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Abstract. In this paper we study numerical problems arising in solving the single mode
gyrotron equation. Using the method of finite differences analytical and numerical solutions
are obtained. Quasistationary solutions and corresponding eigenvalues and eigenfunctions of
this problem are investigated.
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1. Introduction

Gyrotrons are microwave sources whose operation is based on the stimulated cy-
clotron radiation of electrons oscillating in a static magnetic field. Single mode non-
stationary gyrotron oscillations can be described by the following system of partial
differential equations [2]:

0 , )
So i (At bl - 1) p =if(ta),
0%f  of I 1)

Here i = /—1, x € [0, L] is the normalized axial coordinate, ¢ is the normalized
time, A is the frequency mismatch, ¢ describes variation of the critical frequencies,
A and ¢ are real numbers, p = p(t, x, 6p) is the dimensionless complex transverse
momentum of the electron, f = f(¢,z) is the high-frequency field in resonator, T
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is the dimensionless current, 0 is the parameter. The system of equations has to be
supplemented by the standard initial condition

p(tv 07 00) = exp(i@o), 0 < 00 < 271'7 f(07x) = fo(:r)v

and by the boundary condition for the field at the entrance to the interaction space
f(t,0) = 0, and at the exit to the interaction space

% = *Z"Yf(tv L)a

where + is a positive parameter, fo(z) is given complex function. An efficient nu-
merical method for solving this reduced system of equations was presented in [1].
However, it was discovered that the results of the computations depend in a nontrivial
manner on the chosen spatial and temporal step-lengths. So, main difficulties arises
in numerical solving of Schrodingers type equation with special boundary condi-
tions. The aim of this paper is to study in detail numerical problems for the second
equation of (1.1).

2. Solution of the differential problem

We begin with the homogeneous Schrédinger type partial differential equation (I =
0)

*f .of

—J ;2 = 2.1

9z gy T =0, (2.1)
where x € (0, L), t > 0 —istime, § = const!. Boundary conditions can be written
as

of(t, L .
seoy=0, OB ra) @2)
We represent the quasi-stationary solution of the problem (2.1) and (2.2) in the form
f(t,x) = g(z) exp(iat), (23)

where « is a complex number o = a3 + ias (a2 is a temporal damping factor:
if ap > 0, the solution (2.3) decreases, if as < 0, the solution increases, and for
a2 = 0 the solution is oscillating in time). We now consider nontrivial solutions (2.3)
of the differential problem by computing allowed values of the parameter «, as well
as the corresponding discrete problem. Substituting the solution (2.3) into equation
(2.1) and boundary conditions (2.2), we obtain the Sturm-Liouville problem for the
ordinary differential equation

{g”(x) +Ag(x) =0, (2.4)

9(0) =0, g¢'(L)=—ivg(L),

! Using the substitution g(t,z) = f(t,x)exp(idt) for function g we would obtain the
boundary value problem (2.1) and (2.2) with § = 0. We don’t use mentioned substitution
because function f and parameter § have the physical interpretation
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where A2 = o + ¢ is complex value. The solution of problem (2.4) is
g(z) = Cy sin(\z),

where C1 is an arbitrary constant. From boundary conditions we obtain a transcen-
dental complex equation for calculating the eigenvalue A:

Acos(AL) + iysin(AL) =0

or
zcosz = —iysin z, (2.5)

where z = z; +izo = AL and 4 = ~L. It is obvious that z = 0 is a root of the
equation. Moreover, if z is the root of (2.5), then also —z is the root of this equation.
Therefore we can confine ourselves to consider only » > 0. Separating real and
imaginary parts in equation (2.5), we obtain a system of two real transcendental
equations

(2.6)

{ 21 €os z1 cosh zo + 29 sin 21 sinh 29 = 7 cos 23 sinh 29,

z2 €os z1 cosh zo — 21 sin zg sinh 29 = —7 sin 21 cosh 25.

Multiplying the first equation of system (2.6) by sin z cosh 25 and the second equa-
tion by cos 21 sinh z5 and summing, we exclude the parameter 4 and obtain the rela-
tion

z18in(221) + z2sinh(222) = 0.

