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Abstract. Finite volume discretization of Biot system of poroelasticity in a mul-
tilayered domain is presented. Staggered grid is used in order to avoid non-physical
oscillations of the numerical solution, appearing when a collocated grid is used. Var-
ious numerical experiments are presented in order to illustrate the accuracy of the
finite difference scheme. In the first group of experiments, problems having analyti-
cal solutions are solved, and the order of convergence for the velocity, the pressure,
the displacements, and the stresses is analyzed. In the second group of experiments
numerical solution of real problems is presented.
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1. Introduction

In soil mechanics assumption of only vertical subsidence is often invoked and
this leads to the one-dimensional model of poroelasticity. The classical model
of linear poroelasticity is obtained by Biot [3], detailed derivation can be
found e.g., in [2]. This model is applicable also to modelling certain processes
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in geomechanics, hydrogeology, petroleum engineering (see, e.g., [9, 13]), in
biomechanics (e.g., [1, 10]), in filtration (e.g., filter cake formation, see [6, 7,
8]), etc.

Finite element and finite difference methods were applied by many authors
for numerical solution of the Biot system of PDEs, see e.g. [4, 5, 9] and ref-
erences therein. However, as it is well known, the standard FEM and FDM
methods are subject to numerical instabilities at the first time steps. To avoid
this, discretization on staggered grid was suggested in [4, 5]. A single layer
deformable porous medium was considered there.

This paper can be viewed as extension of [4, 5] to the case of multilayered
deformable porous media. A finite volume discretization to the interface prob-
lem for the classical one-dimensional Biot model of consolidation process is
applied here. The following assumptions are supposed to be valid: each of the
porous layers is composed of incompressible solid matrix, it is homogeneous
and isotropic. Furthermore, one of two following assumptions is valid: porous
medium is not completely saturated and fluid is incompressible or porous
medium is completely saturated and fluid is slightly compressible.

The reminder of the paper is organized as follows. Next section presents
the mathematical model. Third section is devoted to the discretization of the
continuous problem. Fourth section contains the results from the numerical
experiments.

2. Mathematical Model

2.1. Basic equations

Classical Biot model of consolidation process for one-dimensional case con-
sists of the system of two equations for unknown fluid pressure p(z,t) and
displacement of the solid skeleton u(x,t)

0 ou op
7% <(>\+2u)%>+%0, IG(O,Z), tG(O,T}7
9 ) o (ko @1
U p\
T (¢ﬁp+ 8z) ~ (naz) =q(z,t), x€(0,0), te(0,T],

where )\ and p are Lame coefficients of the solid skeleton, ¢ is porosity, 5 is
compressibility coefficient of the fluid, k is permeability of the porous medium,
7 is viscosity of the fluid, ¢(z,¢) is a source term, which is used to describe
forced extraction or injection process. Here we suppose that the solid grains
are incompressible and the relative compressibility (Biot’s coefficient) is iden-
tically equal to one.
Boundary conditions for (2.1) are the following;:
ou .
p=0, A+2u)— = —0p, ifx=0, (2.2)

ox
what means that this boundary is free to drain and some stress is applied on
it; another boundary condition is the following
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u =0, %:0, ife =1, (2.3)

what means that this boundary is rigid and impermeable. Initial condition

0
oBp+ =0, fort=0 (2.4)
ox
means that the variation in water content is zero at the beginning of the
consolidation process.

Note that in the case of classical problem formulation (2.1) — (2.4) (it de-
scribes fluid flow and skeleton deformation caused by the constant vertical
load applied on the top of the column of soil, bounded with rigid and imper-
meable bottom and lateral walls and a top, which is free to drain), system
(2.1) can be decoupled and then the problem can be solved separately for the
fluid pressure and subsequently for solid displacements. But in general case
system (2.1) might be supplemented with another types of boundary condi-
tions, corresponding to different physical phenomena on the boundaries, what
makes decoupling impossible and simultaneous solution must be sought both
for pore pressure and displacement of the solid matrix. In this paper we deal
with the coupled model, what makes our approach more general and universal
for modeling of the consolidation process.

