
Mathematical Modelling and Analysis http://mma.vgtu.lt

Volume 25, Issue 1, 146–166, 2020 ISSN: 1392-6292

https://doi.org/10.3846/mma.2020.9695 eISSN: 1648-3510

Collocation Method for Fuzzy Volterra Integral
Equations of the Second Kind

Zahra Alijani and Urve Kangro

Institute of Mathematics and Statistic, University of Tartu

J. Liivi 2, Tartu, Estonia

E-mail(corresp.): urve.kangro@ut.ee

E-mail: zahra.alijani@ut.ee

Received March 22, 2019; revised December 7, 2019; accepted December 9, 2019

Abstract. In this paper we consider fuzzy Volterra integral equation of the second
kind whose kernel may change sign. We give conditions for smoothness of the upper
and lower functions of the solution. For numerical solution we propose the collocation
method with two different basis function sets: triangular and rectangular basis. The
smoothness results allow us to obtain the convergence rates of the methods. The pro-
posed methods are illustrated by numerical examples, which confirm the theoretical
convergence estimates.
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1 Introduction

Integral equations arise in many scientific and engineering problems. A large
class of initial and boundary value problems can be converted to Volterra or
Fredholm integral equations. The theory of Volterra integral equations is thor-
oughly considered in a recent monograph by Brunner [6]. Most Volterra inte-
gral equations can not be solved analytically. Hence there is need for numerical
solution of these equations. Collocation method is widely used for solving in-
tegral equations, for treatment of this method for Volterra integral equations
see Brunner [5].

Modeling physical problems using integral equations with the exact parame-
ters is often impossible in real problems. To handle this lack of information, one
way is to use uncertainty measures such as the fuzzy concept (Zadeh 1965 [18]).
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Instead of using deterministic models of integral equations, we can use fuzzy
integral equations, where the values of functions may be fuzzy numbers. Hence
there is a need to develop mathematical models and numerical procedures that
would appropriately treat general fuzzy integral equations and solve them. The
topics related to fuzzy integral equations have received particular attention
from the research community during the last few decades.

Before discussing fuzzy integral equations and numerical algorithms for solv-
ing them, it is necessary to present a brief introduction to fuzzy numbers.
Fuzzy functions were introduced by Chang and Zadeh [7]. Later, Dubois and
Prade [8] presented an elementary framework for fuzzy calculus based on the
extension principle. Alternative approaches were suggested by Goetschel and
Voxman [10], Kaleva [11] and others. The concept of integration of fuzzy func-
tions was introduced by Dubois and Prade [8], and investigated by Goetschel
and Voxman [10].

Existence and uniqueness of solutions of fuzzy Fredholm integral equations
have been considered e.g. in [2,9] and fuzzy Volterra integral equations in [9,14,
17]. Smoothness of solutions, to our knowledge, has not been considered before.
We prove smoothness results for fuzzy Volterra integral equation in terms of
the smoothness of upper and lower functions; this concept differs from being
differentiable in the sense of fuzzy functions, but for obtaining convergence rates
for numerical methods, smoothness of upper and lower functions is crucial. In
some cases the smoothness results can be obtained from the corresponding
results for crisp functions, but in the case when the kernel of the integral
equation changes sign, it is more complicated. The smoothness results we
obtain are in some sense surprising, since when the fuzzy integral equation is
converted to a system of ordinary integral equations, the kernels of the crisp
equations are, in general (if the kernel of the original integral equation changes
sign), not smooth.

Numerical methods for fuzzy Fredholm integral equations are considered
in many papers, e.g. [1, 2, 4, 9]. In [4] also a convergence rate of O(h) is ob-
tained. Numerical solution of fuzzy Volterra integral equations is considered
in [13, 15, 16, 17], but in many cases it is not proved that the approximate so-
lution is a fuzzy function (in some cases it may be trivial, but in other cases
it is not true in general). The convergence rates have usually not been consid-
ered. Fuzzy Volterra integral equations with changing sign kernels have, to our
knowledge, been considered only in [15], but there, only a trivial special case
where the sign can only change on horizontal lines is considered, the smooth-
ness of the solution is not proved, and the convergence results are only valid
under additional assumptions not mentioned in the paper. There are also a lot
of papers which only describe some numerical method for solving fuzzy integral
equations and give some numerical examples, but do not provide any analysis
at all.

In this paper, we study the collocation method for solving linear fuzzy
Volterra integral equations of the second kind. We approximate the solution
using triangular and rectangular basis functions with fuzzy coefficients. We
prove existence and uniqueness of solution of the approximate equation and
show that the approximate solution is also a fuzzy function (this fact is often
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ignored in papers considering numerical solution of fuzzy equations). We do not
use higher order splines, because in this case the approximate solution might
not be a fuzzy function. We obtain the rate of convergence of the approximate
solution to the exact solution.

We also performed numerical experiments to check the theoretical results.
We used different discretization parameters and compared the corresponding
errors (measured in fuzzy distance). Again, we have not seen any papers about
fuzzy integral equations where convergence rates have been checked numeri-
cally.

The paper is organized as follows. Section 2 introduces some preliminaries
about fuzzy functions necessary in next sections. In the next section we present
the fuzzy Volterra integral equations and state a theorem about existence and
uniqueness of the fuzzy solution. In Section 4 we describe collocation methods
with triangular and rectangular bases for approximately solving the equation
and prove existence and uniqueness of the fuzzy approximate solution.

To obtain the convergence rates for the methods we need results about the
smoothness of the solution. In Section 5 we give the conditions under which the
upper and lower functions of the solution for fixed r are smooth (differentiable,
piecewise twice differentiable or continuously twice differentiable). We do not
consider fuzzy smoothness, i.e. we do not prove that the derivatives of the
solution (in any sense) are fuzzy functions. This is probably not true in general
and this is not needed for obtaining the estimates in Section 6. Finally, in
Section 7 we provide some numerical examples which demonstrate that the
convergence rate for triangular basis is O(h2); for the rectangular basis it is
O(h) in maximum fuzzy distance, but O(h2) at collocation points.