It follows that the nontrivial roots of the last equation satisfy the inequality
sin(2z1) < 0 or tan(z1) < 0.
Dividing the second equation of the system (2.6) by cos z1 cosh z5, we obtain
z9 — z1 tan z; tanh zo = —7 tan 2.

It can be seen that if z; > 0, then also z, > 0. Let us number the roots of (2.5) 2 (k)
k =1,2,..., whose real parts zik) are positive, by increasing their real parts and
take into account that (k — 1)7 < zgk) < km 0< zék) <&+ 1.Since A =+va+6

or 22 = L%(a + §), we have
7 — 2
LQ

2212’2
— (5, Qg = 12

a1 =

It is seen that the parameter ¢ affects only the values of «; and s > 0. The results
of computations performed by means of "MAPLE” for L = 15,y = 2,and § = 0

are summarized in Tab. 1 for the first eight eigenvalues and numerical values of agk)
and agk), k = 1,8. Fig. 1 shows the first fifty eigenvalues ). It can be seen that
ag‘”’) > 0 and that all solutions

F®(t, ) = sin ( o™ + o+ z‘ag’%) exp((—ay” +ial)t)
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Table 1. The roots of equation (2.6) and values of o).

k zgk) zék) agk) agk)
1 3,1381 0,10498 0,0437 0,00293
2 6,2758 0,21232 0,1748 0,01184
3 9,4128 0,32466 0,3933 0,02716
4 12,5484 0,44547 0,6989 0,04969
5 15,6814 0,57970 1,0914 0,08080
6 18,8092 0,73539 1,5700 0,12295
7 21,9251 0,92732 2,1327 0,18073
8 25,0054 1,18594 2,7727 0,26360
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Figure 1. Eigenvalues of the continuous problem A, & = 1,59.

monotonically decrease in time, i.e.,
f(k)(z,t) —0, t— +o00, k=1,2,...,

(here C; = 1). Taking the square root in expression, we obtain two complex num-
bers in the form +(a(®) + ib®), where a® > 0 and b®) > 0, if a{*) + § > 0 and
ag‘”’) > 0. Since the functions f(*) (¢, ) contain an arbitrary constant C, the com-
plex number with the minus sign does not give us any new result and can be ignored.
Separating real and imaginary parts we obtain

|F B (t,z)| = exp(—aék)t)\/sinhz(b(k)x) + sin?(a(M) ).

Let us note that the complex eigenfunctions g (z) = sin(Axz) (\x = Val®) +§
and a® = o{® + ial) are orthogonal, i.e.,

(g, gr) = /0 gk()gn () dz =0, k#n.

Correspondingly
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L :
1 1y
lgrll* = {gk. gr) = /0 gi(w)dr = 5 <L+ N 72) :

2 _
Each continuous function f(x), x € (0, L) with boundary conditions (2.4) can be
expanded in the series of the orthonormalized eigenfunctions gx(x) = gr(x)/| gk ||

f@) =" crin(x),

k=1

where the expansion coefficients can be found in the form ¢, = (f, §x). Calculating
by means of "MAPLE”, we obtain that the oscillation frequency of the functions
increases and their absolute values rapidly decrease with increasing k.

3. Solution of the discrete problem

In the finite differences method we use a uniform homogeneous spatial and temporal
grids:

wp={zj: zj=jh, j=1,N—-1,Nh=L}, w,={ty: t,=nt,n>1}

(corresponding step-lengths are h and 7). We substitute the continuous function
f = f(t,x) in these grids by the discrete grid function y = y(¢,2),t € w,, ¢ € wy,
with values y(t,,z;) = yj'. The corresponding derivatives of the function we ap-
proximate by finite—differences

0 f(tn, ;) n o Yl — 27 + Yl

g R = —— (3.)

Of (bny15) yitt =y 9f(tw, L) YN YR (3.2)
ot T ’ ox h ' '

Difference (3.2) approximates the first derivative only to the first order of accuracy,
i.e., O(h). To obtain the second order approximation, we must use the expression

Of (tn, L) _ L.5yx — 2yr—1 + 0598
ox h ’

Substituting differences (3.1), (3.2) into the problem (2.1) — (2.2), we obtain a two-
layer finite-difference scheme with weight o € [0, 1]

(3.3)

+1 n
Y =y I
122 . J :o'(/ly;ﬁ‘l+6y;_1+1)+(1_0.>(/1y;}+5y?)7 j=1,N-1,
n+1 _  n+l
y8+1 —0, Yn hyN—l _ fi'yy}f,ﬂ.

