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Abstract. Nonlinear stage of quasi-Cherenkov instability of electron beam under condi-
tions of two- and three-dimensional distributed feedback is simulated. The scheme of dis-
tributed feedback with two strong coupled waves is considered. Mathematical model of quasi-
Cherenkov electron beam instability is proposed. Numerical method to solve the nonlinear
integro-differential system, describing such instability, is worked out. Results of numerical
experiments are discussed.
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1. Introduction

This contribution is devoted to modelling of nonlinear stage of quasi–Cherenkov
electron beam instability under the conditions of two- and three-dimensional dis-
tributed feedback. Quasi-Cherenkov instability takes place when one or more wave
refraction index satisfy the Cherenkov condition [4]. In this case electrons radiate co-
herently. Such instability mechanism can be considered as a technique for realization
of Free Electron Laser (FEL). FELs are devices which use the electron beam energy
to generate coherent electromagnetic radiation. Such devices are very perspective for
electromagnetic radiation generation in wide spectral range. Nowadays FEL lasing
is obtained in different wavelength ranges: from centimeter to ultra-violet [2, 9, 14].
The high expensive International X-ray FEL project is on the preparation stage now
[16]. Volume FEL (VFEL) based on the mechanism of multi wave volume distributed
feedback (VDFB) was proposed in [3, 5]. VFELs give possibility to reduce the start-
ing currents of generation, to provide generation in large volume, to tune generation
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frequency [3]. VFEL generation in large volume essentially increases the electric
strength of resonator and allows to produce electromagnetic pulses of great power
(> 10 GWt) in mm–cm range. Besides the multiwave distributed feedback in VFEL
provides the modes discrimination in the case when the linear sizes of resonator
(waveguide) cross section exceed generated wavelength (the so-called oversized sys-
tems).

First lasing of volume FEL (VFEL) in millimeter range was recently obtained by
a group of scientists of Institute for Nuclear Problems [7].

A lot of papers are devoted to FEL simulation (for example [10, 11]). In our
works [1, 6, 8, 18, 19, 20, 21, 22] we have considered mathematical models of dif-
ferent types of VFEL in X-ray, optical and millimeter wave ranges. Earlier electron
beam was simulated as a hydrodynamical approximation [1, 18] or as distribution
functions [8, 19]. It turned out, however, that hydrodynamical approximation is very
rough. And in millimeter range electron beam presentation as distribution functions
for sufficiently large beam current density leads to appearance of non-physical insta-
bility related to the computational error. Therefore in this work simulation of quasi-
Cherenkov instability is performed by means of phase averaging method which is
frequently used in large number of works. The main distinction of this work is in
applying such method to VFEL simulation.

2. Mathematical Model

Let us consider quasi-Cherenkov stimulated radiation of wide electron beam passing
through spatial periodic structure. In Fig. 1 four schemes of simple VFEL are pre-
sented. A target of length L is a medium possessing spatially periodic permittivity.
There are several different possibilities. Fig.1a corresponds to the case when there are
no incident waves emerging on system. For distributed feedback forming the specific
so-called diffraction (or the Bragg) conditions can be fulfilled. These conditions have
the form |k| = |kτ | for the two waves case. Here k is the radiation wave vector and
τ is reciprocal vector of the periodical structure τ = 2πn1/d1, 2πn2/d2, 2πn3/d3,
d1, d2, d3 are basic translation periods, n1, n2, n3 are integers. Here we consider so-
called Bragg diffraction geometry when one wave propagates in forward direction
and the other – in backward (see Fig.1a – Fig.1d).

The developed mathematical model allows to consider such geometry when inci-
dent wave emerges from the side z = 0 (forward incident wave Fig.1b), or from the
side z = L (backward incident wave Fig.1c), or from both sides simultaneously (see,
Fig.1d). Moreover two mirrors can be placed on each side of the target to accumulate
radiation.