2 Preliminaries

In this section, we review the fundamental notions of fuzzy numbers and fuzzy
functions to be used throughout the paper.

Definition 1. [3] A fuzzy number is a mapping u : R→ [0, 1] such that

1. u is upper semi-continuous;

2. u(x) = 0 outside some interval [a, d];

3. there are real numbers b and c, a ≤ b ≤ c ≤ d, for which
i) u(x) is monotonically increasing on [a, b],
ii) u(x) is monotonically decreasing on [c, d],
iii) u(x) = 1, b ≤ x ≤ c.

Fuzzy numbers can also be represented in parametric form as follows.

Definition 2. [3] An arbitrary fuzzy number in parametric form is repre-
sented by an ordered pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which satisfy the
following requirements

1. u(r) is a bounded monotonically increasing, left continuous function on
(0, 1] and right continuous at 0,
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2. u(r) is a bounded monotonically decreasing, left continuous function on
(0, 1] and right continuous at 0,

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

For arbitrary u = (u(r), u(r)), v = (v(r), v(r)) and k ∈ R we define addition
and multiplication by k as (u+ v)(r) = (u(r)+v(r)), (u+ v)(r) = (u(r)+v(r)),

ku(r) = ku(r), ku(r) = ku(r), if k ≥ 0, ku(r) = ku(r), ku(r) = ku(r), if k < 0.
A crisp (i.e. not fuzzy) number α is simply represented by u(r) = u(r) = α,

0 ≤ r ≤ 1. Some special cases of fuzzy numbers are trapezoidal fuzzy num-
bers, where u(r), u(r) are linear functions, triangular fuzzy numbers, which are
trapezoidal numbers with u(1) = u(1), and interval numbers, where u(r), u(r)
are constants.

The set of all fuzzy numbers is denoted by E. Note that E is not a vector
space, because u+ (−u) 6= 0 in general.

Next we will define the metric D in E.

Definition 3. For arbitrary fuzzy numbers u, v, we use the distance

D(u, v) = sup
0≤r≤1

max{|u(r)− v(r)|, |u(r)− v(r)|}.

It is shown that (E,D) has been a complete metric space [3].
Following Goetschel and Voxman [10] we define the integral of a fuzzy func-

tion using the Riemann integral concept.

Definition 4. Let f : [a, b] → E. For each partition P = {t0, ..., tn} of [a, b]
and for arbitrary ξi ∈ [ti−1, ti], 1 ≤ i ≤ n suppose

RP =

n∑
i=1

f(ξi)(ti − ti−1), ∆ := max{ti − ti−1, i = 1, ..., n}.

The definite integral of f(t) over [a, b] is
∫ b
a
f(t)dt = lim∆→0RP provided this

limit exists in metric D.

If the fuzzy function f(t) is continuous in the metric D, its definite integral
exists and ∫ b

a

f(t)dt =
(∫ b

a

f(t, r)dt,

∫ b

a

f(t, r)dt
)
, (2.1)

where (f(t, r), f(t, r)) is the parametric form of f(t).
It should be noted that the fuzzy integral can be also defined using the

Lebesgue-type approach [11]. Definition of the fuzzy integral using formula
(2.1) is more convenient for numerical calculations.

3 Fuzzy Volterra integral equation

A fuzzy Volterra integral equation of the second kind is given by

g(t) = f(t) +

∫ t

0

K(s, t)g(s)ds, t ∈ [0, T ], (3.1)
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where K(s, t) : DT → R is a function called the kernel of the integral equation
with domain DT = {(s, t); 0 ≤ s ≤ t ≤ T} and f(t) is a given fuzzy function of
t. If f(t) is a crisp function then equation (3.1) possesses crisp solution and if
f(t) is a fuzzy function then the solution is fuzzy.

Existence and uniqueness of solution for fuzzy Volterra integral equations
is proved in [14], where the result is given for a nonlinear Volterra integral
equation, whose kernel is Lipschitz with respect to the unknown function. Since
our equation is linear, this condition is trivially satisfied. In addition, in [14]
the existence of the solution is only obtained locally, but in the linear case the
existence is global, i.e. in [0, T ].

Theorem 1. Let the kernel K : DT → R and the fuzzy function f : [0, T ]→ E
be continuous. Then equation (3.1) has a unique continuous fuzzy solution on
[0, T ].

4 Numerical methods

Several numerical techniques have been used successfully for fuzzy integral
equations [1, 2, 4, 9, 13, 15, 16, 17]. In many cases it is not proved that the
approximate solution is a fuzzy function. Sometimes it follows from the con-
struction, but whenever we have to solve a system of equations to find some
unknown coefficients, it is not obvious at all. In this section we discuss in
details the collocation method. The idea of collocation methods is the fol-
lowing: we look for solutions in a finite-dimensional approximation space XN ,
where N is an approximation parameter, usually connected with the dimension
of the approximation space, and require that the equation is exactly satisfied
at some collocation points. Different approximation spaces can be used, usu-
ally splines, polynomials or trigonometric polynomials are used. Here we use
piecewise linear and piecewise constant splines with triangular and rectangular
basis functions correspondingly. In these cases we prove that the approximate
solution is always a fuzzy function.

4.1 Collocation method with triangular basis

Let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ] and let hk = tk − tk−1,
k = 1, . . . , N .

Definition 5. The functions φ0, . . . , φN defined by

φ0(t) =

{
1− t− t0

h1
, t0 ≤ t ≤ t1,

0, otherwise,

φk(t) =


(t− tk−1)

hk
, tk−1 ≤ t ≤ tk,

1− (t− tk)

hk+1
, tk ≤ t ≤ tk+1, k = 1, ..., N − 1,

0, otherwise,
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φN (t) =


(t− tN−1)

hN
, tN−1 ≤ t ≤ tN ,

0, otherwise,

are called triangular basis functions.

For the collocation points we use the partition points tk, k = 0, 1, . . . , N .

Often the uniform mesh tk = kh, h =
T

N
, k = 0, . . . , N is used, but sometimes

nonuniform grids are useful, especially if the solution is not very smooth near
some point. The theory works also for the general case. Let in the following
h = max

k=1,...,N
hk.

