linear
hyperbolic PDE subsystem, and the effective carrier density within the active zone
of the device, which is section-wise spatially averaged and described by the ODE
subsystem.

This model has the advantage of meeting two seemingly contradictory criteria,
accuracy and simplicity (or rather accessibility to a detailed bifurcation analysis). On
one hand, it is accurate enough to describe all phenomena of interest to the engineers.
Moreover, it can easily be made more realistic by gradually incorporating secondary
physical effects that may play a role in limiting the performance of a particular de-
vice. On the other hand, it allows one to reduce the model to a low-dimensional sys-
tem of ODEs by exploiting the fact that the carrier density operates on a much slower
time-scale than the light amplitude. These ODEs in turn are accessible to a detailed
bifurcation analysis using standard software like AUTO [10]. Only this bifurcation
analysis gives insight into the mechanisms behind many nonlinear phenomena and
is able to reveal effects (for example excitability [27]) that may be invisible in pure
parameter studies.

Both aspects of the traveling wave model have been implemented in the numer-
ical code ������� (Longitudinal Dynamics of Semiconductor Lasers). Hence, this nu-
merical tool provides engineers, laser physicists, and mathematicians with a whole
hierarchy of models allowing them to “switch on or off” physical effects to gain in-
sight which of these effects causes the particular phenomenon they are interested in.
Besides numerical integration of the model equations this tool solves also the spec-
tral problem of the model equations, allows to analyze the dynamics of individual
longitudinal modes and in certain cases enables one effectively to compare the so-
lutions provided by the PDE model and the reduced mode approximation systems.
This modeling approach has been used quite successfully in the recent past to design
new devices exhibiting high-frequency oscillations [7, 8, 28].

In this paper we focus more on the aspect of model reduction than extension,
mostly because this part is more thoroughly supported by mathematical theory. The
paper is organized as follows: In section 2. we describe the traveling wave model and
give a detailed physical interpretation of all coefficients and variables. In section 3.
we show that the corresponding initial-boundary value problem is well-posed. In
section 4. we introduce a small parameter exploiting the difference in the time-scale
between light and carrier density. In section 5. we investigate the spectral properties
of the infinite-dimensional linear part. Section 6. combines the results of the previ-
ous sections to derive conditions guaranteeing that the traveling wave model can be
reduced to an ODE system. In section 7. by showing a detailed two-parameter bifur-
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cation diagram we demonstrate how useful the reduced model can be. We link this
bifurcation diagram to a parameter study with a more realistic version of the trav-
eling wave model. In the last section we draw conclusions and give an outlook on
future projects.

2. The coupled traveling wave model with nonlinear gain
dispersion

The coupled traveling wave model, a hyperbolic system of PDEs coupled with a sys-
tem of ODEs, describes the longitudinal effects in narrow edge-emitting laser diodes
[1, 15, 23]. It has been derived from Maxwell’s equations for an electro-magnetic
field in a periodically modulated waveguide [1, 3] assuming that transversal and lon-
gitudinal effects can be separated. In this section we introduce the corresponding
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Figure 1. Typical geometric configuration of the domain in a laser with 3 sections.

system of differential equations, explain the physical interpretation of its coefficients
and specify some physically sensible assumptions about these coefficients.

The dynamics in a multi-section laser is described by the evolution of the fol-
lowing quantities. The variable ψ(t, z) ∈ C2 describes the complex amplitude of
the slowly varying envelope of the optical field split into a forward and a backward
traveling wave. The variable p(t, z) ∈ C2 describes the corresponding nonlinear po-
larization of the material. Both quantities depend on time and the one-dimensional
spatial variable z ∈ [0, L] (the longitudinal direction within the laser; see Fig. 1). A
prominent feature of multi-section lasers is the splitting of the overall interval [0, L]
into sections, that is, m subintervals Sk that represent sections with separate electric
contacts. We treat the carrier density within the active zone of the waveguide as a
section-wise spatially averaged quantity n(t) ∈ Rm (see Fig. 1). In dimensionless
form, the coupled traveling wave model can be posed as an initial-boundary value
problem for ψ, p, and n that reads as follows
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∂tψ(t, z) =

