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Abstract. In this paper, a prey-predator dynamics, where the predator species partially de-
pends upon the prey species, in a two patch habitat with diffusion and there is a non-diffusing
additional resource for the prey population, is modeled and analyzed. It is shown, that there
exists a positive, monotonic, continuous steady state solution with continuous matching at the
interface for both the species separately. Further, we obtain conditions for asymptotic stability
for both linear and nonlinear cases.

Key words: Population diffusion, patchiness, supplementary resource, steady state solution,
stability

1. Introduction

Mathematical ecology has its roots in population ecology, which treats the increase
and fluctuation of population. An interesting problem in mathematical ecology is to
study the growth and co-existence of species with diffusion in both homogeneous
and patchy habitats. As noted before the diffusion, when it occurs, plays the role
of increasing stability in a system of interacting populations [8, 10, 23, 24, 25, 27].
Some researchers have given elaborate survey of models with diffusion in both ho-
mogeneous and heterogeneous environment [14, 15, 16, 23] and also surveyed the
literature related to models with diffusion and reported the effects of dispersal and
spatial heterogeneity on stability of both single species and for predator-prey system
[4, 5, 18]. In [21] a prey-predator model with functional response and diffusion is
considered and it is shown, that if the equilibrium state is linearly stable, a sub-region

1 This work partially was carried out at Department of Mathematics, Indian Institute of Tech-
nology, Kanpur-208016, India. Author is thankful to Prof. J. B. Shukla for his valuable
suggestion.
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of the positive quadrant can be found in the phase plane where it is non-linearly stable
with or without diffusion.

It may be noted here that in the above study the role of alternative or supplemen-
tary resource on equilibrium levels of populations as well as on their stability has not
been discussed, although the study of resource-based interacting population biology
is an interesting area of research in population dynamics. Some experimental inves-
tigations on micro-organisms using the chemostat [11, 22] have been conducted and
perhaps the best laboratory idealization of nature for population studies has been de-
scribed in [28]. Several mathematical models of such systems, involving competition
and other types of non-interacting populations, which depend upon growth limiting
nutrient in a chemostat with constant input and variable washout rates have been
studied in [1, 2, 13, 17]. Also some other mathematical investigations related to two
competing populations which are wholly dependent on a self-renewable resource in a
habitat without diffusion have been presented [9, 12, 19]. But very little attention has
been given in the resource-based prey-predator system with diffusion [6]. The effect
of a predator resource on a diffusive Predator-Prey system, showing the stabilizing
role of diffusion have been studied.

In this paper, therefore, a logistically growing two species prey-predator type
model is considered. A self-renewable supplementary resource for prey population
and diffusion in a two-patch habitats is proposed and the stability of both the linear
and nonlinear systems is discussed. Both the reservoir and no-flux boundary condi-
tions are considered. It is shown that the effect of explicit dependence of the prey
population on an alternative supplementary resource in the two patches may increase
the level of steady state distribution for prey in the entire habitat. The model is pro-
posed by keeping in view the depletion of forest resources biomass (prey species)
with partially re-plantation of forest resource (i.e. supplementary resource) due to
increased forest resource. Dependence or independence on industrialization and pop-
ulation (predator species) has caused patchiness in the Doon Valley situated at the
foot hills of Himalayas in India [26].

This paper is organized as follows: first we write the prey-predator model with
a self-renewable supplementary resource for the prey in a two-patch habitat. In the
next section we study our main model in a two-patch habitat for both non-uniform
and uniform steady state cases under both reservoir and no-flux boundary conditions.

2. The Mathematical Model

We consider a dynamic model of two logistically growing animal (such as deer and
wolf) species with prey-predator type interaction and diffusion in a two-patch forest
habitat by assuming that the second species uses the first species as an alternative re-
source. In such a case the rate of change of density of the first species decreases due
increase in the density of the second species, but the density of the second species
increases due to the increase in the density of the first species in both the patches.
Let xi(s, t) and yi(s, t) be the densities of first and second species in the i-th patch
respectively. Now if we supply a supplementary resource Ri(s, t) for the prey popu-
lation xi(s, t) in the entire habitat, then in presence of resource biomass the growth
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rates of prey populations increases. We also assume that there is no explicit diffusion
in the resource biomass. Then the model can be written as the following system of
autonomous partial differential equations:

∂Ri

∂t
= aiRi(1 −

Ri

Ci

) − αiRixi, i = 1, 2 , (2.1)

∂xi

∂t
= xigi(xi) − yipi(xi) + θαiRixi + D1i

∂2xi

∂s2
, (2.2)