We look for solution of equation (3.1) in the form

gN (t) =

N∑
k=0

ckφk(t), (4.1)

where φk(t) are triangular basis functions and ck, k = 0, 1, . . . , N are fuzzy
numbers. The collocation equations are

gN (tn) = f(tn) +

∫ tn

0

K(s, tn)gN (s)ds, n = 0, . . . , N. (4.2)

Substituting (4.1) into these equations we get

cn=

∫ tn

tn−1

cnK(s, tn)φn(s)ds+ f(tn)+

n−1∑
k=0

∫ tk+1

tk−1

ckK(s, tn)φk(s)ds, n=0, . . . , N,

(4.3)
where for simplicity we have denoted t−1 = 0. Note that in general, if the
kernel changes sign, one cannot take the fuzzy coefficients ck in front of the
integral sign.

We have to solve these linear equations to get the approximate solution.
Note that if the coefficients cn are fuzzy numbers then the approximate solution
given by (4.1) is a fuzzy function.

4.2 Collocation method with rectangular basis

Let tk, k = 0, . . . , N and hk, k = 1, . . . , N be as defined above.

Definition 6. The functions ψk k = 1, . . . , N defined by

ψk(t) =

{
1, tk−1 ≤ t ≤ tk,
0, otherwise,

are called rectangular basis functions.

In the case of rectangular basis, the best collocation points are the midpoints
of the intervals τk = 1

2 (tk−1 + tk), k = 1, . . . , N .
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We look for solution of equation (3.1) in the form

gN (t) =

N∑
n=0

dnψn(t), (4.4)

where dn, n = 1, . . . , N are fuzzy numbers. The collocation equations are

gN (τn) = f(τn) +

∫ τn

0

K(s, τn)gN (s)ds, n = 0, . . . , N. (4.5)

Substituting (4.4) into these equations we get

dn=

∫ τn

tn−1

dnK(s, τn)ds + f(τn)+

n−1∑
k=1

∫ tk

tk−1

dkK(s, τn)ds, n=1, . . . , N. (4.6)

Again, if dn are fuzzy numbers then the approximate solution given by (4.4) is
a fuzzy function.

4.3 Existence and uniqueness of the approximate solution

To show that equations (4.2) and (4.5) have a unique fuzzy solution we use the
following lemma.

Lemma 1. Consider the equation

ax = bx− dx+ y, (4.7)

where a, b are crisp coefficients, y is a given fuzzy number, a > b+ d, b, d ≥ 0.
Then equation (4.7) has a unique fuzzy solution x.

Proof. By converting equation (4.7) to two crisp equations and solving these,
we have

x =
y(a− b)− dy
(a− b)2 − d2

, x =
y(a− b)− dy
(a− b)2 − d2

.

Since a > b+d, b, d ≥ 0, then a− b and (a− b)2−d2 are positive. Also since y
is nondecreasing (as a function of r) and −y is nondecreasing, we conclude that
x is nondecreasing. Similarly, since y is nonincreasing, −y is nonincreasing and
by same reasoning as before we conclude that x is nonincreasing. Since y and
y are left continuous, x and x are left continuous as well. Finally x ≤ x, since
y ≤ y, −dy ≤ −dy and denominators are positive. ut

Remark 1. In Lemma 1 the condition b, d ≥ 0 is just a matter of notation. But
the assumption a > b + d is necessary: if this is not satisfied, then equation
(4.7) does not have a fuzzy solution.

Now by using Lemma 1 we show that the collocation equation (4.2) has a
unique approximate fuzzy solution gN .
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Theorem 2. Let the kernel K : DT → R and the fuzzy function f : [0, T ]→ E
be continuous functions. If h‖K‖∞ < 1 then the equation (4.2) has a unique
approximate fuzzy solution gN of the form (4.1).

Proof. We use induction to show that the coefficients cn determined by (4.3)
are fuzzy numbers. For n = 0 equation (4.3) is c0 = f(0). Since f(0) is a fuzzy
number, c0 is also a fuzzy number.

Assume that equation (4.3) has fuzzy solution for n = 0, . . . ,m − 1 and
1 ≤ m ≤ N . Let n = m, then (4.3) can be written as

cm = cm

∫ tm

tm−1

K+(s, tm)φm(s)ds− cm
∫ tm

tm−1

K−(s, tm)φm(s)ds

+ f(tm) +

m−1∑
k=0

∫ tk+1

tk−1

ckK(s, tm)φk(s)ds, (4.8)

where K+(s, t) = max{K(s, t), 0} and K−(s, t) = max{−K(s, t), 0} are the
positive and the negative parts of the kernel K(s, t).

By induction assumption we know that

f(tm) +

m−1∑
k=0

∫ tk+1

tk−1

ckK(s, tm)φk(s)ds

is a fuzzy number. Hence (4.8) is an equation of form (4.7), where a = 1,

b =

∫ tm

tm−1

K+(s, tm)φm(s)ds, d =

∫ tm

tm−1

K−(s, tm)φm(s)ds.

Since b, d ≥ 0 and for h small enough, b, d are also small enough, we have
a > b + d for h small enough. So the assumptions of Lemma 1 are satisfied,
therefore there exists a unique fuzzy solution. Since cn, n = 0, . . . , N are fuzzy
numbers, the approximate solution (4.1) is a fuzzy function. ut

A similar result holds for the rectangular basis.

Theorem 3. Let the kernel K : DT → R and the fuzzy function f : [0, T ]→ E
be continuous functions. If h‖K‖∞ < 1 then the equation (4.5) has a unique
approximate fuzzy solution gN of the form (4.4).

Proof. The proof is similar to the previous theorem. ut

5 Smoothness of the solution

5.1 Parametric form of the equation

To prove regularity results and obtain the convergence rates of the collocation
method we introduce parametric form of equation (3.1). Let (f(t, r), f(t, r))
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and (g(t, r), g(t, r)) be parametric forms of f(t) and g(t). Then equation (3.1)
is

g(t, r) = f(t, r) +

∫ t

0

K(s, t)g(t)ds, g(t, r) = f(t, r) +

∫ t

0

K(s, t)g(t)ds.