[

−∂z + β(n(t), z) −iκ(z)

−iκ(z) ∂z + β(n(t), z)

]

ψ(t, z) + ρ(n(t), z) p(t, z),

(2.1)

∂tp(t, z) = [iΩr(n(t), z) − Γ (n(t), z)] p(t, z) + Γ (n(t), z)ψ(t, z), (2.2)

d

dt
nk(t) = Ik −

nk(t)

τk
−
P

lk
[Gk(nk(t)) − ρk(nk(t))]

∫

Sk

ψ(t, z)∗ψ(t, z) dz

−
P

lk
ρk(nk(t)) Re

(∫

Sk

ψ(t, z)∗p(t, z) dz

)

, k = 1, . . . ,m (2.3)

subject to the inhomogeneous boundary conditions for ψ

ψ1(t, 0) = r0ψ2(t, 0) + α(t), ψ2(t, L) = rLψ1(t, L) (2.4)

and the initial conditions

ψ(0, z) = ψ0(z), p(0, z) = p0(z), n(0) = n0 . (2.5)

The Hermitian transpose of the C2-vectorψ is denoted by ψ∗ in (2.3). We will define
the appropriate function spaces and discuss the possible solution concepts in section
3.. The quantities and coefficients appearing above have the following meaning (see
also Tab. 1 and Fig. 1). L is the length of the laser. The laser is subdivided into

Table 1. Ranges and explanations of the variables and coefficients appearing in (2.1) – (2.4).
See also [3] to inspect their relations to the originally used physical quantities and scales.

typical range explanation

ψ(t, z) C
2 optical field, forward and backward traveling wave

p(t, z) C
2 nonlinear polarization

nk(t) R+ spatially averaged carrier density in section Sk

Imdk R frequency detuning
Re dk < 0, O(1) negative decay rate due to internal losses
αH,k (0, 10) negative of line-width enhancement factor
g̃k ≈ 1 differential gain in active sections Sk

κk (−10, 10) real coupling coefficient for the optical field ψ
due to Bragg grating in DFB sections

ρk ≥ 0, O(1) amplitude of the gain curve
Γk O(102) half width at half maximum of the gain curve
Ωr,k O(10) central frequency of the gain curve
Ik O(10−2) current injection
τk O(102) spontaneous lifetime of the carriers
P (0,∞) scale of (ψ, p) (can be chosen arbitrarily)

r0 , rL C, |r0|, |rL| < 1 facet reflectivities

m sections Sk of length lk with starting points zk for k = 1, . . . ,m. We scale the
system such that l1 = 1 and set zm+1 = L. Thus, Sk = [zk, zk+1]. All coefficients
are supposed to be spatially constant in each section and to depend only on the carrier
density in that section, that is, for z ∈ Sk we have
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κ(z) = κk, Γ (n, z) = Γk(nk), β(n, z) = βk(nk), ρ(n, z) = ρk(nk).

Tab. 1 collects the physical interpretation and the sensible ranges of all coefficients
and variables. The model for the growth coefficient βk(nk) ∈ C in section Sk is

βk(ν) = dk + (1 + iαH,k)Gk(ν) − ρk(ν),

where dk ∈ C accounts for the static internal losses (hence, Re dk < 0) and the static
frequency detuning, and αH,k ∈ R+ is the negative of the line-width enhancement
(or Henry) factor. A section Sk is either passive, then the functions Gk and ρk are
identically zero, or Sk is active. In the active case Gk : R → R is a smooth strictly
monotone increasing function satisfying Gk(1) = 0. Its limits are

lim
ν→−∞

Gk(ν) = −∞, lim
ν→∞

Gk(ν) = ∞ .

