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Abstract. A new type of the nonlocal sine-Gordon equation with the generalized
interaction term is suggested. Its limit cases, symmetries and exact analytical so-
lutions are obtained. This type of the nonlocal sine-Gordon equation is shown to
possess one-, two- and N-solitonic solutions which are a nonlocal deformation of the
corresponding classical solutions of the sine-Gordon equation.
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1. Introduction
The sine-Gordon equation (SGE)
¢tt - a’¢zz =b sin (A(b) (11)

is one of the basic nonlinear equations both in mathematics and modern
physics. In mathematics it appears as an equation for the surfaces of constant
negative curvature (¢ = A = —b = 1) and was known even to F. Minding
and E. Beltrami. The physical applications are related with the description
of dislocations in solid state physics [14], motion of Bloch magnetic walls in
magnetic crystals [12], magnetic flux propagation in superconductors [8] and
etc. [10]. In these applications the SGE gives the simplest nonlinear descrip-
tion of phenomena under consideration. More adequate models correspond to
SGE generalizations (1.1).

All known nonlocal generalizations of SGE could be divided into two
groups: 1) where the kinetic or 2) the dynamic term is under nonlocal gen-
eralization. Various generalizations where the local operator d,,¢ is replaced
by the integro-differential operator L[¢] belong to the first group [1]:

¢ — L]¢] = b sin (Ag) . (1.2)
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In particular, various interesting examples of nonlocal Josephson electrody-
namics belong to the family of the evolution equation (1.2). These examples
were introduced in [16]-[5], in which one of the basic model equations is

¢y —Ho, +sing =0, (1.3)

where H is the Hilbert transform (see Appendix). The evolution equation
(1.3) was an object of study in a series of papers [4, 6, 15, 16, 17].
The nonlocal generalization of SGE proposed in [2] belongs to the first
group
¢y — D2 +sing =0, (1.4)

where #D? is the Riesz partial fractional derivative (see Appendix). For this
equation, a family of breather-like solutions (i.e. solutions that are localized
in space and periodic in time) has been found numerically, and it has been
shown that these entities are quite robust and can be generated in the course
of evolution of initial states of a rather different shape.

Another type of nonlocal generalization of SGE was proposed in [9, 19]:

0 0 = 2005 | “F0] [10 s | 2800y, )

where f(z) = 1/(z* + o*) or Gauss-type. It is shown that small amplitude
solitons of the nonlocal SGE can create coupled states. The effect is due to
a change of the dispersion which originated because of nonlocal nonlinearity.
The evolution equation (1.5) in the general case could be generalized in the
form

¢tt - (bzz = F[(b] ) (16)

where F[¢] is a function of ¢(x,t).
In the current contribution, a new type of nonlocal SGE is suggested.
Exact analytical solutions of this equation and its Lagrangian are considered.

2. Nonlocal Generalization of Sine-Gordon Equation

Let us consider a special type of the nonlocal SGE (NSGE):
byt — 06, = D sin (RD29) (2.1)

where a, b and A are constants and D% means a space fractional Riesz deriva-
tive of the order « (see Appendix). This equation belongs to the second group
of the possible nonlocal generalizations of SGE (1.6), where the term of po-
tential interaction is modified.

At first sight this equation looks very complicated, but actually it is an
equivalent transformation of the interaction term. Indeed, in the case of linear
dependence this term does not change.

In the case of small values of the parameter «, the infinitesimal form of
equation (2.1) is given as follows:
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(btt - ad)w:p = bsin >‘¢ =+ aL[¢] ) (22)

where L[¢)] is a local perturbation of the classical SGE, when at a — 0 the
NSGE turns into the ordinary SGE (1.1).

In the case of small amplitudes [AD%¢| < 1, the NSGE turns into the
linear Klein—Gordon equation with the ”mass” term Abe.

If ¢(z,t) is a solution of the SGE, then the function

¢1(x,t):27TTni¢(Clj:x,CQj:t)7 n=0+1,42,...,  (2.3)

where C}, C, are arbitrary constants, is also an exact solution of SGE. The
signs in expression (2.3) could be chosen arbitrarily. Unfortunately, this does
not hold for NSGE solutions, but would be useful for generating new solutions
of NSGE by the known solution of SGE.