(3.4)
Difference equations (3.4) approximate the initial differential equation (2.1) to the
second order both in space and time, if ¢ = 1/2, and to the first order in time, if
o # 1/2. Boundary conditions (2.2) are approximated only to the first order. To
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obtain the second order, one has to use expression (3.3). Seeking to find the discrete
quasi-stationary solution by analogy to (2.3) we take

yj = gjexp(iant) (g; = g(x;), tn =n7),

then we obtain that the discrete function g; # 0 satisfies the three-point finite-
difference scheme

Ag+ 29:07 ]:m7
{ i T Y5 (3.5)
90:0) QN:CQN—la
which approximates the continuous problem (2.4). Here
1_ . )
C=(+ih)), j2=ats a=—L—cxplian)i (3.6)

(cexpliar)+1—o0)r

are complex constants (& — «, if 7 — 0). Now the solution of (3.5) can be written
as g; = O sin(qx;), where C is arbitrary constant, 1 — u?h?/2 = cos(gh) and
x;j = jh. It follows from boundary conditions (3.5) that the complex parameter ¢
has to be determined from the complex transcendental equation

sin(qL) = C'sin(q(L — h)), (3.7)
where the parameter ¢ has complex values
qk :ak+ibk, k= l,Nfl. (38)

If v = oo (boundary conditions of the first kind), then C' = 0 and equationsin(¢L) =
0 is valid, if g5, = ’% (real numbers). Then we get also real eigenvalues [4]

4 kmh —
2 _ % . oRTR _ —
Wty = hQSm 5T’ k=1,N—-1.
Therefore
Qp = 2h_2(1 — COS(qkh)) — 0 = Ax +iBy, (3.9)
where

Ag = 2h72(1 — cos(axh) cosh(byh)) — 4,
By = 2h~?sin(agh) sinh(bgh), k=1,N — 1.
Since C = Oy +iCq, C1 = (1 + (vh)*)71, and Cy = —vh(1 + (vh)*)71, we

separate in equation (3.7) real and imaginary parts and obtain the system of two real
transcendental equations

(3.10)

{ sin(ay L) cosh(by L) = C1 sin(agly) cosh(bili) — Co cos(agly) sinh(bgly),

cos(ay L) sinh(by L) = C; cos(agly) sinh(bgl1) + Cq sin(ag!ly) cosh(bily),
(3.11)
wherely = L —h.If h — 0,then ap L — z1, b L. — z5 and we obtain the system of
equations (2.6). After calculation of &y, we obtain from (3.6) the approximate values

1 ¢! -
ak,—1n<1%>, k=T,N 1. (3.12)
T 1+ oTag
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It can be seen from (3.12) that the temporal step-length + and the parameter of the
scheme o, i.e., the temporal approximation, do not affect the values of ay, their
changes have to be taken into account only in the expression (3.12). Approximating
boundary conditions (2.4) by the second order expression (3.3), instead of equation
(3.7) we obtain the complex transcendental equation

sin(qL) = C*(2sin(qly) — 0, 5sin(gls)),

where [y = L—2h, C* = (1,5+ivh) L. The results of computations with L = 15,
v=2,§=0,7=h=0,1,and o = 1 are presented in Tab. 2, where aj and b, are
solutions of (3.11) and

w(k—1)

wk
—, 0<d 1.
T <ak<L’ <o <

The values A, and B;, were obtained from (3.9) and (3.10) k¥ = 1, 8. The results
do not change much (five digits remain the same) by changing the temporal step-
length 7 ininterval (0,01, 0, 1). More accurate results can be obtained with o = 0.5.
Comparing the solutions of the continuous and discrete problems, we see that only
for the first two eigenvalues three or four digits remain the same, while for other
eigenvalues the accuracy rapidly deteriorates. Using the second order approximation
even for the eighth eigenvalue two digits are correct, if o = 1/2. Considering only
the spatial discretization (the variable x is discretized x; = jh and the variable ¢ is
continuous), we obtain (by means of the method of lines) the boundary problem for

Table 2. The discrete values g L, &x.