Typically, an affine model for Gk in active sections is reasonably accurate, that is,

Gk(ν) = g̃k · (ν − 1)

with a differential gain g̃k = G′
k(1) > 0. In active sections Sk, that is, if Gk 6≡ 0,

the gain amplitude ρk(ν) is bounded for ν < 1. Moreover, we suppose that ρk, Ωr,k,
and Γk : R → R are smooth and Lipschitz continuous, and Γk(ν) > 1 for all ν. For
passive sections Sk the variable nk is decoupled from all other equations and can be
dropped from the system.

The polarization function p and equation (2.2) has been included into the coupled
traveling wave model for a more realistic account of nonlinear gain dispersion effects
[3, 28]. Now, the frequency dependence of waveguide material gain is modeled by
a Lorentzian function with an amplitude ρ, half width at half maximum Γ , centered
at the frequencyΩr. That is, a monochromatic light-wave ψ1(t, z) = eiωtϕ(z) in an
uncoupled stationary; waveguide (κ = 0, ṅ = 0) is amplified or damped according
to the equation

∂z |ϕ(z)|2 = 2

[

Reβ(z) +
ρ(z)Γ 2(z)

(ω −Ωr(z))2 + Γ 2(z)

]

|ϕ(z)|2.

The facet reflectivities r0 and rL in (2.4) are complex with modulus less than 1.
The inhomogeneityα(t) is complex. It models an optical input at the facet z = 0. We
assume it to be L2 in time on finite time intervals to permit a discontinuous optical
input.

The form of the right-hand-side of equation (2.3) for the carrier density can be
clarified by introducing the Hermitian form

gk(ν)

[(

ψ
p

)

,

(

ϕ
q

)]

=
1

lk

∫

Sk

(ψ∗(z), p∗(z))
(

Gk(ν)−ρk(ν) 1
2
ρk(ν)

1
2
ρk(ν) 0

)

(

ϕ(z)
q(z)

)

dz.

Using the notation

fk(ν, (ψ, p)) = Ik −
ν

τk
− Pgk(ν)

[(

ψ
p

)

,

(

ψ
p

)]

(2.6)
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for ν ∈ R and ψ,ϕ, p, q ∈ L2(Sk; C
2) the carrier density equation (2.3) reads

d

dt
nk = fk(nk, (ψ, p)) for k = 1, . . . ,m. (2.7)

Other secondary physical effects have been incorporated into the numerical code
� ����� which was developed for the simulation and analysis of longitudinal dynamics
in multi-section lasers. As example we mention the effects of nonlinear gain com-
pression, that is, the dependence of G on |ψ|2, and spatial hole burning, i.e., treating
n as a fully spatially resolved variable [7, 28]. The parameter study by direct simu-
lations of the extended model equations shown in Fig. 3 has taken both effects into
account. However, even after an inclusion of these effects, the traveling wave model
can describe the behaviour of semiconductor lasers still only approximately. Thus, in
this paper we focus on the analysis of the traveling wave model in the rather simple
form (2.1) – (2.4).

3. Existence theory

In a first step we investigate in which sense system (2.1) – (2.3) generates a semiflow
depending smoothly on its initial values and all parameters. We want to write (2.1) –
(2.3) as an abstract evolution equation in the form

d

dt
u = Au+ g(u), u(0) = u0 (3.1)

in a Hilbert space V,whereA is a linear differential operator that generates a strongly
continuous semigroupS(t), and g is smooth in V . A natural space for the variables ψ
and p is L2([0, L]; C2), such that V could be L2([0, L]; C2) × L2([0, L]; C2) × Rm

for u = (ψ, p, n). However, the inhomogeneity α in the boundary condition (2.4)
poses a conceptual difficulty in this framework. Common approaches are boundary
homogenization (used in [18]) or appending α as an auxiliary variable and an addi-
tional equation of the form

d

dt
α(t) = a(t),

where a is the derivative of α (used in [12]). Then, the nonlinearity g in the evolution
equation depends explicitly on t and it has the same regularity with respect to t as the
time derivative of α. Hence, both approaches require a high degree of regularity of α
in time which is quite unnatural as the laser still works with discontinuous input such
as square waves. An alternative would be the introduction of a concept of “weakly
mild” solutions as it was done in [13]. However, this would require the extension of
all needed classical results of the theory of strongly continuous semigroups to this
type of solutions.