2.1. The Lagrangian

It could be verified that the NSGE (2.1) has the Lagrangian form:

+oo
L= /_Oo {% [(RDg@)Q _ (RDi—Hx(b)Q} + ; [1 — cos ()\RDg(b))] } de. (24)

Thus, the equation of motion (2.1) could be derived by using the modi-
fied Noether theorem. For instance, the energy-momentum tensor 7, in the
Minkowsky metric 7,

Ty = ("D 6) ("D gy — 9:L (2.5)

where £ is the Lagrangian density in the expression (2.4).

2.2. The travelling wave solution

The NSGE has the travelling wave solution — a nonlocal generalization of
one-solitonic solution.

a) Let bA(u? — ak?) > 0, then

A bA(ak? — pu?)

4 bA(k t+6
p(z,t) = ~ D *arctg{ exp |+ (ke + it + 6o) ) (2.6)
A VOA(u? — ak?)
where k, i1, 6, are arbitrary constants.
b) Let bA(u? — ak?) < 0, then
4 bA(k t+6
o(z,t) = — Draarctg{exp + (ke + it + 0y) } , (2.7)

where k, 1, 6, like above are arbitrary constants.
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2.3. The nonlocal generalization of the two-solitonic
Perring—Skirme solution

The travelling wave solutions (2.6) and (2.7) are particular cases of a more
general type of solution. Let f(z) and g(t) be solutions of the ordinary differ-
ential equations

(f.)? =Af*+Bf +C, (2.8)
(91)? = —aCg* + (aB + b\)g® — aA, (2.9)

where A, B, C are arbitrary constants. Then the function

B, 1) = 3 "D arctglf(x)g(1)] (2.10)

is a solution of the NSGE (2.1):
a) for A=0,B=k%>>0,C > 0,u% = ak® + b\ > 0, then

4 _ wsh(kz + Ay)
t) = — D “arct 2.11
oot =5 wa“gh¢&mw+30’ (2.11)
where k, A,, B, are arbitrary constants;
b) for A=0,B = —k*><0,C >0, %> = bA — ak? > 0, then
4 5 wsin (kx + Ay)
t) = ~ "D “arct 2.12
olat) = 3 Dz areg| LT L) (2.12)

is the solution of NSGE, where k, A, B, are again arbitrary constants.
c) for A=k?>0,B=k*y?>0,C =0, u? = ak®>y? + b > 0, then

4

(b(;v,t) = \

ol eN(t+A1) + ak2eﬂ(t+A1):| (213)

Rpy—a s
Dw a'rCtg|:‘u ek7($+B1) +e*k7(1+31)

is the solution of NSGE, where k, A,, B;,~ are arbitrary constants.

2.4. N-solitonic solutions

Fora=1,b=—1, and A = 1 in the NSGE, the N-solitonic solution has the
form

p(z,t) = BD > arccos [1 -2 < o - 8—2> (In F)} ,

0x2 Ot
2 Z; + 25
F = det|| M, M. = h( = J 2.14
ML My = () (214
— . . 1— wu.

' Vi-pz oo Ltpy

where 1, C; are arbitrary constants.
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3. Integrability

The classical SGE belongs to the family of the integrable evolutionary equa-
tions. Is it possible to prove the same statement for the NSGE?
Let us consider the SO(2,1) linear integrable system:

b, =Ud, &,=Vo, (3.1)

where U and V' take values in the Lie algebra so(2,1). This means that U and
V may take the following two types:

0 CB 0 FFE
): U=|-C0A|, V=|-FO0D]|, (3.2)
B A0 E DO
0 C B 0 F FE
(@)y:v=(C 0 A), V=[|F 0 DJ|, (3.3)
B-A0 E-DO
where the coefficients A, B,C, D, E and F' are suitable functions of ¢ and its

(non)local derivatives.

For the case (i), the integrable condition for system (3.1) in the case of
local functions and their derivatives is the Gauss equation of the imbedding
of the pseudo-sphere S C R*1 and for the case (ii) it is the Gauss equation
of the imbedding of the hyperplane H? C R?!. Since SGE corresponds to the
case of H? C R?!, let us consider the case (ii).