∂yi

∂t
= yifi(yi) + γiyipi(xi) + D2i

∂2yi

∂s2
, 0 ≤ s ≤ L2 , (2.3)

where the i-th patch is assumed to lie along the spatial length Li−1 ≤ s ≤ Li (L0 =
0), Ci, i = 1, 2 are the carrying capacity of the supplementary resource in the i-th
patch and θ is the conversion rate of biomass constant by the prey populations, re-
spectively. The functions gi(xi) and fi(yi) are the respective specific growth rates,
pi(xi) are the interaction rates (predator response functions) and D1i, D2i are the
diffusion coefficient of xi and yi in the i-th patch respectively. The constants αi,
i = 1, 2 are positive interaction rate coefficients of the prey species with the supple-
mentary resource and γi, i = 1, 2 are conversion rates coefficient in the i-th patch.

We assume the following assumption for gi(xi), fi(yi), and pi(xi):

AH1 :



























gi(xi), fi(yi), pi(xi) ∈ C2[0,∞) ,

gi(0) > 0, fi(0) > 0, pi(0) = 0 ,

for xi > 0, g′

i(xi) ≤ 0, p′

i(xi) > 0 ,

for yi > 0, f ′i(yi) ≤ 0 .

When the environment has a carrying capacity Ki and Mi respectively for prey and
predator populations in the i-th patch, then

gi(Ki) = 0, fi(Mi) = 0, for i = 1, 2 .

Further we assume that:

AH2 :















∃R∗

i , x∗

i , y
∗

i > 0, such that R∗

i = Ci[ai − αix
∗

i ]/ai ,

x∗

i gi(x
∗

i ) − y∗

i pi(x
∗

i ) + θαiR
∗

i x
∗

i = 0 ,

fi(y
∗

i ) + γipi(x
∗

i ) = 0 .

The model is studied using one set of boundary conditions, i.e., reservoir or no-
flux conditions. In the case of reservoir boundary conditions, we take

x1(0, t) = x∗

1
, x2(L2, t) = x∗

2
, (2.4)

y1(0, t) = y∗

1
, y2(L2, t) = y∗

2
(2.5)

and in the case of no-flux boundary conditions we consider

∂x1(0, t)

∂s
= 0,

∂x2(L2, t)

∂s
= 0 , (2.6)

∂y1(0, t)

∂s
= 0,

∂y2(L2, t)

∂s
= 0 . (2.7)
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We also assume the continuity and flux matching conditions at the interface s =
L1. The continuity conditions at the interface s = L1 are the following:

x1(L1, t) = x2(L1, t), y1(L1, t) = y2(L1, t), R1(L1, t) = R2(L1, t) . (2.8)

The continuous flux matching conditions at the interface s = L1 for xi(s, t) and
yi(s, t) are given by

D11

∂x1(L1, t)

∂s
= D12

∂x2(L1, t)

∂s
, (2.9)

D21

∂y1(L1, t)

∂s
= D22

∂y2(L1, t)

∂s
. (2.10)

Finally the model is completed by assuming some positive initial distribution of
each species, for i = 1, 2, that is,

xi(s, 0) = χi(s) > 0, Li−1 < s < Li, (2.11)

yi(s, 0) = δi(s) > 0, Li−1 < s < Li, (2.12)

Ri(s, 0) = R0i(s) > 0, Li−1 < s < Li. (2.13)

3. Analysis of the Model in Two Patch Habitat

Our aim is to analyze the long time behavior of the system in both uniform and
nonuniform cases. In next two subsection we will study the model (2.1) – (2.13), in
the case of nonuniform and uniform steady state.

3.1. The Non-uniform Steady State

Let ui, vi and wi are the steady state solutions of the prey populations xi, predator
populations yi and the supplementary resource Ri. Then the steady state system
becomes:

wi =
Ci

ai

[ai − αiui] , (3.1)

D1i

d2ui

ds2
+ uigi(ui) − vipi(ui) + θαiwiui = 0, (3.2)

D2i

d2vi

ds2
+ vifi(vi) + γivipi(ui) = 0. (3.3)

Now substituting the value of wi from (3.1) into (3.2) and (3.3), we get:

D1i

d2ui

ds2
+ uiGi(ui) − vipi(ui) = 0, (3.4)

D2i

d2vi

ds2
+ vifi(vi) + γivipi(ui) = 0, (3.5)

where
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Gi(ui) = gi(ui) + θαi

Ci

ai

(ai − αiui), i = 1, 2.

