
���������	�
�����
�������������	�����
����������������������� �
!"�#��$��%�'&)(�$��+*��	,.-0/21	343	5�/768�����	�

39–50
c© 2004 Technika ISSN 1392-6292

SPATIAL ANALYSIS AND PREDICTION OF
CURONIAN LAGOON DATA WITH GSTAT

R. GARŠKA and I. KRŪMINIENĖ
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Abstract. The typical goal of geostatistical analysis is to interpolate values of variable under
consideration at unobserved locations using data on observed locations because it is not fea-
sible to gather all data of the observations in the study area. The second goal is to know how
they represent the study area on the basis of the sample points. Kriging is one of geostatistical
methods for spatial interpolation. This method relies on the spatial correlation reflected in the
available data and so represents a global view of all the data as well as the nearest neighbor
influence. Before spatial prediction using kriging can be executed, the semivariogram has to
be computed and modelled.

The objective of our work is to create maps of the Curonian lagoon using kriging and
cokriging methods. Our spatial data consist of observations on sounding and bed sediments
of different Curonian lagoon locations. For computation and simulation of semivariograms,
as well as for application kriging and cokriging methods and visualization of results on maps
Gstat and PCRaster are used.
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1. Introduction

This paper discusses the use of traditional kriging techniques when when we map
variables from data that are collected in Curonian lagoon. For most applications
kriging is usually associated with exact interpolation, that is, the kriging predictions
change smoothly in space until they get to a location where data have been collected,
at this point there is a "jump" in the prediction to the exact value that was measured.
This also leads to discontinuity in the standard prediction errors, that "jump" to zero
at the measured locations. In the research presented in the paper we have studied the
Curonian lagoon and have created maps in all area by using data of a sediments in
213 locations and data of depth in 263 locations. In the previous publication [2] the
precision of the results obtained by two methods, i.e. kriging and cokriging, were
compared by using cross-validation method. The results have showed that precision



40 R. Garška and I. Krūminienė

of predicted values is better when cokriging method is used. In addition the present
paper presents maps of the predicted values in the whole Curonian lagoon, where the
prediction is based on measurement data that are mentioned above.

Geostatistics is the name associated with a class of specialized statistical tech-
niques used to analyze and estimate values of variables which are distributed – and
physically correlated – in space and /or time. The analysis of such a correlation is
usually called a "structural analysis" or "variogram modeling". From a structural
analysis, predictions of the value of the variable can be made at unsampled loca-
tions using "kriging" or "stochastic simulation". This approach is most useful when
the processes responsible for generating the measured variable are unknown or too
poorly constrained to permit construction of a quantitative process model to make
spatial interpolations or predictions. The overall sequence of steps in a typical geo-
statistical study include: exploratory data analysis (to explain the spatial character
of the variable), structural analysis (to determine the spatial correlation or continu-
ity of the data) and estimates (kriging or simulations to predict values at unsampled
locations).

Kriging prediction consists of three steps:

• Estimation of the semivariogram or covariance;
• Choice of a model among the family of valid semivariograms or covariances;
• Estimation of the semivariogram or covariance by fitting the valid model to the

empirical semivariogram or covariance and use in one of the forms of kriging
(e.g. ordinary kriging, simple kriging, universal kriging, etc.).

In many environmental researches the data of more than one observation (mea-
surements of more than one variable) are often obtained. If those variables are cor-
related with one another and the cross covariance functions are known or can be
estimated then cokriging method can be used.

More about geostatistical analysis can be found in the book of Cressie "Statis-
tics for spatial data" [1]. Krivoruchko has applied a kriging method to radio ce-
sium soil contamination data, collected in Belarus after the Chernobyl accident (see,
e.g. the web http://www.esri.com/software/arcgis/arcgisxtensions /geostatistical/re-
search_papers.html). Lophaven has computed the spatial distribution of Dissolved
Inorganic Nitrogen (DIN) and Dissolved Inorganic Phosphorus (DIP) by three dif-
ferent variants of kriging, i.e. ordinary kriging, universal kriging and cokriging [3].
In the next section the main terms, processes and formulas which are used in geosta-
tistical analysis are described.

The results of the study are presented in Section 3 and conclusions are given in
Section 4.