k arL bi L A By,
1 3,1380 0,1050 0,0437 0,0029
2 6,2745 0,2115 0,1748 0,0118
3 9,4095 0,3240 0,3929 0,0271
4 12,5400 0,4440 0,6976 0,0494
5 15,6630 0,5745 1,0879 0,0798
6 18,7725 0,7215 1,5618 0,1201
7 21,8535 0,8925 2,1154 0,1728
8 24,8805 1,0875 2,7396 0,2393

the system of complex ordinary differential equations

dy; -
i = Ay oy, j=TN-T,
YN —Yn-1

Yo =0, — - —IYYN

where y; = y;(t) are continuous functions of time, j = 0, N. Seeking the quasi-
stationary solution of this system in the form

y;(t) = g; exp(iat)



32 O. Dumbrajs, H. Kalis, A. Reinfelds

we obtain the system similar to (3.5) where u? = a + §. This means that the quan-
tities Ay, + 1By, in expression (3.10) are approximate eigenvalues o, k = 1, N — 1,
obtained by means of the method of lines (see Tab. 2). Using in the boundary condi-
tions the second order approximation, we obtain an analogous problem, which, just
as the grid method, gives more accurate results. In oder to increase the accuracy of
discrete equation (3.5) we will use the Taylor expansion

h2 2h2m72
N — o (e 2@
Ag(zi) = 9" (zi) + 59" (xi) + ... + (Qm)!

9@ (i) + O(R*™),

where m = 1,2, .. .. From equation (2.4) it follows that

Ag(zl) = h2 ﬂ72n7
where
T (% + (Af!) +...+ (fl)mi(g;)ﬂm +O(h2m)) .

Similarly from boundary conditions (3.5) we obtain

1 lhl
glan-1) =g(an) = hg'(an) +... + (17')9(”(3%) +O(h™*), 1> 0,
and from the boundary condition of the problem (2.4) g(zn—-1) = Crg(zn), Where

p (AA)?h2
2k —2)!

+...+(-1)

i 3 2k—1
+% (hA (h?i) +...F (1)k%) +O(h?*), k>1.

It can be seen that the discrete problem (the errors are proportional to O(h?™) and
O(h?*) m, k = 1,2,...) is given in the form

90=0, gnv=C;'gn_1.
It can be seen that in the limit case (m — oo, k — o0) 2, — 5 (1 — cos(h)))

and Cj, — cos(h) + iyA~!sin(h\) or we obtain the transcendental equation (2.5).
Eigenfunctions of the discrete problem (3.5)

g = g () = sin(quay), x; =jh, j=0N, k=1,N 1

are orthogonal with respect to the scalar product (g, g) = Ky Y | 9" g,

i.e., (g%, g™y = 0, if k # n. This follows from the Green formula [4]. Evaluat-
ing [lg™® |2 = (g*)g*)), we obtain orthonormalized system §*) = ¢(¥) /|| g(®)|,
for which (%), (")) = 4y, (the Kronecker symbol). Considering the second or-
der approximation for the boundary condition (3.3), we cannot obtain a system of
orthogonal eigenfunctions. Evaluating ||g*)||2, we obtain
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Bz _ L _ hsin(gxL) cos(gr(L — h))
1= (L sin(gxh) ) '

(
lg 5

If h — 0, then g — Ay, and ||g®®)||?> — ||gx|?. If boundary conditions (3.4) are
. k L .
given as yntt = 0 (y = o), then ¢, = % and ||g(®)[]? = ) [4]. Each grid

function f‘(z), x € wy, With boundary conditions (3.5) can be expanded as a finite
sum

f@) =" g™ ()
k=1

of orthonormalized eigenfunctions %) (z) = g (z)/|lg™™||, = € wp, where the
expansion coefficients can be found with the help of the expressions . = (f, 3*)).
The solution of the boundary problem

{Ag:—f(:c), x € wp,
9(0) =0, ¢(L) = Cy(L - h)

is g(z) = 01, crg™ (@) / i}

4. Stability of the difference scheme

To study the stability of the discrete problem (difference scheme) (3.4), we rewrite
the difference equations with respect to the difference z; = y7' — f(z;,tn) in the
matrix operator form

(B +ito(A+6)2"" = (E —ir(1 — o) (A +6))z",

where 2" = (27,28, ..., 2% )T is the error vector-column and E is the unit oper-
ator. Hence 2" *! = Gz, where