Since

Gi(0) = gi(0) + Ciθαi > 0, G′

i(ui) = g′

i(ui) −
Ciθα

2

i

ai

< 0, i = 1, 2 .

Hence the behavior the steady state system (3.4) and (3.5) with same set of boundary
conditions identical to the case when there is no supplementary resource for the prey
populations. Further, we assume

AH3 :

{

∃x∗

i , y
∗

i > 0, x∗

i Gi(x
∗

i ) − y∗

i pi(x
∗

i ) = 0,

fi(y
∗

i ) + γipi(x
∗

i ) = 0.
(3.6)

Remark 1. We are only interested to find the positive steady state of the system.
Therefore, it follows from (3.1), ui < ai/αi and hence Gi(ui) ≥ gi(ui), ∀ ui.
Now, from (3.6) we get

y∗

i =
x∗

i Gi(x
∗

i )

pi(x∗

i )
> y∗∗

i , x∗

i > x∗∗

i ,

where the non-zero positive x∗∗

i and y∗∗

i are equilibrium value of the above prey-
predator system without supplementary resource, given by

x∗∗

i gi(x
∗∗

i ) − y∗∗

i pi(x
∗∗

i ) = 0, (3.7)

fi(y
∗∗

i ) + γipi(x
∗∗

i ) = 0. (3.8)

Hence in presence of a supplementary resource for the prey population, the level of
steady state distributions of both the species are higher at each location in the habitat.

Example 1. Now, we discuss a numerical example in which the behavior of the steady
state solutions of the above system is studied. The results are compared with the
case of a prey-predator system without supplementary resource. We consider the
following particular form of functions:

gi(ui) = ri

(

1 −
ui

Ki

)

, fi(vi) = si

(

1 −
vi

Mi

)

, pi(ui) = eiui, i = 1, 2 .

For simplicity let assume that the supplementary resource initially is distributed uni-
formly, i.e. C1 = C2 = C. Then the steady state system (3.4) and (3.5), becomes















D1i

d2ui

ds2
+ ui

[

ri

(

1 −
ui

Ki

)

+
θαiC

ai

(ai − αiui)

]

− eiviui = 0,

D2i

d2vi

ds2
+ sivi

(

1 −
vi

Mi

)

+ γieiviui = 0

(3.9)

with reservoir boundary conditions
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u1(0) = x∗

1
, u2(L2) = x∗

2
, (3.10)

v1(0) = y∗

1
, v2(L2) = y∗

2
,

where x∗

i , y∗

i are from (3.6), and the continuity-flux matching conditions at the inter-
face s = L1 are given as

D11

du1

ds
(L1) = D12

du2

ds
(L1), D21

dv1

ds
(L1) = D22

dv2

ds
(L1),

u1(L1) = u2(L1), v1(L1) = v2(L1) . (3.11)

The equations (3.9) – (3.11) are solved numerically by using finite–difference
method, for the following set of dimensionless values

L1 = 10, L2 = 20, D11 = 0.8, D12 = 0.9, D21 = 0.8, D22 = 0.9 ,

r1 = 0.03, r2 = 0.025, a1 = 1.0, a2 = 1.0, s1 = 0.03, s2 = 0.01 ,

e1 = 0.00005, e2 = 0.00005, K1 = 100, K2 = 125, M1 = 75, M2 = 50 ,

α1 = 0.00005, α2 = 0.00002, C = 60, γ1 = 0.4, γ2 = 1.0, θ = 0.7 .

By using above values of the parameters, we get

x∗

1
= 87.2 > x∗∗

1
= 80.77, x∗

2
= 118.58 > x∗∗

2
= 109.09 ,

y∗

1
= 118.60 > y∗∗

1
= 115.385, y∗

2
= 168.58 > y∗∗

2
= 159.09 .

We can easily verify that in presence of a supplementary resource for the prey, the
level of steady state distributions of both species are higher at each location of the
habitat compared to the case without supplementary resource for prey population
(see Fig. 1). Moreover the steady state distribution is continuous and monotonic
function.

Now, we consider the following assumptions: For every

min{x∗∗

1
, x∗∗

2
} ≤ ui ≤ max{x∗∗

1
, x∗∗

2
},

min{ y∗∗

1
, y∗∗

2
} ≤ vi ≤ max{ y∗∗

1
, y∗∗

2
}, i = 1, 2

we have that:

(ui − x∗∗

i )[uiGi(ui) − vipi(ui)] < 0, ∀ui 6= x∗∗

i ,

(vi − y∗∗

i )[vifi(vi) + γivipi(ui)] < 0, ∀vi 6= y∗∗

i .