2. Spatial Data Analysis

General Spatial Model (see [1]) is described in geostatistics as {Z(s) : s∈D}, where

• s = (x, y) denotes the coordinates of the sample site. Here (x, y) may be Eu-
clidean coordinates (e.g., UTM coordinates), or latitude and longitude. More
generally, we may have s = (x, y, z).
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• Z(s) denotes the variable of interest at the location s. Note that this is written as
a function of the location s.

• D denotes the set of spatial locations at which data may be obtained.

For geostatistical data, the set of all multidimensional distributions of k-tuples
(

Z(s1), Z(s2), . . . , Z(sk)
)

for all values of k all configurations of the points s1, s2, . . . , sk constitutes a stochas-
tic process {Z(s) : s∈D}. The stochastic variable Z(s) has mean value

E[Z(s)] = µ(s), s ∈ D.

We also assume that the variable of Z(s) exists for all s ∈ D.

The process Z is said to be Gaussian if, for any k ≥ 1 and locations s1, s2, . . .,
sk, the vector

(

Z(s1), Z(s2), . . . , Z(sk)
)

has a multivariate normal distribution.

The process Z is said to be strictly stationarity if the joint distribution of
(

Z(s1), Z(s2), . . . , Z(sk)
)

is the same as that of
(

Z(s1+h), Z(s2+h), . . . , Z(sk +

h)
)

for any k spatial points s1, s2, . . . , sk and any h ∈ Rd, provided only that all of
s1, s2, . . . , sk, s1 + h, s2 + h, . . . , sk + h lie within the domain D.

The process Z is said to be second -order stationarity (also called weakly

stationarity) if µ(s) = µ (i.e., the mean value is the same for all s) and

Cov
(

Z(s1), Z(s2)
)

= C(s1 − s2), for all s1∈D, s2∈D,

where C(s) is the covariance function of an observation at location s∈D.

It can immediately be seen that with all variances assumed finite, a strictly sta-
tionary process is also second-order stationary. The converse is in general false, but
a Gaussian process which is second-order stationary is also strictly stationary (see
[4], 35 p.). Intrinsic stationarity is a weaker property than second-order stationarity.
The variogram of intrinsic random function is written as

2γ(h) = V ar[(Z(s1) − Z(s2))] .

The function 2γ(·) is called the variogram (variance) and γ(·) the semivariogram
(semivariance). If the semivariogram (covariance) depends only on distance between
locations the process is called isotropic. The variogram is the variance of the differ-
ence between Z(s1) and Z(s2). If two units are close together, their difference will
typically be small, as would the variance of the difference. As units get apart, their
differences get larger and usually the variance of the difference gets larger.

If second-order stationarity is assumed, the relationship between the function
semivariogram and the covariance is given as

γ(h) = C(0) − C(h) . (2.1)

Note that C(0) = σ2, the variance of the random function when h = 0. Equation
(2.1) shows that if the covariance is known, the variogram is also known. In prac-
tice the variogram (or/and semivariogram) is used more often then the covariance,
because the variogram, unlike the covariance, does not require the knowledge of the
mean value. Also semivariogram is less sensitive to any unidentified trend.
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2.1. Estimation of the semivariogram and cross semivariogram

Determination of spatial variability is often based on a semivariogram. The sam-
ple estimator of the semivariogram, which is based on the method-of-moments, is
given by

γ̂(h) =
1

2N(|h|)

∑

(sk,sl)∈N(|h|)

[Z(sk) − Z(sl)]
2,

where N (|h|) denotes all pairs (sk, sl) for which |sk − sl| = |h| ([4], 38 p.). The
spatial variability between two correlated random variables is described by the cross
semivariogram. When the intrinsic hypothesis is assumed, it is defined as

γ12(h) = γ21(h) =
1

2
E

[(

Z1(sk) − Z1(sl)
)(

Z2(sk) − Z2(sl)
)]

,

where Z1(s) and Z2(s) denote two different variables. An estimator of the cross
semivariogram is defined as

γ̂12(h) =
1

2N(|h|)

∑

(sk ,sl)∈N(|h|)

(

Z1(sk) − Z1(sl)
)(

Z2(sk) − Z2(sl)
)

,

where N(|h|) is the number of pairs of observations within distance |h|. Usually
γ̂ij(h) is called the experimental or sample cross semivariogram (see [3]).

Range

Distance between pairs

N
u
g
g
et

S
il

l

a)

Distance

V
a
r
i
a
n
c
e

b)

Distance

V
a
r
i
a
n
c
e

c)

Figure 1. Variograms: a) idealized form of variogram function; b) linear variogram; c) sphe-
rical variogram.