Here, we choose an approach that is similar to that in [12] but does not require
any regularity of the inhomogeneity. We introduce the auxiliary space-dependent
variable a(t, x) (x ∈ [0,∞)) satisfying the equation

∂ta(t, x) = ∂xa(t, x) (3.2)
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and change the boundary condition for z = 0 in (2.4) into

ψ1(t, 0) = r0ψ2(t, 0) + a(t, 0).

One may think of an infinitely long fibre [0,∞) storing all future optical inputs and
transporting them to the laser facet z = x = 0 by the transport equation (3.2). If
we choose a(0, x) = α(x) as initial value for a, than the value of a at the boundary
x = 0 at time t is α(t). In this way, the initially inhomogeneous boundary condition
becomes linear in the variables ψ and a requiring no regularity for a. We choose
a weighted norm L2

η for a, that is, ‖a(t, ·)‖2 =
∫ ∞

0
|a(t, x)|2(1 + x2)η dx with

η < −1/2. In this way, we permit the input to be L∞ but still keep V as a Hilbert
space.

With this modification we can work within the framework of the theory of
strongly continuous semigroups [17]. The variable u has the components (ψ, p, n, a) ∈
V = L

2([0, L]; C2)×L
2([0, L]; C2)×R

m×L
2
η([0,∞); C). We have a certain free-

dom how to choose the splitting of the right-hand-side betweenA and g. We keep A
as simple as possible, including only the unbounded terms

A









ψ
p
n
a









:=













[

−∂zψ1

∂zψ2

]

0
0
∂xa













.

The domain of definition of A is

D(A) = {(ψ, p, n, a) ∈ H
1([0, L]; C2) × L

2([0, L]; C2) × R
m × H

1
η([0,∞); C) :

ψ1(0) = r0ψ2(0) + a(0), ψ2(L) = rLψ1(L)}.

In this way, A generates a strongly continuous semigroup S(t) in V [22]. The non-
linearity g is smooth because it is a superposition operator of smooth coefficient
functions, and all components either depend only linearly on the infinite-dimensional
components ψ and p, or map into Rm. Then, an a-priori estimate implies the follow-
ing theorem.

Theorem 1 [Global existence and uniqueness]. For any T0 > 0, there exists a
unique mild solution u(t) of (3.1) in [0, T0]. Furthermore, if the initial value u0 is in
the domain of definition of A, then u(t) is a classical solution of (3.1).

This theorem implies the existence of a semiflow S(t;u0) that is strongly con-
tinuous in t and smooth with respect to u and parameters. The a-priori estimate has
to be slightly more subtle than in [18]. It uses the fact that the same functions Gk
and ρk appear on the right-hand-side of (2.1) and on that of (2.3) but with opposing
signs. Due to this fact the function

P

2
‖ψ(t)‖2 +

m
∑

k=1

lk(nk(t) − n∗)

remains non-negative for sufficiently small n∗ and, hence, bounded, giving rise to a
bounded invariant ball in V . The value of n∗ depends on the initial value u0 (see [22]
for details).
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4. Introduction of a small parameter

For all results about the long-time behavior of system (2.1) – (2.3) we restrict our-
selves to autonomous boundary conditions for ψ, that is,

ψ1(t, 0) = r0ψ2(t, 0), ψ2(t, L) = rLψ1(t, L). (4.1)

The inhomogeneous case is an open question for future work. However, understan-
ding the dynamics of the autonomous laser is not only an intermediate step but an
important goal in itself since many experiments and simulations focus on this case;
see for example [8] for further references.