Under these conditions ui and vi both will be positive through out the habitat.
We now consider without loss of generality 0 < x∗∗

1
< x∗∗

2
and 0 < y∗∗

1
< y∗∗

2
.

Therefore x∗∗

1
≤ ui ≤ x∗∗

2
and y∗∗

1
≤ vi ≤ y∗∗

2
. Again, from (3.4) and (3.5) under

reservoir boundary conditions, let pi(s, αi) and qi(s, βi) are unique solutions of ui

and vi respectively, for i = 1, 2, such that

∂p1

∂s
(0, α1) = α1, p1(0, α1) = x∗∗

1
,

∂p2

∂s
(L2, α2) = α2, p2(L2, α2) = x∗∗

2
,

∂q1

∂s
(0, β1) = β1, p1(0, β1) = y∗∗

1
,

∂p2

∂s
(L2, β2) = β2, p2(L2, β2) = y∗∗

2
.
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Figure 1. The steady state solutions for both the species, with and without supplementary
resource for the prey.

Similarly, for no-flux boundary condition, let pi(s, αi) and qi(s, βi) are unique solu-
tions of ui and vi respectively, for i = 1, 2, such that

∂p1

∂s
(0, α1) = 0, p1(0, α1) = α1,

∂p2

∂s
(L2, α2) = 0, p2(L2, α2) = α2 ,

∂q1

∂s
(0, β1) = 0, p1(0, β1) = β1,

∂p2

∂s
(L2, β2) = 0, p2(L2, β2) = β2 .

Then the existence of the monotonic solutions are established in both the reser-
voir and no-flux boundary conditions, if we can show that there exists αi and βi, for
i = 1, 2, such that

p1(L1, α1) = p2(L1, α2), q1(L1, β1) = q2(L1, β2) ,

D11

∂p1

∂s
(L1, α1) = D12

∂p2(L1, α2)

∂s
, D21

∂q1(L1, β1)

∂s
= D12

∂q2(L1, β2)

∂s
.

In order to construct our required solutions for reservoir boundary conditions, we
need some preliminary lemmas, in the same manner as in [3, 4].

Lemma 1. If α1, β1 > 0, then

∂p1(s, α1)

∂s
> α1,

∂q1(s, β1)

∂s
> β1, on 0 < s ≤ L1.

Lemma 2. If α2, β2 > 0, 0 < p2 < x∗∗

2
and 0 < q2 < y∗∗

2
, then

∂p2(s, α2)

∂s
> α2,

∂q2(s, β2)

∂s
> β2, L1 ≤ s < L2.
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Lemma 3. Let us define F1i(αi) by F1i(αi) = pi(L1, αi). Then there exists α̂i > 0
such that

F11 : [0, α̂1] → [x∗∗

1
, x∗∗

2
] , F12 : [0, α̂2] → [x∗∗

2
, x∗∗

1
] .

Lemma 4. Let us define F2i(βi) by F2i(βi) = qi(L1, βi). Then there exists β̂i > 0
such that

F21 :
[

0, β̂1

]

→ [y∗∗

1
, y∗∗

2
] , F22 :

[

0, β̂2

]

→ [y∗∗

2
, y∗∗

1
] .

Similar type of four lemmas we can established for the steady state system with
the no-flux boundary conditions. Hence we state the following theorem.

Theorem 1. (i) There exists a positive, continuous, monotonic solution of system
(3.4) with continuous flux at L1.

(ii) There exists a positive, continuous, monotonic solution of system (3.5) with con-
tinuous flux at L1.

Now we consider the stability analysis of the system (2.1) – (2.3), (2.8) – (2.13)
with reservoir boundary conditions (2.4) and (2.5). First we state the local stability
of the system by the following theorem.

Theorem 2. The steady-state, continuous, monotonic solutions of the system (2.1) –
(2.3) with reservoir boundary conditions and continuous flux at the interface s = L1

are locally asymptotically stable provided the following conditions are satisfied:

Xi ≤ 0, Yi ≤ 0, Zi ≤ 0 , (3.12)

U2

i ≤ 4XiYi, XiYiZi ≤ YiW
2

i + ZiU
2

i ,

where

Xi = gi(ui) + uig
′

i(ui) − vip
′

i(ui) + θαiwi,

Yi = fi(vi) + vif
′

i (vi) + γipi(ui), Wi =
αi

2
[θui − wi] ,

Zi = ai

(

1 −
2wi

Ci

)

− αiui, Ui =
1

2
[γivip

′

i(ui) − pi(ui)] ,

for x∗

1
≤ ui ≤ x∗

2
, y∗

1
≤ vi ≤ y∗

2
, where x∗

i and y∗

i are given by (3.6).