Denote K+(s, t) = max{K(s, t), 0} and K−(s, t) = max{−K(s, t), 0}. Then
equation (3.1) can be rewritten as a system of two crisp integral equations

g(t, r) = f(t, r) +

∫ t

0

(K+(s, t)g(s, r)−K−(s, t)g(s, r))ds,

g(t, r) = f(t, r) +

∫ t

0

(K+(s, t)g(s, r)−K−(s, t)g(s, r))ds.

(5.1)

We define the operators K+,K− : C[0, T ]→ C[0, T ] by

(K+y)(t) =

∫ t

0

K+(s, t)y(s)ds, (K−y)(t) =

∫ t

0

K−(s, t)y(s)ds.

Then we can rewrite system (5.1) as{
g = f +K+g −K−g,
g = f +K+g −K−g.

5.2 Regularity properties

To derive the convergence rates of our numerical method, we first need to
obtain some regularity results. We have to point out that we do not need fuzzy
regularity here, we only need regularity of the crisp functions g(·, r), g(·, r),
where r can be considered as a parameter. So we consider the regularity of
solution of the system of integral equations (5.1). It is known that if the
kernel and the right hand side of Volterra integral equation of the second kind
are in Cm, then the solution is also in Cm (see for example [6]), and this
applies also for systems. However, if the kernel of the original integral equation
(3.1) changes sign, then in our system (5.1) even for smooth K the kernels
K+ and K− are only piecewise continuously differentiable. Still we can prove
under quite general assumptions that the solution is at least piecewise twice
continuously differentiable, and give some additional conditions under which it
is twice continuously differentiable. So in this section we mainly deal with the
nontrivial case when the kernel changes sign.

Since we consider r as a parameter and never differentiate with respect to

r, we use in the following the notation f ′, f
′

for derivatives with respect to t.
We also skip the parameter r inside the proof.

Theorem 4. Let K ∈ C(DT ) and f ∈ C([0, T ];E) be given. Let g be the
solution of (3.1). Assume that K changes sign on continuous lines s = si(t),
t ∈ [αi, βi], i = 1, . . . , n whose endpoints lie on the lines s = t, s = 0 or t = T .
For simplicity assume also that at all intersection points of lines s = si(t),
s = t, s = 0 and t = T only two of the lines are intersecting. Let r ∈ [0, 1] be
fixed.
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1. If f(·, r), f(·, r) ∈ C1[0, T ] and
∂K

∂t
∈ C(DT ), then g(·, r), g(·, r) ∈

C1[0, T ].

2. If additionally f ′′(·, r), f ′′(·, r), ∂
2K

∂t2
are piecewise continuous, and t 7→

K(t, t) and s = si(t) are piecewise continuously differentiable, then
g′′(·, r), g′′(·, r) are piecewise continuous.

3. If additionally f(·, r), f(·, r) ∈ C2[0, T ],
∂2K

∂t2
∈ C(DT ), and s = si(t)

and t 7→ K(t, t) are continuously differentiable and

a) at points, where si(t) = t 6= 0, we have
dK(t, t)

dt
= 0 and either

s′i(t) = 1 or
∂K

∂t
(t, t) = 0;

b) at points, where si(t) = 0, t 6= 0, we have either s′i(t) = 0 or
∂K

∂t
(t, 0) = 0,

then g(·, r), g(·, r) ∈ C2[0, T ].

Proof. To establish the regularity of g, g, we differentiate equations (5.1). We
have to examine the regularity of integrals of type

W (t) =

∫ t

0

U(s, t)ds, (5.2)

where U(s, t) is one of K+(s, t)g(s), K+(s, t)g(s), K−(s, t)g(s) or K−(s, t)g(s).
Note that U ∈ C(DT ), since on lines of sign change of K we have K(s, t) = 0,
but derivatives of K+ and K− have jumps on these lines.

Let t ∈ (0, T ) be fixed. If t does not correspond to any endpoints or in-
tersection points of the lines of sign change, then we can renumber the lines
in a neighborhood of t in the order of increasing s and denote s0(t) = 0 and

sn+1(t) = t. Assuming
∂K

∂t
∈ C(DT ) we can differentiate (5.2):

W ′(t) = U(t, t) +

∫ t

0

∂U(s, t)

∂t
ds = U(t, t) +

n∑
i=0

∫ si+1(t)

si(t)

∂U(s, t)

∂t
ds. (5.3)

If
∂K

∂t
∈ C(DT ), then

∂U(s, t)

∂t
is continuous inside all integration regions and

the limits of integration are also continuous. So all terms on right hand side
are continuous at t.

Assuming K is (piecewise) twice differentiable with respect to t, we can
differentiate (5.3) again:

W ′′(t) =
dU(t, t)

dt
+

n∑
i=0

(
∂U(s, t)

∂t

∣∣∣∣
si+1(t)−

s′i+1(t)− ∂U(s, t)

∂t

∣∣∣∣
si(t)+

s′i(t)

)

+

n∑
i=0

∫ si+1(t)

si(t)

∂2U(s, t)

∂t2
ds.

Math. Model. Anal., 25(1):146–166, 2020.
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If ∂2K
∂t2 is (piecewise) continuous, then all terms here are (at least piecewise)

continuous at t.
If t = t∗ corresponds to an endpoint or intersection point of the lines of

sign change, then we have to consider one-sided limits of W ′(t) and W ′′(t) as
t→ t∗. We have three cases (they are not exclusive, so we may have several of
them at the same time) as is shown in Figure 1.

Figure 1. An example of three different intersections of lines of sign change of K.

Case I. Lines s = si(t) and s = t intersect at t = t∗. We can consider
only a small neighborhood of point (t∗, t∗), where there are no other lines of
sign change. Assume the line s = si(t) starts at t = t∗ (if it ends there, the

argument is similar). Denote Wε(t) =
∫ t
t∗−ε U(s, t)ds. Then we have

W ′ε(t) = U(t, t) +

∫ t

t∗−ε

∂U(s, t)

∂t
ds for t < t∗,

W ′ε(t) = U(t, t) +

∫ si(t)

t∗−ε

∂U(s, t)

∂t
ds+

∫ t

si(t)

∂U(s, t)

∂t
ds for t > t∗.