An examination of system (2.1) – (2.3) reveals that the space dependent subsys-
tem is linear in ψ and p:

∂t

(

ψ
p

)

= H(n)

(

ψ
p

)

. (4.2)

The linear operator

H(n) =







[

−∂z + β(n) −iκ
−iκ ∂z + β(n)

]

ρ(n)

Γ (n) iΩr(n) − Γ (n)






(4.3)

acts from

Y := {(ψ, p) ∈ H
1([0, L]; C2) × L

2([0, L]; C2) :

ψ1(0) = r0ψ2(0), ψ2(L) = rLψ1(L)}

into X = L2([0, L]; C2) × L2([0, L]; C2). H(n) generates a C0-semigroup Tn(t)
acting in X . Its coefficients κ, and, for each n ∈ Rm, β(n), Ωr(n), Γ (n) and ρ(n)
are linear operators in L2([0, L]; C2) defined by the corresponding coefficients in
(2.1), (2.2). The maps β, ρ, Γ,Ωr : Rm → L(L2([0, L]; C2)) are smooth.

Furthermore, we observe that Ik and τ−1
k in (2.6) are approximately two orders

of magnitude smaller than 1 (see Tab. 1). Hence, we can introduce a small parameter
ε and set P = ε in (2.3), such that the carrier density equation (2.7) reads as

d

dt
nk = fk (nk, E) = ε(Fk(nk) − gk(nk)[E,E]) (4.4)

for E ∈ X , where the coefficients in Fk(nk) = ε−1(Ik − nkτ
−1
k ) are of order 1.

Although ε is not directly accessible, we treat it as a parameter and consider the limit
ε → 0 while keeping Fk fixed. At ε = 0, the carrier density n is constant. It enters
the linear subsystem (4.2) as a parameter. Consequently, the spectral properties of
H(n) with fixed n determine the longtime behavior of the system for ε = 0. In
particular, we are interested in such values of n which imply an isolated non-empty
but finite set of eigenvalues of H(n) located exactly on the imaginary axis. In this
case, we can expect a finite-dimensional invariant manifold to persist for nonzero
ε in the spirit of Fenichel’s geometric singular perturbation theory [11]. Thus, we
would like to understand the spectral properties of the operator H for fixed n and
their correspondence to the growth of the semigroup Tn generated by H in the next
step.
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5. Spectral properties of operator H

We drop the argument n in this paragraph for brevity. The long-time behavior of the
semigroup T generated by H can be described by the following theorem (see [22]
for details of the proof):

Theorem 2. Let ξ0 = 1
L

∑m
k=1 Reβklk < 0, denote W = {iΩr,k − Γk : k =

1, . . . ,m}, and let ξ be in the interval (max{ReW , ξ0}, 0). Then, there exists a split-
ting ofX = X1⊕X2 into twoH-invariant subspaces whereX1 is finite-dimensional
and the semigroup T restricted to X2 decays according to rate ξ:

‖T (t)|X2
‖ ≤Meξt for a constant M ≥ 1 and all t ≥ 0.

Since T is neither an analytical nor an eventually compact semigroup there are no
general theorems implying our result. However, the operator H has a characteristic
function h(λ) defined in C \ W (note that ReW < −1). The function h is analytic
in C \W and known explicitly. Hence, most questions about the spectrum of H can
be answered by finding the roots of h. In particular, the spectrum of H is discrete in
C \W , that is, it consists only of eigenvalues of finite algebraic multiplicity. In order
to obtain our result, we have to distinguish two cases, r0rL = 0 and r0rL 6= 0.

It turns out that the semigroup T is eventually differentiable if r0rL = 0. In
this case, we can split X into two H-invariant subspaces. One corresponds to the
spectrum close to W . Thus, H is bounded and T exponentially decaying in this
subspace. The semigroup T restricted to the complementary invariant subspace is
eventually compact. Hence, the desired result follows from the theory of eventually
compact semigroups [9].

If r0rL 6= 0 (the hyperbolic case), we treat the operator as a perturbation of its
diagonal part similar to [20]. Before applying the same result as [20], the invariant
subspace corresponding to the spectrum close to W has to be split off and treated
separately in the same way as in the case r0rL = 0.

In essence, Theorem 2 implies that we can treat H like a matrix: the dominant
eigenvalues determine the growth of the corresponding semigroup.