Let I, m,n be an orthonormal frame of R?!, and —I? = m? = n? = 1. The
condition {2 = —1 is the equation for H? C R?!. As follows from the linear
system (3.1), the integrability condition is

U,-V,+[UV]=0. (3.4)
For the case (ii) it can be written in the following form:

C,—F,+AE—-BD=0,
B,—E,+CD—AF =0, (3.5)
A,—D,+CE—BF =0.
For given B,C, E, F we can solve the two first equations of system (3.5)

E,—B F,—C,

A=cE—BrltcE_BFY (3.6)
p-fi=bBe p LG (3.7)

CE — BF CE—-BF "’

and insert them into the third equation:

E, —B F, — E, —B F, —
< t T B—|— t Ox C) _( t x E—|— t Ow F)
x t

CE—-BF~ ' CE—BF CE—BF~ ' CE-BF
+CE—BF =0. (3.8)
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The nonlinear partial differential equation which admits an SO(2, 1) linear
integrable system (CE — BF # 0) is (3.8). Moreover, equation (3.8) is the
Gauss equation for H? ¢ R?!, when B,C, E, F are arbitrary functions of ¢
and its local derivatives. The main difference between the local and nonlocal
cases is dependence of the coefficients A, B,C, D, E and F on the possible
nonlocal derivatives. Let us consider a few examples.

Example 1. Let B = F' = 0, and the values of the coefficients C and F
are C' = vV Abcos (\ED2¢/2), E = v/ Absin (\*D%¢/2). From equation (3.8)
we get NSGE:

Git = Gpe = —0"D; " sin (ADF9) . (3.9)

Example 2. Let B = F = 0, and the values of the coefficients C' and E are

C = cosh (D2¢/2), E = sinh (D2¢/2), then we get nonlocal sinh-Laplace
equation:

¢tt + (bww = _bRDw_a sinh (RDg(b) . (310)

Example 3. Let B=F =0, C = E = ¢P=?, then we have the nonlocal
Liouville equation:
(btt + ¢rr = _bRD;aeARng) . (311)

In the case a — 0, all the above considered nonlocal equations turn into the
classical local form.

Thus, NSGE is an integrable nonlocal evolution equation, and the inte-
grability approach allows us to generate new kinds of the nonlocal integrable
sinh-Laplace and Liouville equations.

4. Geometrical Approach
The classical SGE describes the surface of a constant negative curvature

imbedded in D-dimensional space. Regarding the Tschebyscheff coordinates,
the first and second fundamental forms of the surface are

[=ds® = cosQ§ dt* + sin2§ da? (4.1)
T N S
Il =—dr-di= cosg sing (dt* — dz?). (4.2)

It is easy to verify that, the Gauss curvature K of such surface is

_ det@ _ bypbgy — b%Q
detG 911922 — 9%2

=1, (4.3)

where (Q and G are matrices of the second and first fundamental forms in
expressions (4.1) and (4.2). The mean curvature H = Sp (G~1Q):

- G22b11 — 2919012 + g11b20
= p)
911922 — 912

= —2ctgg. (4.4)
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The quantities K and H in (4.3) and (4.4) express the geometrical contents
of the SGE.

The classical way to derive the SGE is the substitution the Christoffel
connection coefficients Fj;, which are determined by the coefficients of the
first fundamental form g, ;,

1 8911 5gjl agij
kE_ L okl B
L =39 <a§j T g T o ) (4.5)
into the Gauss equation:
8111’[4 8Fz§c sl s 1l l 1
a&kj ~ g LTk~ Ll = bijbi — biby (4.6)

where ¢ = (¢, ).

Here we can consider one simplification. In the case of the first fundamental
form ds? = A2dt? + B%da?, the Gauss curvature could be obtained from the
expression (see e.g. [11])

(3 A

Indeed, the substitution of A = cos¢/2 and B = sin¢/2 into (4.7) leads to
the classical SGE:

¢tt - (bzz = KSiIl(b . (48)

In the case of the nonlocal value of the coefficients,
A =cos(Dg¢/2), B =sin(Dy¢/2), (4.9)
by substituting (4.9) into (4.7) we get the nonlocal generalization of the SGE:
Gty — Guw = KD, " sin(D7 o). (4.10)
Together with the coefficients of the second fundamental form,
byy = —byy = cos(DF¢/2) sin(D3¢/2), (4.11)

according to equation (4.3), we can obtain the value of the Gauss curvature
K=-1.
Thus, for the first and second fundamental forms,

D D
I = cos? <%¢> dt* 4 sin? (%) da? (4.12)
DY DY
II:cos< §¢>sin< §¢>(dt2—dx2), (4.13)
the surface of a constant negative curvature K = —1 imbedded in D-dimen-

sional space obeys the NSGE:

(btt - ¢rr = D;a SID(D3¢) . (4]‘4)
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5. Conclusions

The NSGE, like the ordinary SGE, has a Lagrangian form (2.4), one-(2.6)-
(2.7), two-(2.11)-(2.13) and N-solitonic (2.14) solutions. Despite the nonlocal
nature of the interaction term in the evolution equation, this model possesses
nonlocal deformations of localized solutions.