2.2. Modelling the semivariogram and the cross semivariogram

Modelling of semivariogram and cross semivariogram is done in the same way. The
estimated semivariogram (cross semivariogram) is fitted with a model, and the best
models are used in the kriging estimation. Several methods have been proposed for
fitting semivariogram models. One relatively simple method that appears to perform
well is the Weighted Least Squares. Figure 1a show representation of general vari-
ogram.
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The range is the distance beyond which observations are uncorrelated or at least
approximately uncorrelated. On the semivariogram, the range is the point on the x
– axis where the curve reaches a plateau. Sill is the value of semivariogram where
observations are uncorrelated or nearly uncorrelated. On the semivariogram shown,
the sill is the height of the curve at the plateau.

The nugget variance or nugget effect is the resulting discontinuity of the semi-
variogram at the origin, the difference between zero and the semivariogram at a lag
distance is some greater than zero. The nugget effect is caused by measurement er-
rors and micro-variability. A variogram model can consist of pure nugget effect.

Isotropic processes are convenient to deal with because there are a number of
widely used parametric forms for γ(·). An often used semivariogram model is the
linear and the spherical model with nugget effect. A reason for this is an easy inter-
pretation of the parameters.

A linear semivariogram model (Fig.1b) in the isotropic case is defined as:

γ(h) =











0, if |h| = 0,

C0 + C1h, if 0 < |h| < R,

C0 + C1R, if |h| > R .

(2.2)

Spherical semivariogram model (Fig.1c) is defined as:

γ(h) =



















0, if |h| = 0,

C0 + C1

[

3

2

h

R
−

1

2

(

h

R

)3
]

, if 0 < |h| =< R,

C0 + C1, if |h| > R ,

(2.3)

where C0 is the nugget effect, R is the range and C0 + C1 is the sill [3].

When two or more variables are correlated, the nature of spatial cross correlation
between the primary variable and several secondary variables can provide valuable
information for estimation and simulation of the primary variable. Cross semivari-
ogram modelling is always done for the purpose of developing a model to be used in
estimation or simulation. The models that are to be used in estimation and simulation
must obey a number of stringent constraints to ensure that the matrix solutions to the
kriging equations exist and are numerically stable.

Traditionally fitting of the cross semivariogram is done by eye, because it has
been shown that predictions computed by kriging are reasonably insensitive to the
specification of the cross semivariogram model. The best semivariogram (cross semi-
variogram) model can be found using the least squared criterion [3].

2.3. Kriging Concept

Kriging is a generic name adopted by the geostatisticians for a family of generalized
least-squares regression algorithms that allow one to account the spatial dependence
between observations, as revealed by the semivariogram, into spatial prediction. It is
a procedure for spatial prediction at an unobserved location, using data at observed
locations, optimized with reference to a specific error criterion.
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Kriging is known to be a Best Linear Unbiased Predictor (B.L.U.P.), because
it minimizes the variance error between the true value and the predictor. Linear
predictor of the value Z1(s0) of the data at the unsampled site s0 from the data
Z(s) = Z(s1(s)), Z(s2(s)) at the sampled sites s1, s2 is:

Ẑ1(s0) =

n
∑

k=1

wkZ1(sk),

where wk is the weight for the k-th variable of observation at location sk and n is the
number of observations. The weights wk are chosen to minimize the mean squared
error

MSE = E
[

Ẑ1(s0) − Z1(s0)
]2

.

Ẑ(s0) is unbiased for Z(s0) if and only if
n

∑

k=1

wk = 1 .

Ordinary kriging gives the optimal predictions under the assumption that the
mean value is constant (but unknown) across the whole area under study. The ordi-
nary kriging variance for Z1 is given by

σ2
ok =

∑

k

wkγ(sk − s0) + m, (2.4)

where m is a Lagrange multiplier

m =
(

1
′
−1
∑

z

cz − 1
)

/
(

1
′
−1
∑

z

1
)

,

∑

z is the covariance matrix among the data, cz is Cov(z, Z(s0)) (see [1], p 143).