Since si(t)→ t∗ as t→ t∗+, the one-sided limits of W ′(t) at t = t∗+ are equal,
if ∂K

∂t ∈ C(DT ).
Assuming K is (piecewise) twice differentiable with respect to t, we have

W ′′ε (t) =
dU(t, t)

dt
+
∂U(s, t)

∂t

∣∣∣∣
s=t

+

∫ t

t∗−ε

∂2U(s, t)

∂t2
ds for t < t∗,

W ′′ε (t) =
dU(t, t)

dt
+
∂U(s, t)

∂t

∣∣∣∣
si(t)−

s′i(t)−
∂U(s, t)

∂t

∣∣∣∣
si(t)+

s′i(t)

+
∂U(s, t)

∂t

∣∣∣∣
s=t

+

∫ si(t)

t∗−ε

∂2U(s, t)

∂t2
ds+

∫ t

si(t)

∂2U(s, t)

∂t2
ds for t > t∗.

Now U(t,t)
dt is discontinuous at t = t∗ in general, unless dK(t,t)

dt = 0 at t = t∗.
The one-sided limits of the integral terms are equal as t → t∗. The remaining

terms give the same limits if s′i(t) = 1 or ∂K(s,t)
∂t = 0 at s = t = t∗.

Case II. Lines s = si(t) and s = 0 intersect at t = t∗. We can consider
only a small neighborhood of the point (t∗, 0), where there are no other lines



Fuzzy Volterra Integral Equation 157

of sign change. Denote Wε(t) =
∫ ε
0
U(s, t)ds. Assuming the line s = si(t) ends

at t = t∗,

W ′ε(t) =

∫ si(t)

0

∂U(s, t)

∂t
ds+

∫ ε

si(t)

∂U(s, t)

∂t
ds for t < t∗,

W ′ε(t) =

∫ ε

0

∂U(s, t)

∂t
ds for t > t∗.

Since si(t)→ 0 as t→ t∗− the one-sided limits of W ′ε(t) at t = t∗− are equal.
For the second derivative we have

W ′′ε (t) =
∂U(s, t)

∂t

∣∣∣∣
s→si(t)−

s′i(t) +

∫ si(t)

0

∂2U(s, t)

∂t2
ds

− ∂U(s, t)

∂t

∣∣∣∣
s→si(t)+

s′i(t) +

∫ ε

si(t)

∂2U(s, t)

∂t2
ds for t < t∗,

W ′′ε (t) =

∫ ε

0

∂2U(s, t)

∂t2
ds for t > t∗.

If K is piecewise twice differentiable then the one-sided limits of integrals are
equal, since si(t) → 0 as t → t+∗ . The remaining terms give the same limits if

s′i(t) = 0 or ∂K(s,t)
∂t = 0.

Case III. Lines of sign change intersect at t = t∗. Denote these lines by
s = si(t) and s = sj(t) so that for t < t∗ we have sj(t) < si(t) and for t > t∗ we
have si(t) < sj(t). Consider only a small neighborhood of point (t∗, s∗), where
s∗ = si(t∗) = sj(t∗).

Denote Wε(t) =
∫ s∗+ε
s∗−ε U(s, t)ds. Then

Wε(t) =

∫ sj(t)

s∗−ε
U(s, t)ds+

∫ si(t)

sj(t)

U(s, t)ds+

∫ s∗+ε

si(t)

U(s, t)ds for t < t∗,

Wε(t) =

∫ si(t)

s∗−ε
U(s, t)ds+

∫ sj(t)

si(t)

U(s, t)ds+

∫ s∗+ε

sj(t)

U(s, t)ds for t > t∗.

If K is differentiable with respect to t we can take the derivative

W ′ε(t) =

∫ sj(t)

s∗−ε

∂U(s, t)

∂t
ds+

∫ si(t)

sj(t)

∂U(s, t)

∂t
ds+

∫ s∗+ε

si(t)

∂U(s, t)

∂t
ds for t < t∗,

W ′ε(t) =

∫ si(t)

s∗−ε

∂U(s, t)

∂t
ds+

∫ sj(t)

si(t)

∂U(s, t)

∂t
ds+

∫ s∗+ε

sj(t)

∂U(s, t)

∂t
ds for t > t∗.

Since lim
t→t∗

si(t) = lim
t→t∗

sj(t) = s∗, the one-sided limits are equal.

Assuming K is (piecewise) twice differentiable with respect to t we have

W ′′ε (t) =

∫ sj(t)

s∗−ε

∂2U(s, t)

∂t2
ds+

∫ si(t)

sj(t)

∂2U(s, t)

∂t2
ds+

∫ s∗+ε

si(t)

∂2U(s, t)

∂t2
ds
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+
∂U(s, t)

∂t

∣∣∣∣
sj(t)−

s′j(t) +
∂U(s, t)

∂t

∣∣∣∣
si(t)−

s′i(t)

− ∂U(s, t)

∂t

∣∣∣∣
sj(t)+

s′j(t)−
∂U(s, t)

∂t

∣∣∣∣
si(t)+

s′i(t) for t < t∗,

W ′′ε (t) =

∫ si(t)

s∗−ε

∂2U(s, t)

∂t2
ds+

∫ sj(t)

si(t)

∂2U(s, t)

∂t2
ds+

∫ s∗+ε

sj(t)

∂2U(s, t)

∂t2
ds

+
∂U(s, t)

∂t

∣∣∣∣
si(t)−

s′i(t) +
∂U(s, t)

∂t

∣∣∣∣
sj(t)−

s′j(t)

− ∂U(s, t)

∂t

∣∣∣∣
si(t)+

s′i(t)−
∂U(s, t)

∂t

∣∣∣∣
sj(t)+

s′j(t) for t > t∗.