The asymptotic form has slowly falling tails ¢(x) ~ z® which converge to
zero at a < 0, as follows from explicit expressions of the solutions. At the
same time the total value of the momenta I[¢] = fjooj¢(x, 0) dz diverges for
any « > —1. This means a nonlocal distribution of the momenta, energy and
related magnitudes.

From the asymptotic and infinitesimal form of NDGE (2.1) the correspond-
ing dispersion relations,

w?—ak?=Xb and w?—ak?=W(k), (5.1)

follow, where W (k) corresponds to the Fourier transform for the linearized
part of the bsin A¢ + aL[¢p] according to equation (2.2) and which are the
Klein—Gordon and sine-Gordon modified dispersion relations.

The NSGE can be obtained from the discretized version of the evolution
equation:

a —a
y;’i = S_Q(ynJrl - 2yn + ynfl) + )\yn COs P\S (ynJrl - yn)] ) (52)

where s is the length of the space step displacement.

The variety of the physical origination of SGE (1.1) allows us to apply the
obtained solutions not only to the Josephson effect [3, 5, 7, 15, 16, 17] but
also to dislocations evolution in the modified Frenkel-Kontorova model [14]
magnetic crystals [12], semiconductors [8] and so on.

Note here one important property. The continuous changes of the parame-
ter a € [0;2] does not mean a continuous transition of one evolution equation
to another. Let us have an evolution equation in the form

(btt - ad)w:p = Na[(b] ) (53)

where N [¢] means the nonlocal operator on ¢(z,t), and « is the parameter of
nonlocality. The transformation of the operator N [¢] for a € [0; 2] induces the
transformation of the automorphism groups G, and G, for the corresponding
local evolution equations:

where, in the general case, the operator of the fractional derivative D% induces
an action on the group of translation operators T'¢.
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7. Appendix

To give an explicit expression for the Riesz pseudo-differential operator, we
first introduce the Weyl fractional integrals Iﬁ of the order 5 > 0 [13, 18]:

iy 7~ €7 10(6) de.
oy = { T 1ol

7.1
iy [N — 2)P10(6) d =

Then the Weyl fractional derivatives could be introduced by the relations

(L)), O<a<l,

7.2
LI ")), l1<a<2, 2

Dig(x) = {

where I¢ denotes the Weyl fractional integrals of the order > 0. When
a = 0, the Weyl fractional derivative degenerates into the identity operator

Dig(x) = I¢(z) = ¢(x). (7.3)
For the continuity of D% ¢(z) with respect to «,

d d?

For arbitrary a we have the definition

1 dlel x o(t) dt
TH{a)] 4zl J—co Gty rtar -
_—1_dl*l pdoo  g(t)dt
el & Jo  Ga) e

$o(x) = (7.5)

where {a} and [a] are fractional and integer parts of the o > 0. The Riesz
fractional derivative, denoted sometimes as 9%/0|x|%, is defined as

Dg +D°
~Seortary (@), a#1,
2cos (am/2
fDYo(x) =4 s en/?) (7.6)
(£A) @),  a=1,
where H is the Hilbert transformation
A L[ o)
H =vVv.p.— d 7.
o) =vo | o, (7.7)

and the integral is understood in the Cauchy principal value sense.
An important property of the Riesz fractional derivative D is that it is
a Fourier multiplier operator with the symbol |k|“.
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Netiesiné nelokali integruojamoji sine-Gordono lygtis

P. Miskinis

Pasitlyta nauja nelokali sine-Gordono evoliuciné lygtis su apibendrintu saveikos

nariu. Nustatyti Sios lygties ribiniai atvejai, Lagranzianas, simetrijos, tiksluis anali-

ziniai sprendiniai. Parodyta, kad §ios rusies nelokali sine-Gordono lygtis turi vieno,

dviejy bei N-solitoninius sprendinius, kurie yra atitinkamu klasikiniy sine-Gordono

lygties sprendiniy nelokalios deformacijos. Nelokalios sine-Gordono lygties inte-

gruojamumas siejamas su geometrinémis dvimaciy nelokaliai deformuoty pavirsiy

savybémis.