G=(E+ito(A+0) " (E—ir(1—0)(A+9))
is the transition operator with the eigenvalues

1 4ir(1 - o)(pi —9)

A = k=1,N—-1
F 1—iro(pi —9)

3 7

)

where 12 are eigenvalues of the difference operator (—A) to be determined from the
boundary problem (3.5) u? = 2h~2(1 — cos(gxh)). If p3 are real numbers, e.g., in
the case of the first kind boundary conditions (v = oo, z}’\,“ =0)q = ’“T“ then
from the stability condition [4]

Mel® = (14721 = 0)* (i — 0)*) (1 + 720° (i — 6)°) ' <1,

it follows that
(4.1)

| =
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independent of the size of the temporal step-length 7. Similar problem for Schrédin-
ger type differential equation was investigated in [3]. Taking the boundary condition
of the third kind in the form 275" = C2%t! and determining the complex parame-
ter g in the form (3.8), we find from (3.11) that ;£ = dy, + &, where &y, can be
determined from (3.9) and (3.10). Then from

(1—7(1—0)Bg)* + Ai7%(1 — 0)? 1

|)\k|2: 2 2.2 9 =~
(1+70By)? + Aj12%0

it follows that
—2By, +7(1 — 20) (A} 4+ B}) < 0.

Ifo > % and By, > 0, then this inequality holds and the difference scheme (3.4) is
stable. If o = 1, we obtain the inequality

T > —2B,(A7 + BY) ™, (4.2)

which is important, if B, < 0. It is seen from (3.11) that, if (ax, bx) is a solution
of this system, then also (—ay, —by,) is a solution. The values of the coefficients 4,
By do not change and it is sufficient to consider only @, > 0. If simultaneously
br > 0, then also B, > 0, and the stability condition holds in the form (4.1). If
ar, = by, = 0, then By, = 0 and the difference scheme is stable. Calculations with the
help of "MAPLE” show that positive variables a; correspond to positive variables
by i.e., Br > 0. If the parameter v < 0, then it can be easily seen that positive ay
correspond to negative by, and the difference scheme (3.4) is absolutely unstable, if
the temporal step-length 7 is not large enough (in inequality (4.2) By < 0).

5. Method of separation of variables

Let us consider the inhomogeneous equation

o*f of

—= —i=+df=F(t 5.1

5 — i +0f = Flt,x), (5.1)
with a given function F'(¢, ). We seek the solution f = f(¢, ) with the boundary
conditions (2.2) in the form of a series

ftx) = ar(t)gn(x), (5.2)
k=1

where g, (x) are orthonormalized eigenfunctionsand A, L = 2*) = 2% 4 i2(" are
solutions of (2.6). To determine functions a(t), we use the given initial conditions
f(0,2) = fo(x). Taking a scalar product of (5.2) and a fixed eigenfunction, if t = 0,
we obtain ax(0) = (fo, gr). By analogy expanding the right-hand side of (5.1)

F(x,t) = Z Fi.(t) gk ()
k=1
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we obtain Fy(t) = (F, gx). Assuming that series (5.2) and the series, differentiated
twice with respect to x and once with respect to ¢, uniformly converge, and substi-
tuting it into (5.1), we obtain the ordinary differential equation

—Aag(t) —iag(t) + dag(t) = Fir(t), t>0
and

t
ar(t) = ax(0) exp(ia®t) + z/ exp(ia® (t — ) Fr(¢) d¢,
0
where @y, (t) = %, a®) = A2 — 5. As example, if fo(z) = sin (Z2), F = 0, then

solutions of the differential problem can be obtained in the form

Flta) = 2r LZ exp( za(k)t sin(Agz) sin( A, L) (A — ~?)
z) = “XL2)(XNL—4°L+iy)

Solving the correspondlng dlscrete problem with the initial condition

i L .
v = sm(zxj) = fo(z;), j=0,N,

we obtain y? = S a g*) (), where g (z;) = sin(grz;)/||g* | are discrete
eigenfunctions. Determining a9 from the initial condition
N—-1 .
ag — (f07§(k)) = hby, by = ; sin(zsh)g(k)(sh),

we find from difference equations the recurrence relation ;™' = ppal or a} =
(pr)"a?, where p, = 1+ itdy, /(1 — iTody). Hence