Since two lines of sign change of K intersect at (s∗, t∗), it must be a saddle point

of K, hence ∂K(s,t)
∂t = 0 at (s∗, t∗), therefore all the terms outside the integral

approach 0 as t→ t∗. The integral terms give the same limits as t→ t∗.
The smoothness of the solution depends on the solution of the integral

terms, which we just investigated, and the smoothness of f . So assuming f is
at least as smooth as the integral terms, the proof is completed. ut

Remark 2. Theorem 4 does not not cover all possible configurations of lines of
sign changes of K, e.g. the case where three or more lines intersect at one
point. Generally the smoothness of the solution can be investigated similarly
in these cases. There are also cases when the first derivative of the solution
may be discontinuous, e.g. if there is a vertical line of sign change or when the
line of sign change is not a graph of a function (turns back).

For obtaining convergence rates for numerical methods we also need uniform
boundedness of derivatives of g, g with respect to r.

Lemma 2. Let the assumptions of Theorem 4, except 2., 3. be satisfied. As-
sume additionally that there exists constant B such that

|f ′(t, r)| ≤ B, |f ′(t, r)| ≤ B ∀t ∈ [0, T ], r ∈ [0, 1].

Then there exists constant C such that

|g′(t, r)| ≤ C, |g′(t, r)| ≤ C ∀t ∈ [0, T ], r ∈ [0, 1].

Proof. Continuity of g as a fuzzy-valued function follows from Theorem 1; this
implies uniform boundedness of g, g. Using expressions for derivatives of g, g
obtained in the proof of Theorem 4 we get an uniform bound for g′, g′. ut

Lemma 3. Let the assumptions of Theorem 4, except 3., be satisfied. Assume
additionally that there exists constant B such that

|f ′′(t, r)| ≤ B, |f ′′(t, r)| ≤ B ∀t ∈ [0, T ], r ∈ [0, 1].

Then there exists constant C such that

|g′′(t, r)| ≤ C, |g′′(t, r)| ≤ C ∀t ∈ [0, T ], r ∈ [0, 1].
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Proof. Using Lemma 2 and expressions for second derivatives of g, g in the
proof of Theorem 4 we obtain an uniform bound for g′′, g′′. ut

6 Convergence of the collocation method

6.1 Parametric form of the approximate equation

To analyze the convergence we introduce the parametric form of the approxi-
mate equation. Consider the case of triangular basis. Let cn = (cn, cn). Then
equations (4.3) can be written as

cn=cn(Kn+φn)(tn)−cn(Kn−φn)(tn)+f(tn)+

n−1∑
k=0

(
ck(K+φk)(tn)−ck(K−φk)(tn)

)
,

cn=cn(Kn+φn)(tn)−cn(Kn−φn)(tn)+f(tn)+

n−1∑
k=0

(
ck(K+φk)(tn)−ck(K−φk)(tn)

)
.

Here

(Kn+φn)(tn) =

∫ tn

tn−1

K+(s, t)φn(s)ds, (Kn−φn)(tn) =

∫ tn

tn−1

K−(s, t)φn(s)ds

for n = 1, . . . , N . For n = 0 we can define (K0
+φ0)(t0) = 0, (K0

−φ0)(t0) = 0.

In the case of rectangular basis denote dn = (dn, dn). Then the parametric
form of equation (4.6) is

dn=dn(Kn+ψn)(τn)−dn(Kn−ψn)(τn)+f(τn)+

n−1∑
k=1

(
dk(K+ψk)(τn)−dk(K−ψk)(τn)

)
,

dn=dn(Kn+ψn)(τn)−dn(Kn−ψn)(τn)+f(τn)+

n−1∑
k=1

(
dk(K+ψk)(τn)−dk(K−ψk)(τn)

)
,

where

(Kn+ψn)(τn) =

∫ τn

tn−1

K+(s, t)ψn(s)ds, (Kn−ψn)(τn) =

∫ τn

tn−1

K−(s, t)ψn(s)ds.

6.2 Convergence

To prove the convergence of these methods with triangular and rectangular
basis, we use Theorem 13.10 from [12].

Theorem 5. Let X be a Banach space and XN ⊂ X be a sequence of subspaces.
Let PN : X → XN be projection operators. Assume that A : X → X is a
compact linear operator and I − A is injective. Assume that the projectors
PN : X → XN satisfy

‖PNA−A‖ → 0, N →∞.
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Then, for sufficiently large N , the approximate equation

uN − PNAuN = PNf (6.1)

is uniquely solvable for all f ∈ X and there holds an error estimate

‖uN − u‖ ≤M‖PNu− u‖,

where u is the solution of u−Au = f and the constant M depends only on A.

Let X = C[0, T ]× C[0, T ],

A =

 K+ −K−
−K− K+

 , u =

 g(·, r)
g(·, r)

 for r fixed.

It is known that A is compact and I −A is injective (see Theorem 1.2.8 in [6]).
For triangular basis we define XN = span{φn, n = 0, ..., N} and PN is then the
interpolation projector onto XN .

We use the standard estimate for ‖PNu− u‖∞ (e.g. Theorem 11.3 in [12]).

Lemma 4. If v ∈W 2,∞(0, T ), then for the error in piecewise linear interpola-
tion there holds

‖PNv − v‖∞ ≤
1

8
h2‖v′′‖∞.

Using Theorem 5 and Lemma 4 we get the error estimate for triangular
basis as follows.

Theorem 6. Let K ∈ C(DT ), f ∈ C([0, T ];E). Assume h → 0 as N →∞.
Then for sufficiently large N the approximate equation (4.2) has a unique so-
lution gN , which converges uniformly to the exact solution g of equation (3.1).
If the assumptions of Lemma 3 are satisfied then the error estimate

sup
t∈[0,T ]

D(gN (t), g(t)) ≤Mh2

holds, where M is a constant not depending on N .

Proof. Let r ∈ [0, 1] be fixed. Since Au ∈ X, we have ‖PNAu−Au‖∞ → 0 as
N →∞ for all u ∈ X. Since for compact operators, the pointwise convergence
implies convergence in norm, we get

‖PNA−A‖∞ → 0 as N →∞.