Let us consider the system of equations describing quasi–Cherenkov instability.
Equations for this process are written for stationary regime of nonlinear saturation.
This system with appropriate boundary conditions is written as follows:
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Figure 1. Scheme of quasi–Cherenkov VFEL in Bragg geometry.
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= Φ
2π
∫

0

2π − p

8π2
(exp(−iΘ(z, p)) + exp(−iΘ(z,−p))) dp,

E(0) = E0, z ∈ [0, L], p ∈ [−2π, 2π] ,

dEτ

dz
+ a21E + a22Eτ = 0, Eτ (L) = E1,

d2Θ(z, p)

dz2
= Ψ

(

k −
dΘ(z, p)

dz

)3

Re (E(z) exp(iΘ(z, p))) ,

Θ(0, p) = p,
dΘ(0, p)

dz
= 0;

(2.1)

where i is the imaginary unit.
There are two independent arguments in system (2.1): spatial coordinate z and

initial electron phase p. Amplitudes of electromagnetic fields E(z), Eτ (z) and co-
efficients a are complex-valued. Function Θ(z, p) describes phase of electron beam
relative to the electromagnetic wave. Θ(z, p) and coefficients Φ and Ψ are real. k is
a projection of wave vector k on z axis. We suppose that all functions are smooth,
bounded and slowly changing.
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Stationary solution under zero boundary conditions is due to the essentially non-
linear contribution of electron beam. In linear regime the homogeneous system with
zero boundary conditions has infinite number of solutions.

3. Numerical Algorithm

To solve the system of integro–differential equations with nonlinearity on right–hand
sides an iterative algorithm is proposed. We use notations from [17].

Introducing in domain Ω = {0 ≤ z ≤ L, −2π ≤ p ≤ 2π} uniform grids on z
and p:

ωz = {zi = ihz, i = 0, 1, . . . , M, Mhz = L},

ωp = {pj = hpj, j = −N, . . . ,−1, 0, 1, . . . , N, hpN = 2π} .

The discrete functions, defined on the grid, will be denoted by

Θj
i = Θ(zi, pj), Ej

i = E(zi, pj) .

We approximate the differential problem with the following finite–difference scheme:

s

Θj
z̄z = Ψ

(

k −
s

Θj
◦

z

)3

Re

(

s−1

E exp(i
s

Θj

)

, j = 0,±1, . . . ,±N, (3.1)
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cj

(

exp(−i
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Θj) + exp(−i
s
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)

, (3.2)

s

Eτz + a21

s

E + a22

s

Eτ = 0, (3.3)

where s ≥ 0 is a number of iteration. As an initial approximation we define:

0

Θj = hpj,
0

E = 0,
0

Eτ = 0 .

Here cj are coefficients of quadrature formula. We use the trapezoidal rule here.
Let us write the difference equation (3.1) in the following form:
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)

, (3.4)

i.e. it is an implicit difference equation with respect to
s+1

Θ i+1. Solving this cubic

equation get three solutions, we choose the one which is close to
s+1

Θ i. The two
rest roots are meaningless. As it was shown in numerical experiments this approach
works very well.

But it is not a very efficient strategy to solve numerically cubic equations. It is
possible to solve it by using the Picard type iterative process:
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where l ≥ 0 is a number of inner iterations. As it was shown in numerical experi-
ments, it is enough to make only two inner iterations to solve the cubic equation.

Inasmuch as our iterative process (3.1)–(3.3) is nonlinear, it seems to be impos-
sible to investigate its convergence. If we consider a linearized case of this process
then some conclusions are evident. We restrict ourselves to Fig. 2, which demon-
strates the convergence of the iterative process. It is stabilized after approximately
40 iterations.
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Figure 2. Numerical solution depending on iterations number.

So, in accordance to numerical experiments, our schemes are stable and the dis-
crete solution converges to the solution of initial differential system because numer-
ical results coincided in full with analytical estimations.

4. Numerical Results

Let us discuss results of numerical experiments carried out. Among them we have
considered the case when there was no incident radiation, in other words E(0) = 0
and Eτ (L) = 0, as well as E(0) 6= 0.