Proof. We linearize (2.1), (2.2) and (2.3) by using

Ri(s, t) = wi(s) + ri(s, t) , (3.13)

xi(s, t) = ui(s) + ni(s, t), yi(s, t) = vi(s) + mi(s, t) ,

then we obtain the system
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













































∂ri

∂t
= ri

[

ai

(

1 −
2wi

Ci

)

− αiui

]

− niαiwi,

∂ni

∂t
= ni[gi(ui) + uig

′

i(ui) − vip
′

i(ui) + θαiwi]

−mipi(ui) + riθαiui + D1i

∂2ni

∂s2
,

∂mi

∂t
= mi[fi(vi) + vif

′

i (vi) + γipi(ui)] + niγivip
′

i(ui) + D2i

∂2mi

∂s2
.

(3.14)
Using (3.13) the following boundary and matching conditions are obtained:

n1(0, t) = 0 = n2(L2, t), m1(0, t) = 0 = m2(L2, t),

n1(L1, t) = n2(L1, t), m1(L1, t) = m2(L1, t),

D11

∂n1

∂s
(L1, t) = D12

∂n2

∂s
(L1, t), D21

∂m1

∂s
(L1, t) = D22

∂m2

∂s
(L1, t).

Now we consider the following positive definite function,

V (t) =

2
∑

i=1

∫ Li

Li−1

1

2

(

n2

i + m2

i + r2

i

)

ds . (3.15)

Differentiating (3.15) with respect to t, we get

V̇ (t) =
2

∑

i=1

∫ Li

Li−1

(

ni

∂ni

∂t
+ mi

∂mi

∂t
+ ri

∂ri

∂t

)

ds .

By using (3.14) we get

V̇ (t) =

2
∑

i=1

∫ Li

Li−1

n2

i [gi(ui) + uig
′

i(ui) − vip
′

i(ui) + θαiwi] ds +

2
∑

i=1

×

∫ Li

Li−1

m2

i [fi(vi) + vif
′

i (vi) + γipi(ui)] ds +

2
∑

i=1

∫ Li

Li−1

r2

i

[

ai

(

1 −
2wi

Ci

)

− αiui

]

ds +

2
∑

i=1

∫ Li

Li−1

nimi[−pi(ui) + γivip
′

i(ui)] ds +

2
∑

i=1

∫ Li

Li−1

niriαi

× [θui − wi] ds +

2
∑

i=1

D1i

∫ Li

Li−1

ni

∂2ni

∂s2
ds +

2
∑

i=1

D2i

∫ Li

Li−1

mi

∂2mi

∂s2
ds.

Therefore,

V̇ (t) =

2
∑

i=1

∫ Li

Li−1

[Xin
2

i + Yim
2

i + Zir
2

i + 2Uinimi + 2Wirini] ds

−
2

∑

1

D1i

∫ Li

Li−1

(

∂ni

∂s

)2

ds −
2

∑

1

D2i

∫ Li

Li−1

(

∂mi

∂s

)2

ds , (3.16)
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where the functions Xi, Yi, Zi, Ui, and Wi are as follows,

Xi = gi(ui) + uig
′

i(ui) − vip
′

i(ui) + θαiwi,

Yi = fi(vi) + vif
′

i(vi) + γipi(ui), Zi = ai

(

1 −
2wi

Ci

)

− αiui,

Ui =
1

2
[γivip

′

i(ui) − pi(ui)], Wi =
αi

2
[θui − wi]

hence V̇ is negative definite, if conditions (3.12) of the theorem are satisfied for
i = 1, 2. �

Next, we state the corresponding nonlinear stability conditions of the system.