By Theorem 5 we get the error estimate

‖gN (·, r)− g(·, r)‖∞ ≤M‖PNg(·, r)− g(·, r)‖∞,
‖g
N

(·, r)− g(·, r)‖∞ ≤M‖PNg(·, r)− g(·, r)‖∞,

where M does not depend on r. From g ∈ C([0, T ];E) it follows that g(·, r),
g(·, r) are equicontinuous with respect to r, hence the convergences

‖PNg(·, r)− g(·, r)‖ → 0 and ‖PNg(·, r)− g(·, r)‖ → 0 as N →∞
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are uniform in r. Consequently

sup
t∈[0,T ]

D(gN (t), g(t)) ≤ sup
0≤r≤1

max{‖gN − g‖∞, ‖gN − g‖∞} → 0.

If the assumptions of Lemma 3 are satisfied, then by Lemma 4 and Lemma 3
we get the error estimate

sup
t∈[0,T ]

D(gN (t), g(t)) ≤ sup
0≤r≤1

max{‖gN − g‖∞, ‖gN − g‖∞} ≤Mh2.

ut

To get the convergence estimate for the collocation method with rectangular
basis, we redefine XN = span{ψn, n = 0, ..., N} and PN is then the interpo-
lation projector onto XN with interpolation nodes τn. We use the following
standard result for the error of piecewise constant interpolation.

Lemma 5. Let v ∈ W 1,∞(0, T ). Then, for the error in piecewise constant
interpolation there holds

‖PNv − v‖∞ ≤
1

2
h‖v′‖∞.

In addition to the usual convergence result for rectangular basis, we also
present a result about superconvergence at the collocation nodes.

Theorem 7. Let K ∈ C(DT ), f ∈ C([0, T ];E). Assume h → 0 as N →∞.
Then for sufficiently large N the approximate equation (4.5) has a unique so-
lution gN which converges uniformly to the exact solution g of equation (3.1).
If the assumptions of Lemma 2 are satisfied then the error estimate

sup
t∈[0,T ]

D(gN (t), g(t)) ≤ Ch

holds, where C is a constant not depending on N . Moreover if the assumptions
of Lemma 3 are satisfied and τk = 1

2 (tk−1 + tk), k = 1, . . . , N then error
estimate at collocation nodes

max
k=1,...,N

D(gN (τk), g(τk)) ≤ Ch2

holds, where C is a constant not depending on N .

Proof. The proof of the first part is similar to the proof of Theorem 6.
To prove the superconvergence, we subtract from equation (6.1) the pro-

jected equation PNu = PNAu+ PNf :

uN − PNu = PNA(uN − u) = PNA((uN − PNu) + (PNu− u)).

So,
uN − PNu = (I − PNA)−1PNA(PNu− u), (6.2)
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where (I − PNA)−1 is a bounded operator in XN . We have

A(PNu− u) =

 K+(PNg − g)−K−(PNg − g)
−K−(PNg − g) +K+(PNg − g)

 .

Since applying PN to this result uses only the values at τk, we estimate one
element of this vector at τk. The others are similar.

K+(PNg − g)(τk) =

∫ τk

0

K+(s, τk)(PNg(s)− g(s))ds

=

k−1∑
i=1

∫ ti

ti−1

K+(s, τk)(g(τi)− g(s))ds+

∫ τk

tk−1

K+(s, τk)(g(τk)− g(s))ds.

Using Taylor expansion at τi in each subinterval [ti−1, ti] we have

k−1∑
i=1

∫ ti

ti−1

(K+(τi, τk) +O(h))((τi − s)g′(τi) +O(h2))ds+O(h2)

=

k−1∑
i=1

K+(τi, τk)g′(τi)

∫ ti

ti−1

(τi − s)ds+O(h2).

Since τi = ti−1+ti
2 , the integrals are all zero, so we get the estimate O(h2). For

other elements the calculation is the same. Since (I − PNA)−1 is bounded,
then from equation (6.2) we get ‖uN − PNu‖ = O(h2). Now notice that all
the constants in the estimates are either independent of r or contain first and
second derivatives of g, g which are uniformly bounded with respect to r by
Lemmas 2 and 3. Hence we have

max
k=1,...,N

D(gN (τk), g(τk)) ≤ Ch2.

ut

Remark 3. In general one has to solve the equations for each r ∈ [0, 1]. In
special cases, when f(t) is a triangular, trapezoidal or interval fuzzy number
for t ∈ [0, T ], then the solution is still of the same type, and it is enough to
solve the equations only for r = 0 and r = 1.

7 Examples

In this section we present some numerical results. We used the collocation
method with triangular and rectangular bases to solve approximately four ex-
amples of fuzzy Volterra integral equations. In examples 1 and 3 the kernels
are nonnegative, in examples 2 and 4 they change sign.

We used uniform mesh and took N = 5, 10, 20, 40, 80, 160. To estimate
the error maxt∈[0,T ]D(gN (t), g(t)) we calculated maxk=0,...,3N D(gN (t̃k), g(t̃k)),

where t̃k = k
3N , k = 0, 1, . . . , 3N . We also calculated the ratios of consecutive

errors. If the convergence is of order O(h2) then the ratios should be approxi-
mately 4; if the convergence is O(h) then the ratios should be 2.
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Example 1. Consider the fuzzy Volterra integral equation (3.1) with

f(t, r) = (t3 − t6/5)(r2 + r), f(t, r) = (t3 − t6/5)(4− r3 − r)

and the kernel K(s, t) = st, 0 ≤ s ≤ t ≤ 1. The exact solution is given by
g(t, r) = t3(r2 + r), g(t, r) = t3(4 − r3 − r). In this case both the kernel and
the solution are smooth. The results are given in Table 1.

Table 1. Comparison of numerical results for Example 1.

N error (triang.) ratio error (rectang.) ratio error at τk ratio

5 1.2491e− 01 1.0591 1.9792e− 02
10 3.2793e− 02 3.8091 5.6263e− 01 1.8825 6.2641e− 03 3.1595
20 8.4129e− 03 3.8979 2.9036e− 01 1.9377 1.7567e− 03 3.5658
40 2.1316e− 03 3.9467 1.4755e− 01 1.9679 4.6492e− 04 3.7786
80 5.3656e− 04 3.9727 7.4382e− 02 1.9837 1.1958e− 04 3.8881
160 1.3460e− 04 3.9862 3.7345e− 02 1.9918 3.0320e− 05 3.9437

The errors given in the table are fuzzy distances between the approximate and
the exact solutions.