2.2. Interface problem

Consider a multilayered porous medium, where each of the layers has different
physical properties. We are interested in the coupled fluid flow in the porous
medium and in deformations of the porous medium when certain stress is
applied to it. In this case, in addition to the basic equations given above,
we have to consider interface transmission closing conditions for (2.1) on the
interface between different layers. In the assumption of a perfect contact and
a two-layer medium, the interface conditions look as follows

[u] =0, [()\+2u)%] =0, [p] =0, [%%} =0 forz =, t€0,T], (2.5)

where 0 < ¢ <1 is the position of the interface between the two layers.

The coefficients of the governing equations are discontinuous across the
interface, i.e.

)\:{)\1; :C<§; {Ml; $<§ak:{kla 1'<C7 {¢17 1'<C7

)\2; :C>§a - 2, SC>§, k?a 1'>C7 - ¢27 1'>C

Interface conditions (2.5) mean continuity of the displacements and the
stress of the solid, as well as continuity of the pressure and the velocity of the
fluid across the interface between the two layers.

Let us transform the governing equations and the interface conditions to
dimensionless form. The following scales are introduced
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No -+ 2410) kot
—— t;zm’ b= P

l nl? oo

(Ao + 240)u yoo A2k
) . )\0+2H0’ . ko’

Jol
where \g, uo, ko are some reference values. Then, we introduce notation
2

l
a =600 +2p0), f(w1) = ~=Ea(a)

and write the problem in the following way:

3( a“) 2% g we(01), te 0T,

ox V% or
0 ou 0 op\
I/%:—l7 p=0,if =0, te (0,7T],
Ox (2.6)

u=0, %:0, if =1, te(0,T],

0
ap—&——u:()7 if t=0, z€(0,1),

ox
[u] =0, [V%] =0, [p] =0, [k%] =0 for z=¢(,te (0,7

3. MAC Type Grids and Finite Volume Discretization

2
(2N - 1)’
We use different spatial grids (so-called staggered grids), @, to discretize with
respect to pressure, and w, to discretize with respect to displacement, and a
grid in time ¢t with a step-size 7:

We split the interval (0,1) into N > 1 equal subintervals of size h =

wp={a;: x; =th,i=0,...,N -1},
Wy =1{&: & =2 —05h, i=1,...,N},
wr={t;j: t;=47, j=1,2,...,M}.

One may consider these grids as designed to represent the values of the pres-
sure p at the grid points z; € w, and the values of the displacement v at the
midpoints §; € w, of the subintervals (z;_1, 2;). The position of the interface
¢ can be represented in the form ¢ = &, 4+ 6h, where 0 < n < N is an integer
and 0 <6 < 1.

Now we shall introduce the following shorthand notations for discrete func-
tions defined on w, x wr and W, X wr, respectively:
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Figure 1. Grids wp, w, and wr.

uwi=ul = uz =u(&,t), p= P o= pg = p(ai, tj),
v =i (1 —o)?, b= 0iTh

Further, we shall use the standard notation of the first order backward and
forward finite differences on a uniform grid (see, e.g. [12]):

£ — P\T; T;) — p\Ti—
Pz ;:pm,i:w’ Dz ::pi,i:p( ) hp( 1).

Inspecting these expressions we see that these differences represent central
differences with respect to the points of w, and therefore we can easily accept
that they represent quantities defined on the grid w,. In a similar way we
define

u(&it1) —u() _ u(&) —u(§i-1)

Uy = Uy, = h , Uz 1= Uz h 3
which represent central differences with respect to the points of w, and there-
fore they represent quantities defined on the grid w,. Finally, we define the
finite differences in time direction
uj+1 — uj p]+1 —p]

up = up(§oty) = =", & Cwuy Pri= pe(@inty) = T @ € wp.