Theorem 3. The steady-state, continuous, monotonic solutions of nonlinear system
(2.1) – (2.3), (2.8) – (2.13) with reservoir boundary conditions (2.4) – (2.5) are
asymptotically stable in the sub-region

R = {x∗

1
≤ xi, ui ≤ x∗

2
, y∗

1
≤ yi, vi ≤ y∗

2
, i = 1, 2} ,

provided the following conditions are satisfied:

Nxi ≤ 0, Nyi ≤ 0, Nzi ≤ 0 , (3.17)

N 2

ui ≤ 4NxiNyi, NxiNyiNzi ≤ NyiN
2

wi + NziN
2

ui ,

where

Nxi =
xigi(xi) − uigi(ui)

xi − ui

− yi

pi(xi) − pi(ui)

xi − ui

+ θαiRi ,

Nyi =
yifi(yi) − vifi(vi)

yi − vi

+ γipi(ui) ,

Nzi = ai

(

1 −
Ri + wi

Ci

)

− αiui, Nwi =
αi

2
[θui − Ri] ,

Nui =
1

2

[

γiyi

pi(xi) − pi(ui)

xi − ui

− pi(ui)

]

.

Proof. By using (3.13), we get from (2.1), (2.2) and (2.3)

∂ri

∂t
= ri

[

ai

(

1 −
Ri + wi

Ci

)

− αiui

]

− niαiRi , (3.18)

∂ni

∂t
= ni

[

xigi(xi) − uigi(ui)

xi − ui

− yi

pi(xi) − pi(ui)

xi − ui

+ θαiRi

]

− mipi(ui) + riθαiui + D1i

∂2ni

∂s2
, (3.19)

∂mi

∂t
= mi

[

yifi(yi) − vifi(vi)

yi − vi

+ γipi(ui)

]

+ ni

[

γiyi

pi(xi) − pi(ui)

xi − ui

]

+ D2i

∂2mi

∂s2
. (3.20)
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Here also we consider the same positive definite function as in the case of linear
stability. By using (3.18), (3.19) and (3.20), we get

V̇ (t) =
2

∑

i=1

∫ Li

Li−1

n2

i

[

xigi(xi) − uigi(ui)

xi − ui

− yi

pi(xi) − pi(ui)

xi − ui

+ θαiRi

]

ds

+

2
∑

i=1

∫ Li

Li−1

m2

i

[

yifi(yi) − vifi(vi)

yi − vi

+ γipi(ui)

]

ds

+

2
∑

i=1

∫ Li

Li−1

r2

i

[

ai

(

1 −
Ri + wi

Ci

)

− αiui

]

ds +

2
∑

i=1

∫ Li

Li−1

nimi

×

[

γiyi

pi(xi) − pi(ui)

xi − ui

− pi(ui)

]

ds +
2

∑

1

∫ Li

Li−1

riniαi[θui − Ri] ds

+
2

∑

i=1

D1i

∫ Li

Li−1

ni

∂2ni

∂s2
ds +

2
∑

i=1

D2i

∫ Li

Li−1

mi

∂2mi

∂s2
ds .

Therefore,

V̇ (t) =

2
∑

i=1

∫ Li

Li−1

[Nxin
2

i + Nyim
2

i + Nzir
2

i + 2Nuinimi + 2Nwirini] ds

−
2

∑

i=1

D1i

∫ Li

Li−1

(

∂ni

∂s

)2

ds −
2

∑

i=1

D2i

∫ Li

Li−1

(

∂mi

∂s

)2

ds , (3.21)

where the functions Nxi, Nyi, Nzi, Nui and Nwi are given by (3.18). Hence V̇ is
negative definite if the conditions (3.17) hold for i = 1, 2. �

It can be noted that, if we linearize the conditions of Thm.3, then we get the
conditions of Thm. 2.

The same theorems are true for the system (2.1) – (2.3), (2.8) – (2.13) with no-
flux boundary conditions (2.6) and (2.7).

3.2. The Uniform Equilibrium State

Similar as in the previous case, the main purpose of this section to find the conditions
for local and global stability of the uniform equilibrium state of the system

xi(s, t) ≡ K∗, yi(s, t) ≡ M∗, Ri(s, t) ≡ C∗, 0 ≤ s ≤ L2, t ≥ 0

under both sets of boundary conditions.

Theorem 4. The equilibrium (C∗, K∗, M∗) is locally asymptotically stable, if H∗

i +
θαiC

∗ ≤ 0, for i = 1, 2, where H∗

i is given by

H∗

i = gi(K
∗) + K∗g′

i(K
∗) − M∗pi(K

∗) (3.22)

and the following conditions are satisfied
(

γiM
∗p′

i(K
∗) − pi(K

∗)
)2

≤ 4
(

H∗

i + θαiC
∗
)

M∗f ′i(M
∗), i = 1, 2 . (3.23)
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Proof. We linearize the system (2.1) – (2.3) by using

Ri(s, t) = C∗ + ri(s, t), (3.24)

xi(s, t) = K∗ + ni(s, t), yi(s, t) = M∗ + mi(s, t) ,

then we get











































∂ri

∂t
= ri

[

−
aiC

∗

Ci

]

− niαiC
∗,

∂ni

∂t
= ni[gi(K

∗) + K∗g′

i(K
∗) − M∗p′

i(K
∗) + θαiC

∗]

−mipi(K
∗) + riθαiK

∗ + D1i

∂2ni

∂s2
,

∂mi

∂t
= miM

∗f ′i (M
∗) + niγiM

∗p′

i(K
∗) + D2i

∂2mi

∂s2
.