We see that for triangular basis the convergence is of order O(h2). For rect-
angular basis the convergence is O(h) but at collocation points the convergence
is O(h2). In fact, when we have better convergence at collocation points, then
using these values we can construct a better approximate solution as well.

Example 2. Consider the fuzzy Volterra integral equation (3.1) with

f(t, r) = tr −

{
t4

4 (1− 2t)3r, t ≤ 1
2 ,

1
64 (1− 2t)3r + ( t

4

4 −
1
64 )(1− 2t)3(2− r), t ≥ 1

2 .

f(t, r) = t(2− r)−

{
t4

4 (1− 2t)3(2− r), t ≤ 1
2 ,

1
64 (1− 2t)3(2− r) + ( t

4

4 −
1
64 )(1− 2t)3r, t ≥ 1

2 .

The kernel is K(s, t) = s2(1− 2t)3, 0 ≤ s ≤ t ≤ 1 with

K+(s, t) =

{
s2(1− 2t)3, t ≤ 1

2 ,
0, t > 1

2 ,
K−(s, t) =

{
0, t < 1

2 ,
−s2(1− 2t)3, t ≥ 1

2

and the exact solution is given by g(t, r) = t3r, g(t, r) = t3(2 − r). In this
case the kernel changes sign on the line t = 1/2, but two derivatives with
respect to t are also zero on this line, so the kernels K+ and K− are smooth
(they have discontinuous third derivatives). Theoretically the solution might
also have discontinuous third derivatives, but instead in our case f and f
have discontinuous third derivatives which compensate the singularities in the
solution.

The results are given in Table 2.
Again we can see that the theoretical convergence rates coincide with the

real convergence rates.
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Table 2. Comparison of numerical results for Example 2.

N error (triang.) ratio error (rectang.) ratio error at τk ratio

5 5.0752e− 02 5.4180e− 01 3.4160e− 03
10 1.3088e− 02 3.8778 2.8514e− 01 1.9001 1.5224e− 03 2.2438
20 3.3231e− 03 3.9384 1.4624e− 01 1.9498 4.9619e− 04 3.0682
40 8.3757e− 04 3.9676 7.4053e− 02 1.9748 1.4086e− 04 3.5226
80 2.1029e− 04 3.9830 3.7262e− 02 1.9873 3.7476e− 05 3.7587
160 5.2687e− 05 3.9912 1.8690e− 02 1.9937 9.6618e− 06 3.8787

Example 3. This example is taken from [17], Example 4.2.

Consider the fuzzy Volterra integral equation with

f(t, r) = (1− t− t2/2)r, f(t, r) = (1− t− t2/2)(2− r).

The kernel is K(s, t) = t − s,0 ≤ s ≤ t ≤ 1/2, and the exact solution is given
by g(t, r) = (1 − sinh t)r, g(t, r) = (1 − sinh t)(2 − r). We used T = 1/2 here,
because in [0, 1] the function f is not a fuzzy function.

The results are given in Table 3. In this example neither f nor g is Hukuhara
differentiable, but as emphasized before, we only need differentiability of f , f
and g, g to get the convergence results.

Table 3. Comparison of numerical results for Example 3.

N error (triang.) ratio error (rectang.) ratio error at τk ratio

5 1.1106e− 03 1.1072e− 01 7.8944e− 04
10 2.8822e− 04 3.8532 5.5882e− 02 1.9823 2.0931e− 05 3.7716
20 7.3339e− 05 3.9300 2.8056e− 02 1.9907 5.3851e− 05 3.8869
40 1.8493e− 05 3.9658 1.4061e− 02 1.9953 1.3655e− 05 3.9437
80 4.6429e− 06 3.9831 7.0391e− 03 1.9976 3.4378e− 06 3.9719
160 1.1632e− 06 3.9916 3.5217e− 03 1.9988 8.6249e− 07 3.9860

Example 4. Consider the fuzzy Volterra integral equation with

f(t, r) = (t3 − t5

320
)r − 49t5

320
(r − 2), f(t, r) =

49t5

320
r − (t3 − t5

320
)(r − 2)

and the kernel K(s, t) = t − 2s, 0 ≤ s ≤ t ≤ 1. The exact solution is given
by g(t, r) = t3r, g(t, r) = t3(2 − r). In this case there is a sign change of the
kernel along the line s = t/2. Since this line does not have any endpoints or
intersection points with the line s = t inside [0, 1], the solution is smooth.

The results are given in Table 4.
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Table 4. Comparison of numerical results for Example 4.

N error (triang.) ratio error (rectang.) ratio error at τk ratio

5 1.7384e− 03 4.6071e− 01 6.6514e− 03
10 4.5297e− 04 3.8377 2.4240e− 01 1.9006 2.0008e− 03 3.3244
20 1.1391e− 04 3.9765 1.2432e− 01 1.9498 5.4034e− 04 3.7028
40 2.8520e− 05 3.9941 6.2951e− 02 1.9749 1.4021e− 04 3.8538
80 7.1327e− 06 3.9985 3.1675e− 02 1.9874 3.5699e− 05 3.9275
160 1.7833e− 06 3.9996 1.5887e− 02 1.9937 9.0062e− 06 3.9639

8 Conclusions

In this paper, we proved a regularity result for solution of fuzzy Volterra integral
equations. This is a new result, at least for kernels which may change sign.
We proposed the collocation method with triangular and rectangular basis
functions for solving these equations. Using the regularity result we estimated
the order of convergence of the method. The numerical results confirm the
theoretical convergence estimates and good performance. The advantage of
these methods is simplicity of use and robustness, i.e. they do not require high
regularity of the solution, only piecewise C2 is enough. If the solution is not
smooth, then many other methods are not applicable, especially those which
use Taylor expansions or high order polynomials to approximate the solution.
On the other hand, if the solution is very smooth (analytic) then it is possible
to use methods with much higher convergence rates.

For future research, we will investigate the solution of fuzzy Volterra integral
equations with arbitrary crisp weakly singular kernels.
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