Cokriging is prediction of a primary variable using additional information from
a secondary variable. This method is used in data sets containing two or more re-
gionalized variables which are correlated with one another. Suppose that q = 2.
The prediction of Ẑ1 is done not only on the basis of Z1, but also on measurements
of Z2. Cokriging involves the prediction of Z1(s0) at an unsampled site s0 from
the data Z(s1), Z(s2), . . . , Z(sn), Z(s)T =

(

Z1(s), Z2(s)
)

at the sampled sites
s1, s2, . . . , sn. The linear prediction of cokriging is defined as:

Ẑ1(s0) =

n
∑

k=1

vk
1Z1(sk) +

n
∑

k=1

vk
2Z2(sk).

To obtain an unbiased estimate the following constraints are needed:
n

∑

k=1

vk
1 = 1,

m
∑

k=1

vk
2 = 0 .

Similarly as (2.4) the variance of cokriging prediction can be written as

σ2
cok =

n
∑

k=1

vk
1γk1(sk − s0) +

n
∑

k=1

vk
2γk2(sk − s0) + m1.
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3. Results

The above procedure of variogram estimation, variogram model fitting, kriging and
cokriging was applied to the Curonian lagoon data. The Curonian lagoon (also
known as Kuršiu̧ marios, Kurshskij zaliv, Kurische Haff) is a large (length 95 km,
width up to 48 km), shallow (mean depth of 3.8 m, the maximum depth - 5.8 m)
coastal water body in the south-eastern part of the Baltic Sea. The outlet of the la-
goon to the Baltic Sea, Klaipėda Strait, is artificially deepened down to 12 m.

The data have been collected in 1990 year by S. Gulbinskas. It consists of bed
sediments and soundings of the Curonian Lagoon. Sediments where measured in
213 locations, depth was measured in 263 locations. Their x coordinate values are
between 278199 and 333376 and y coordinate values are between 6088178 and
6172784. Sediments have been divided into 7 groups (granulometric fractions) de-
pending on median diameter (Md) in mm: (1) more than 0.5, (2) 0.5-0.25, (3) 0.25-
0.125, (4) 0.125-0.063, (5) 0.063-0.01, (6) 0.01-0.004, (7) less than 0.004.

In order to apply the above statistical methods for data analysis, and mapping
we have chosen free available software Gstat and PCRaster. Gstat is a program for
the modelling, prediction and simulation of geostatistical data in one, two or three
dimensions. In Gstat geostatistical modelling comprises calculation of sample vari-
ograms and cross variograms (or covariograms) and fitting models to them. In this
paper Gstat has been used for modelling semivariance of all above fractions and for
simulation cross variance between depth and sediment fractions. PCRaster has been
used for showing kriging and cokriging prediction maps.

In Gstat a simple variogram model is denoted cMod(a) with c the vertical (vari-
ance) scaling factor, Mod the model type, and a the range (horizontal, distance scal-
ing factor) of this simple model. Linear and spherical models defined in (2.2) and
(2.3) equations, in Gstat are denoted by Lin(·) and Sph(·), respectively. The nugget
effect is indicated by Nug(·).
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Figure 2. a) semivariogram of fraction (7) where Md of sediments is less than 0.004; b) cross
semivariogram between fraction (7) and depth of the Curonian lagoon.

To describe results of our research we took measurements of depth and fraction
(7). Figure 2a presents semivariogram of fraction (7) where Mod of sediments is less
than 0.004. Equation of this semivariogram is given by
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1.29422Nug(0) + 6.56577Lin(27254.5),

where Lin represents model type, Nug(0) = 1.29422, when 1
2γ(h) = 0, the sill is

6.56577 and the range is 27254.5. The parameters and models of all semivariogram
fractions are given in Table 1.

Table 1. Types of semivariogram models of all fractions and the parameters:
range, sill and nugget effect.

Fraction Model Range Sill Nugget effect

more than 0.5 Linear 14402.5 5.05205 15.6034
0.5-0.25 Linear 22615.3 167.631 290.326
0.25-0.125 Linear 11036.5 167.631 504.511
0.125-0.063 Linear 9773.75 50.812 264.483
0.063-0.01 Linear 22051.9 297.963 316.533
0.01-0.004 Linear 31426.3 52.2167 15.1969
less than 0.004 Linear 32344.6 53.4782 31.3848

Figure 2b presents cross semivariogram between fraction (7) and depth of the
Curonian lagoon. Equation of this cross semivariogram is given by

31.3846Nug(0) + 53.4782Lin(32344.6),

where Lin represents model type, the nugget effect equals 31.3846, when 1
2γ(h) = 0,

the sill is 53.4782 and the range is 32344.6. The parameters and models of all cross
semivariogram fractions are given in Table 2.