(3.25)

We consider the following positive definite function

V =
1

2

2
∑

i=1

∫ Li

Li−1

[

(xi − K∗)2 + (yi − M∗)2 + di(Ri − C∗)2
]

, (3.26)

where di, i = 1, 2 are positive constants. Differentiating (3.26) and using (3.25), we
get

V̇ =

2
∑

i=1

∫ Li

Li−1

n2

i

(

H∗

i + θαiC
∗
)

ds +

2
∑

i=1

∫ Li

Li−1

m2

i M
∗f ′i(M

∗) ds

+

2
∑

i=1

∫ Li

Li−1

r2

i

[

−
diaiC

∗

Ci

]

ds +

2
∑

i=1

∫ Li

Li−1

nimi

(

− pi(K
∗)

+ γiM
∗p′

i(K
∗)

)

ds +

2
∑

i=1

∫ Li

Li−1

niri

(

αi{θK
∗ − diC

∗}
)

ds

+

2
∑

i=1

∫ Li

Li−1

D1ini

∂2ni

∂s2
ds +

2
∑

i=1

∫ Li

Li−1

D2imi

∂2mi

∂s2
ds . (3.27)

Using integration by parts and for both types of boundary conditions, we get

2
∑

i=1

∫ Li

Li−1

D1ini

∂2ni

∂s2
ds = −

2
∑

i=1

D1i

∫ Li

Li−1

(

∂ni

∂s

)2

ds,

2
∑

i=1

∫ Li

Li−1

D2imi

∂2mi

∂s2
ds = −

2
∑

i=1

D2i

∫ Li

Li−1

(

∂mi

∂s

)2

ds.

We choose di, i = 1, 2, such that, coefficients of niri become zero, i.e. d1 = d2 =
θK∗/C∗. Therefore it follows from (3.27) that V̇ is negative definite, if the condi-
tions H∗

i + θαiC
∗ ≤ 0 and (3.23) are satisfied. �
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Theorem 5. Let H∗

i + θαiC
∗ > 0. Then the equilibrium (C∗, K∗, M∗) is locally

asymptotically stable, if the conditions (3.23) and the following inequality hold:

H∗

i + θαiC
∗ ≤ D1i

π2

(Li − Li−1)2
, i = 1, 2 .

Proof. From (3.28) and using Poincare’s inequality we get

D1i

∫ Li

Li−1

(

∂ni

∂s

)2

ds ≤ D1i

π2

(Li − Li−1)2

∫ Li

Li−1

n2

i ds .

Therefore from (3.27) we get

V̇ ≤
2

∑

i=1

∫ Li

Li−1

n2

i x

(

H∗

i + θαiC
∗ − D1i

π2

(Li − Li−1)2

)

ds

+
2

∑

i=1

∫ Li

Li−1

m2

i M
∗f ′i(M

∗) ds +
2

∑

i=1

∫ Li

Li−1

r2

i

(

−
diaiC

∗

Ci

)

ds

+

2
∑

i=1

∫ Li

Li−1

nimi

(

− pi(K
∗) + γiM

∗p′

i(K
∗)

)

ds −
2

∑

i=1

D2i

∫ Li

Li−1

(

∂mi

∂s

)2

ds .

Hence the theorem is proved. �

We now state the global stability of the uniform steady state.