Starting currents of electron beam, radiation power and radiation frequency de-
pend on the feedback geometry. Therefore changing this geometry we can change
these quantities and even to turn regime of generation to amplification regime and
vice versa.

Threshold current density is very important value characterizing the system.
There is no generation process if current is lower than some critical value. In the
case when current density is between this critical value and the value of genera-
tion threshold current (jth) the system operates in amplification regime. This is the
regime of regenerative amplification for the Bragg geometry. The regime of genera-
tor is realized when the current density exceeds the threshold j > jth. In that case
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radiation of electron beam should exceed the losses on boundaries of the resonator
and absorption losses. Such threshold is depicted in Fig.3 depending on the length
of the target. It demonstrates threshold current density depending on thickness of the
target with and without incident radiation and with and without absorption of the
target. We can see that the larger is the target length the lower is the threshold. Ab-
sorption Im(χ0) = 0.01 raises the threshold. Presence of incident wave with E 6= 0
decreases it.
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Figure 3. Electron beam current threshold in Bragg geometry.

Two different geometries were studied: Bragg geometry (see Fig.1 and numeri-
cal results above), in which two waves propagate to opposite sides of resonator and
Laue geometry, in which waves propagate to one side of a resonator (see Fig.4). Two
regimes are possible in the Bragg case as stated above: regime of regenerative ampli-
fication and regime of generation. Two regimes are possible in Laue case too. There
are amplification regime of emerging incident wave and regime SASE [15]. SASE
(self amplified stimulated emission) develops from spontaneous noises (as well as
generator regime in Bragg case). Since diffracted wave in Laue case propagates in
the forward direction, we have to change right difference derivative in (3.3) for Eτ

to the left one. It is clear that boundary conditions for Eτ in (2.1) should be written
for z = 0.

Let us examine Fig. 5. We can see dependence between value of electric field
and current density for different amplitudes of emerging waves for both diffraction
geometries. Amplification regime corresponds to range of current density j form
range 60÷ 80 A/cm2 for Bragg geometry (Fig.5a). Current threshold is over-passed
at j = 80 A/cm2. This region corresponds to regime of generation. In Fig.5b the
curve with E = 0 corresponds to SASE regime. The rest curves demonstrate regime
of amplification.

Let us consider two questions. First, where does radiation come from in the sys-
tem in the absence of incident radiation? The answer is that it comes from sponta-
neous noises of electron beam. The second question asks what corresponds to this
noise in numerical realization of mathematical model (3.1)–(3.3)? The answer is that
such noise appears due to computational error on the right-hand side of equations. It
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Figure 4. Scheme of quasi-Cherenkov VFEL in Laue geometry.
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Figure 5. Dependence between computed electromagnetic wave amplitude and electron beam
current density in Bragg (a) and Laue (b) geometry.

is clear that at the first iteration, when E(z) = 0 all over z ∈ [0, L], we have

I = Φ

∫ 2π

0

2π − p

8π2

(

exp
(

−iΘ(z, p)
)

+ exp
(

−iΘ(z,−p)
)

)

dp ≡ 0 .

But in fact we obtain I ∼ 10−15, 10−14. This is an equivalent of spontaneous noises
and fuse for the beginning of generation process.
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Kvazi-Cerenkovo elektroninio spindulio nestabilumo modeliavimas periodinėse struk-
tūrose

K. Batrakov, S. Sytova

Modeliuojama elektronų spindulio kvazi-Cherenkovo nestabilumo netiesinė fazė su dvimačio
ir trimačio paskirstytojo grįžtamojo ryšio sąlyga. Nagrinėjama schema su grįžtamuoju ryšiu
su dviem susietomis stipriomis bangomis. Pateiktas kvazi-Cherenkovo elektroninio spin-
dulio nestabilumo matematinis modelis. Pasiūlytas veiksmingas skaitinis algoritmas, skir-
tas netiesinėms integro-diferencialinėms lygčių sistemoms su tokio tipo nestabilumu, spręsti.
Apžvelgti skaitinio eksperimento rezultai.