Table 2. Types of cross semivariogram models between depths and fractions
and the parameters: range, sill and nugget effect.

Fraction Model Range Sill Nugget effect

more than 0.5 Linear 14360.4 -0.888949 -0.718705
0.5-0.25 Linear 20658.5 -9.04819 -7.57507
0.25-0.125 Linear 30420.6 -20.0815 -3.64506
0.125-0.063 Linear 4.58617
0.063-0.01 Linear 25260.5 16.3492 5.60972
0.01-0.004 Linear 30887.2 6.71625 0.738019
less than 0.004 Linear 27254.5 6.56577 1.29422

Figure 3 presents the linear and spherical semivariograms of the depth. In this
case the spherical semivariogram is preferred. The parameters and models of depth
are given in Table 3.

Kriging is most sensitive to the behavior of the variogram near zero. In particular,
it is sensitive to the presence / absence of the nugget effect. Maps of variations and
predictions created using kriging method are shown in Figure 4 (here (a) prediction
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Figure 3. a) linear semivariogram of depth; b) spherical semivariogram of depth.

Table 3. Types of semivariogram models of depth and the parameters:
range, sill and nugget effect.

Model Range Sill Nugget effect

Linear 32972.7 1.37065 1.29812
Spherical 13957.2 2.22773
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Figure 4. Kriging method: a) prediction map of fraction (7); b) variation map of fraction (7).

map, (b) variation map). Maps obtained using cokriging method are shown in Fig-
ure 5. Figure 6a presents prediction map of depth, while Figure 6b presents variation
map of depth. These maps have been created using kriging method.

In order to check which one of the kriging and cokriging maps correspond best
to true data we must first choose one point on the map, then compare these variation
maps, and finally determine which map has smaller variation for the selected point.
The method containing a smaller variation has created a better prediction map.
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Figure 5. Cokriging method: a) prediction map of fraction (7); b) variation map of fraction
(7).
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Figure 6. Kriging method: a) prediction map of depth; b) variation map of depth.

4. Conclusions

Statistical methods for data on bed fractions percentage and soundings have been
described, applied and mapped. The methods are general, but in this paper they have
been applied only to measurements of the Curonian lagoon.
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Semivariogram and cross semivariogram models have been made using percent-
age of fractions and soundings of the Curonian lagoon. Variance distribution and
distribution of bed fractions percentage have been mapped using kriging and cokrig-
ing methods. Variance distribution and distribution of soundings have been mapped
using kriging method.

Results demonstrate that:

• Nugget and linear models best describe semivariance and cross semivariance of
percentage of ground fractions.

• Spherical model best describes semivariance and cross semivariance of sound-
ings.

• Prediction variations of percentage of bed fractions made by kriging and cokrig-
ing methods are very similar.

Also cross semivariance show interdependence of parameters of models and
depths. Prediction results of bed fractions percentage made by kriging method are
very close to the mean value, while cokriging method shows that the variation of
data are less close to the mean value.
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Apie Kuršių marių duomenų erdvinę analizę ir prognozavimą Gstat programos pagalba

I. Kr ūminieṅe, R. Garška

Šio darbo pagrindinis tikslas - Gstat bei PCRaster programų pagalba sukurti prognozuojamų
duomenų ir jų dispersijų žemėlapius. Žemėlapiams sudaryti pritaikyti krigingo ir kokrigingo
metodai. Krigingas yra vienas iš geostatistikos metodų, kuris atsižvelgdamas į erdvinį dviejų
kintamųjų ryšį ir kaimyninių taškų reikšmes atlieka erdvinę interpoliaciją. Tuo tarpu kok-
rigingas atlieka pirminio kintamojo duomenų prognozę naudojant antrinių kintamųjų duome-
nis. Pagrindinis geostatistinės analizės tikslas yra interpoliuoti duomenis nežinomuose srities
taškuose, nes dažniausiai atliekant geostatistinius tyrimus naudojami daliniai stebėjimai, kurie
apima tik visumos dalį; arba nėra žinoma, ar imties duomenys pakankamai gerai atspindi visą
studijuojamą sritį. Rezultatų analizė parodė, kad tikslesnė prognozė gaunama taikant kok-
rigingo metodą