6. Model reduction

Let us assume that there exists a simple connected open set U ⊂ Rm of carrier
densities n such that H(n) has a uniform spectral gap for all n ∈ U in a strip of the
negative complex half-plane {z ∈ C : ξ ≤ Re z ≤ ξ/k} (ξ < 0, integer k > 2),
and that the dominant part of the spectrum of H(n) is finite. Hence, the spectral
projection Pc(n) onto the H(n)-invariant subspace corresponding to the dominant
part of the spectrum has a constant rank q > 0. This spectral gap assumption is
quite natural and follows (in conjunction with Theorem 2) for example from the
existence of non-trivial dynamics that is uniformly bounded for ε→ 0 (e.g., relative
equilibria, i.e., solutions of the form E(t) = E0e

iωt, n = const) if r0rL = 0. We
can split any E ∈ X into E = B(n)Ec + Es, where B(n) is a basis of ImPc(n)
depending smoothly on n, Ec ∈ Cq, and Es ∈ X is E − Pc(n)B(n)Ec. The map
R : X × U → Cq × U given by (E, n) → (B(n)−1Pc(n)E, n) is well defined,
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smooth and Lipschitz continuous on any closed subset of X × U . Then, the main
model reduction theorem is as follows.

Theorem 3 [Model reduction]. Let ε0 > 0 be sufficiently small, ∆ ∈ (ξ, 0), and
N be a closed bounded subset of Cq × U . Then, for all ε ∈ [0, ε0) there exists a Ck

manifold C ⊂ X × Rm satisfying:

i. (Invariance) C is S(t, ·)-invariant relative to R−1N . That is, if (E, n) ∈ C,
t ≥ 0, and S([0, t]; (E, n)) ⊂ R−1N , then S([0, t]; (E, n)) ⊂ C.

ii. (Representation) C can be represented as the graph of a map which maps

(Ec, n, ε) ∈ N × [0, ε0) → ([B(n) + εν(Ec, n, ε)]Ec, n) ∈ X × R
m,

where ν : N × [0, ε0) → L(Cq ;X) is Ck−2 with respect to all arguments.
Denote the X-component of C by

EX (Ec, n, ε) = [B(n) + εν(Ec, n, ε)]Ec ∈ X .

iii. (Exponential attraction) Let Υ ⊂ X × Rm be a bounded set with RΥ ⊂ N and
a positive distance to the boundary of N . Then, there exist a constant M and
a time tc ≥ 0 with the following property: For any (E, n) ∈ Υ there exists a
(Ec, nc) ∈ N such that

‖S(t+ tc; (E, n)) − S(t; (EX(Ec, nc, ε), nc))‖ ≤Me∆t

for all t ≥ 0 with S([0, t+ tc]; (E, n)) ⊂ Υ .
iv. (Flow) The flow on C ∩ R−1N is differentiable with respect to t and governed

by the following system of ODEs:














dEc
dt

=
[

Hc(n) + εa1(Ec, n, ε) + ε2a2(Ec, n, ε)ν(Ec, n, ε)
]

Ec ,

dn

dt
= εF (Ec, n, ε) ,

(6.1)

where

Hc(n) = B(n)−1H(n)Pc(n)B(n) ,

a1(Ec, n, ε) = −B(n)−1Pc(n)∂nB(n)F (Ec, n, ε) ,

a2(Ec, n, ε) = B(n)−1∂nPc(n)F (Ec, n, ε)(Id− Pc(n)) ,

F (Ec, n, ε) = (Fk(nk) − gk(nk)[EX (Ec, nc, ε), EX(Ec, nc, ε)])
m
k=1 .

The idea to choose n-dependent coordinates for E in the construction of a re-
duced model was introduced already in [1] by physicists. This choice has the advan-
tage that the graph of the center manifold itself enters the flow (6.1) on the center
manifold only in the formO(ε2)ν. This fact has been pointed out first in [24], where
the same model reduction result has been proven for ODEs of similar structure (big
linear system coupled to a slow system) using Fenichel’s theorem for singularly per-
turbed systems of ODEs [11]. Since Fenichel’s theorem is not available for infinite-
dimensional systems, we have to adapt the proof of Fenichel [11] to our case starting
from the general results in [4, 5, 6] about invariant manifolds of semiflows in Banach
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spaces. In particular, we apply the cut-off modifications done in [11] only to the
finite-dimensional components Ec and n outside of the set N of interest. Moreover,
we adapt the modifications such that the invariant manifold for ε = 0 is compact
without boundary as required by the theorems in [4].