Theorem 6. The uniform steady–state (C∗,K∗,M∗) is globally asymptotically sta-
ble if

Ai(xi) =
xigi(xi) − M∗pi(xi)

xi − K∗
+ θαiC

∗ < 0, ∀xi 6= K∗ , (3.28)

(

γi

pi(xi) − pi(K
∗)

xi − K∗
−

pi(xi)

xi

)2

≤ 4
Ai(xi)

xi

(

fi(yi) − fi(M
∗)

yi − M∗

)

, (3.29)

Ai(xi)

xi

(

fi(yi) − fi(M
∗)

yi − M∗

) (

ai

Ci

)

≤

(

fi(M
∗) − fi(yi)

yi − M∗

)

(

α2

i (θ − Ri)
2
)

+
ai

Ci

(

Ai(xi)

xi

)2

. (3.30)

Proof. Let us consider the following positive definite function

V (x, y, R) =
2

∑

i=1

∫ Li

Li−1

(

xi − K∗ − K∗ln
xi

K∗

)

ds +
2

∑

i=1

∫ Li

Li−1

(

yi − M∗

− M∗ ln
yi

M∗

)

ds +
2

∑

i=1

∫ Li

Li−1

(

Ri − C∗ − C∗ln
Ri

C∗

)

ds. (3.31)
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Differentiating (3.31) with respect to t and using (2.1) – (2.3) we get

V̇ (s, t) =

2
∑

i=1

∫ Li

Li−1

(

xi − K∗

xi

)

∂xi

∂t
ds +

2
∑

i=1

∫ Li

Li−1

(

yi − M∗

yi

)

∂yi

∂t
ds

+

2
∑

i=1

∫ Li

Li−1

(

Ri − C∗

Ri

)

∂Ri

∂t
ds =

2
∑

i=1

∫ Li

Li−1

(xi − K∗)2

xi

×

(

xigi(xi) − M∗pi(xi)

xi − K∗
+ θαiC

∗

)

ds +
2

∑

i=1

∫ Li

Li−1

(yi − y∗)2

×

(

fi(yi) − fi(M
∗)

yi − M∗

)

ds −
2

∑

i=1

∫ Li

Li−1

(Ri − C∗)2
(

−
ai

Ci

)

ds

+
2

∑

i=1

∫ Li

Li−1

(xi − K∗)(yi − M∗)

(

γi

pi(xi) − pi(K
∗)

xi − K∗
−

pi(xi)

xi

)

ds

+

2
∑

i=1

∫ Li

Li−1

(xi − K∗)(yi − M∗)αi (θ − Ri) ds

+
2

∑

i=1

D1i

∫ Li

Li−1

xi − K∗

xi

∂2xi

∂s2
ds +

2
∑

i=1

D2i

∫ Li

Li−1

yi − M∗

yi

∂2yi

∂s2
ds .

Using both set of boundary and flux matching conditions

(

x1(0, t) − K∗
)∂x1

∂s
(0, t) = 0,

(

x2(L2, t) − K∗
)∂x2

∂s
(L2, t) = 0 ,

(

y1(0, t) − M∗
)∂y1

∂s
(0, t) = 0,

(

y2(L2, t) − M∗
)∂y2

∂s
(L2, t) = 0

we get

2
∑

i=1

D1i

∫ Li

Li−1

xi − K∗

xi

∂2xi

∂s2
ds = −

2
∑

i=1

D1i

∫ Li

Li−1

K∗

x2

i

(

∂xi

∂s

)2

ds ,

2
∑

i=1

D2i

∫ Li

Li−1

yi − M∗

yi

∂2yi

∂s2
ds = −

2
∑

i=1

D2i

∫ Li

Li−1

M∗

y2

i

(

∂yi

∂s

)2

ds .

Now if conditions (3.28), (3.29) and (3.30) hold, then V̇ (x, y) < 0, and
V̇ (C∗, K∗, M∗) = 0. Therefore V̇ (x, y) is negative definite over R > 0, x > 0,
y > 0 with respect to R∗

i = C∗, x∗

i = K∗, y∗

i = M∗, proving the theorem. �

Remark 2. We conclude that the role of supplementary resource is to increase the
level of nonuniform steady state distributions of both the species at each location of
the linear habitat. Further, the number of conditions for stability is increased com-
pared to the case with no supplementary resource for prey and the role of patchiness
is destabilizing in present of supplementary resource.
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Plėšrūno-aukos modelis su difuzija ir papildomu resursu aukai dviejų sričių areale

J. Dhar

Šiame straipsnyje modeliuojama ir analizuojama plėšr ūnų ir aukų dinamika, laikant, kad
plėšr ūnų populiacija dalinai priklauso nuo aukų skaǐciaus. Arealą sudaro dvi sritys, kuriose
vyksta populiacijų individų difuzija, be to, aukoms yra išskirtas nedifunduojantis resursas.

Įrodyta, kad egzistuoja teigiamas, monotoniškas, tolydus stacionarusis sprendinys, tenki-
nantis tolydumo sąlygą abiems populiacijoms atskirai. Gautos asimptotinio stabilumo sąlygos
tiesiniu ir netiesiniu atvejais.