_ L by, exp(iogn) g (z5)
- Z P/ Ea— 3

where

_ sin(Zh)sin(gx L)

~ 2(cos(qrh) — cos(£h))’
ay, can be determined from (3.12), and a; from (3.9). It can be easily seen that
Y7 — f(tn,z;),ifh — 0,7 — 0, i.e., the solution of the discrete problem converges
to the solution of the continuous problem. Using the method of lines (only spatial
discretization), we obtain y;(t) = fo;ll ar(t)§™® (x;) by analogy, where functions
ai(t) are solutions of the Cauchy problem

day(t
aSt( )~ ia®ay(e),

ag (0) = hbk 5

i.e., ar(t) = ar(0) exp(iayt). Hence the solution can be written as
N-1
y;i(t) = h Y b expliont) sin(g;z;) /|19,
k=1

i.e., analogously to (5.3) where o, = 2h=2(1 — cos(qrh)) — 6.
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Table 3. The values |f|, | ], | fil, | fon| for @ = L, 7 = 0, 01.

t £ |fnl |fil | fn|
0.1 0,05087 0,05085 0,05162 0,04413
0.2 0,06217 0,06224 0,06269 0,05785
03 0,06871 0,06862 0,06899 0,06557
04 0,07289 0,07286 0,07311 0,07056
05 0,07574 0,07593 0,07590 0,07403
0,6 0,07806 0,07827 0,07808 0,07672
07 0,08041 0,08013 0,07977 0,07884
0.8 0,08103 0,08164 0,08225 0,08066
0,9 0,08214 0,08291 0,08338 0,08208
1,0 0,08310 0,08398 0,08403 0,08327

10,0 0,09468 0,09526 0.09457 0,09615
20,0 0,08996 0,08994 0,08996 0,09128
30,0 0,10289 0,10299 0,10289 0,10294
40,0 0,09560 0,09561 0,09559 0,09616
50,0 0,09127 0,09127 0,09125 0,09107
Abs(f_h)_solutions
o 288
s

absf_h)

0 100 200 300 400
t

Figure 2. Solution of the grid problem |f3,|, N = 750, x = L.

6. Numerical results and conclusions

Computations were carried out with the following values of the parameters § = 0,
L =15,y = 2, h = 1/10; 1/50, N = 150; 750, 7 = 0,1; 0,01, 0 = 1,
and fo(z) = sin (%2). The finite difference scheme was realized by means of the
FORTRAN code and analytically by using the expansion (finite series) in the form
of a sum. The results coincide up to seven digits. The discrete solutions |f5| and
| fan| for « = L were compared with the solution | f| of the continuous problem
which was obtained from the series at fixed time moments ¢t < 50 (|| is the
discrete solution obtained by means of the FORTRAN code and the second order
approximation of the boundary condition). In computing the series the terms were
summed up to the term whose modulus was smaller than e = 10~8 (the number of
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included terms was in all cases smaller than 1000). In Tab. 3 we also present the
solution | f;|, which was obtained by means of the analytic expansion of the line
method. It does not depend on the temporal step-length 7. It is obvious that the
results coincide up to two or three digits. In Fig. 2 we show the numerical solution in
the interval 7 € (0, 400). The solution oscillates up to ¢ = 50, after which it rapidly
approaches zero. Calculations show that reducing the spatial step-length & in the grid
method improves the accuracy. For example, if t = 7 = 0, 1, then

|£n] = 0,0480 (h = 0,1); 0,0520 (h = 0,05);
0,0510 (h = 0,025); 0,0509(h = 0,02).

It follows from the results presented in Tab. 3 that the scheme with the first order
approximation of the boundary condition is even more accurate. This is due to the
orthogonality of the corresponding eigenfunctions and this fact is important in im-
proving accuracy of numerical methods.
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Straipsnyje nagrinéjami skaitiniai sprendiniai gauti tiriant girotrono lygties vieng moda. Anali-
tiniai ir skaitiniai sprendiniai gauti taikant baigtiniy skirtumy metoda. I8tirti kvazistacionarieji
sprendiniai ir atitinkamos tokio uzdavinio tikrinés reikSmes ir tikrines funkcijos.