Truncating all terms of order O(ε2) in (6.1) gives rise to a system of ODEs in
Cq × Rm, where all terms in the right-hand-side can be expressed analytically as
functions of the eigenvalues of H . The truncated system















dEc
dt

= [Hc(n) + εa1(Ec, n, ε)]Ec ,

dnk
dt

= ε (Fk(nk) − gk(nk)[B(n)Ec, B(n)Ec])

(6.2)

is called the mode approximation. It is an implicit system of ODEs because the eigen-
values of H are given only implicitly as roots of the characteristic function h of H .
The dimension of (6.1) is typically low: q is often either 1 or 2. The consideration of
mode approximations has proven to be extremely useful for numerical and analytical
investigations of longitudinal effects in multi-section semiconductor lasers; see for
example [2, 21, 27] and section 7. for a demonstration.

7. Parameter study and bifurcation analysis for a laser subject to
delayed optical feedback

In this section we demonstrate how the traveling wave model helps to detect and
understand nonlinear phenomena occurring in multi-section lasers by a bifurcation
analysis using the mode approximations and the subsequent systematic parameter
study for the full model. We investigate a three-section laser, where S1 is a single-
mode DFB laser (i.e., κ1 6= 0, G1 6≡ 0), S2 is a passive phase tuning section (i.e.,
κ2 = G2 = ρ2 = ṅ2 = 0), and S3 is an amplifier section (i.e., κ3 = 0, ρ3 = 0,
G3 6≡ 0). Since rL 6= 0, this device resembles the classical experiment of a single-
mode semiconductor laser which is subject to delayed optical feedback. Section S1

plays the role of the single-mode laser and the sections S2 and S3 form an inte-
grated cavity providing delayed optical feedback from the facet at z = L. In this
three-section setup the two most important parameters, the feedback strength and the
feedback phase ϕ∼ Im d2 can be tuned continuously in the experiment by changing
the currents I2 and I3 into the sections S2 and S3 (up to feedback strengths close to
1).

Bifurcation analysis.

Since numerical bifurcation analysis tools like ������� [10] are available for systems of
ODEs only, the mode approximations justified in Theorem 3 are extremely helpful.

It turns out that the number q of critical eigenvalues of H(n) is 2 for all rel-
evant carrier densities n. Thus, Theorem 3 applies with q = 2 and m = 2 (the
carrier density n2 is constant since section S2 is passive). The center manifold C
has dimension 6 as it is a graph over C2 × R2. The flow of (6.2) is still symmetric
with respect to complex rotation of Ec. Hence, we can reduce it to a 5-dimensional
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Figure 2. Bifurcation diagram for the two-mode approximation (truncated (6.1) with q = 2)
in the parameter plane (ϕ, I3) (see [7] for the particular parameter values).

system of ODEs. In this system, equilibria correspond to relative equilibria of the
original traveling wave model and periodic solutions to self-pulsations, i.e., modu-
lated rotating-wave solutions. Fig. 2 shows the results of two-parameter numerical
continuations of the physically most relevant codimension-1 bifurcation curves in
the parameter plane (ϕ, I3). The two different islands of self-pulsations are clearly
visible along with their borders. The nature of these borders and bifurcation theory
serve as a guide for experiment and simulation to investigate interesting phenomena
that otherwise could be missed due to hysteresis or limited basins of attraction. Most
notably, there are stable invariant tori with strong resonances above the torus bifurca-
tion curve, excitability above the homoclinic bifurcation curve, and period doubling
and chaos at the border of the undamped relaxation oscillations.

Parameter study for the full PDE System.

Fig. 3 gives an overview over all stable stationary states and non-stationary regimes
that can be found by direct simulation in the parameter plane (ϕ, I3) in the full PDE
system (2.1) – (2.3). For the simulation, we also included the additional physical
effects mentioned at the end of section 2. to match the experimental results as closely
as possible. See [7] for a full description of the traveling wave model used in the
simulation.

The two large domains of periodic solutions within each period of ϕ are quite
prominent in Fig. 3 as well. The Hopf and the saddle-node curves can be recog-
nized in the simulation and give a full account of the number and stability of all
present stationary states in Fig. 3. The shadings in Fig. 3 mark the different sta-
ble non-stationary regimes in the (ϕ, I3) parameter plane observed in the simulation.
Single-pulse periodic solutions are typically born in Hopf bifurcations. Double-pulse
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Figure 3. Parameter study of a three section laser by direct simulation of the PDE model with
�������

-tool. Full model and used parameter values (except of l1 = 250 µm, l2 = 400 µm and
α = 15 cm−1) can be found in [7].

solutions existing nearby have approximately half the frequency. Their occurrence is
related to the period doubling bifurcations (see also Fig. 2). Finally, multiple-pulse
and irregular regimes account for dynamics (and different resonances) on the tori,
and chaotic attractors.

A well-known problem of direct simulations is that only one stable regime will
be observed for each parameter value depending on the choice of initial values and
the basins of attractions. However, the bifurcation analysis shows that several stable
regimes may coexist in some parameter regions. We took into account this possible
hysteresis by varying the parameters in small steps in different directions from any
stable non-stationary regime we found until we hit a sharp transition. In this way,
we always traced the hysteresis at sharp transitions corresponding to subcritical or
saddle-node bifurcations. Fig. 3 shows the most simple non-stationary regime in hys-
teresis parameter regions (that is, mostly, the single-pulse periodic solution) because
this is the most interesting regime for potential applications.

8. Conclusions and outlook

The coupled traveling wave model has proven its value in the exploration of non-
linear phenomena in multisection laser structures. This can be seen impressively in
recent results concerning delayed optical feedback effects [14, 18, 21, 26, 27], in
multi-section lasers and subsequent new device designs [7, 8, 16, 19]. The model
has been efficiently implemented in the code ������� which permits extensive param-
eter studies. The simulation of the model equations with this code together with the
bifurcation analysis of the reduced mode approximation systems gives insight into
the underlying dynamics. Moreover, it allows the user to incorporate physical effects
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like spatial hole burning or nonlinear gain compression, or experimental conditions
like optical input or electric modulation. This broadens the range of applications of
the traveling wave model toward mode-locked lasers, optical amplifiers, ring lasers,
etc. However, the theory concerning some of these extensions of the traveling wave
model is still incomplete, even concerning basic questions like the existence of a
smooth strongly continuous semiflow. Thus, an urgent task is to gain a theoretical
understanding of these more complex models, and whether they can exhibit substan-
tially more complex phenomena.
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Daugiasekcijinių puslaidininkinių lazerių dinamika

J. Sieber, M. Radži ūnas, K.R. Schneider

Mes nagrinėjame išilginę daugiasekcijinių puslaidininkinių lazerių dinamiką, kuri yra nusa-
koma netiesiškai susietomis hiperboline diferencialinių lygčių dalinėmis išvestinėmis bei pa-
prastųjų diferencialinių lygčių sistemomis. Mes pateikiame sekančias šios sistemos savybes:
globalaus pradinio-kraštinio uždavinio sprendinio egzistavimas bei vienatis; mažos dimensijos
pritraukiančiojo invariantinio hiperpaviršiaus egzistavimas. Modelio dinamika šiame hiper-
paviršiuje yra apytiksliai nusakoma paprastųjų diferencialinių lygčių sistema. Pabaigoje mes
pateikiame detalią skaitinę šios paprastųjų diferencialinių lygčių sistemos bifurkacinę anali-
zę ir lyginame ją su skaitiškai nustatyta pilnos diferencialinių lygčių dalinėmis išvestinėmis
sistemos dinamika.