Following the basic principles of the finite volume method (method of
balance, [12]), we write balance equations for the first equation of system
(2.6) over each volume Vg, = (xi_1, ;)

- ] ai( >d + / P gy — (3.1)

Ti_1

and for the second equation of (2.6) over each volume V., = (&;,&;4+1)
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Eit1 9 9 Eit1 9 9 Eit1
U D B
/ 5 (aer ax)dz / o <k8m>dx /f(x,t)d:v. (3.2)
&i

i 7

Consider balance equations (3.1), (3.2) and replace integrals in these equa-
tions by the following difference expressions

zi Eit1
8 8u a ap o
/ % (V@)dﬂf ~ h (I/Uf)z7i s / % (k%)dl' ~ h (kpj)z71 )

Ti;—1 3

Eit1 *i
/ % (ap + %)dm ~ h(aipi + Uzi), / %dm % hps.i;
fi Ti—1
where
arr B a RS
vi=|5 / m , ;= / a(x)dx, k; = 7 / % (3.3)
z & Tio1

and 0 < o <1 is some weight factor. Note, that during the approximation of
integrals above we applied harmonic averaging for coefficients v(x) and k(z).

Substituting approximate expressions of integrals into balance equations
(3.1) and (3.2) and using non-index notations, we obtain a finite-difference
scheme for problem (2.6):

v 1
_Eﬂm"f'ﬁi: e E=¢&, tewr (e i=1),
— (Vig)s +Pz =0, =& ew\&}, t€wr (iei=2,...,N-1),
(ap +uz)e — (kp3)z = 7, v =2; € wp\{zN-1}, (3.4)

tewr (te.i=1,...,N—=2),

k
7pi =17, w=anoa, t€wr (iei=N-1),

(ap + ug)e —
po=0, un=0, t€uwr,
ap+u; =0, z=2;, €0y, t=0 (te.i=1,...,N—1),
where coefficients v, a and k are defined by formulae (3.3), and the right hand
side is calculated as

Eit1

fi= % / f(z,t) da.

&i
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One can show that in the case of piecewise-constant coefficients v(x), k(x)
and a(z) formulae (3.3) give us the following expressions for coefficients

vy, 1=0,...,n—1,

140 %)
Vi = (179)1/14*91/2’
vo, t=n+1,....,.N—1,

ai, = ,...,n—l,
a; =14 Bar + (1 —0)az, i=mn,
az, t=n+1,...,N—1,

ki, i=1,...,n—1,
kiko
(0.5 —0)k1 + (0.5 + 0)ko’
ky, i=n+1,...,N,

ki, i=1,...,n,

K1k
(1.5 — 0)ky + (0 — 0.5)ks’
ko, 1=n+2,...,N.

k; = i=n+1 for 6 > 0.5.

To solve the system arisen after the discretization we use the block TDMA
(see, e.g. [12]).

In the case of continuous coefficients (single layered porous media), the
second order convergence in operator norms is proven in [4]. Theoretical anal-
ysis of (2.6) in the case of discontinuous coefficients is in progress and will be
reported in a forthcoming paper.

4. Numerical Results

Let us consider the initial boundary value problem, IBVP, (2.6), which de-
scribes deformation and fluid flow in the column, consisting of two layers of
soils with different physical properties. The top of this column is free to drain,
and some load is applied on it, the bottom is impermeable and rigid. We are
interested in the following physical characteristics of this process: fluid pres-
sure, fluid velocity, displacements of the solid skeleton and stresses therein.
Two sets of numerical experiments were carried out in order to study numer-
ically the performance of the above described discretization (3.4): Case A:
IBVP with known analytical solution and Case B: IBVP with no analytical
solution known.
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Case A: IBVP with known analytical solution

In the first set, three experiments were performed in order to study numerically
the convergence rate of the scheme (3.4). Incompressible and compressible
cases are considered, as well as larger or smaller jumps of the coefficients. In
our tests we compare obtained numerical solutions with the known analytical
solutions and calculate relative discrete Lo and maximum C norms of solution
€errors:

max |w (x;,t;) — wit?| > hw (i, t5) — wiP”|
T EWp HE || _ TiCEWep
lewlle = max |we®(x;, t;)] wilka max |we (x;,t;)] ’
TiCEWgp W

where w and w®?P stand for the analytical and numerical solutions respec-
tively, and w = {u, p, v, s}. We use the weight parameter o = 0.5, what allows
us to obtain the second order of convergence in time.

Ezample 1. For the first test we choose the following values of the coeffi-
cients:

t 1yt 10w
v =1, ygzwzo.oom by = 1,

1
ko = ~0.275,a1 =0, ax=0, f(x,t)=0.

87 tan({5) tan(13%)

1
Position of the interface between two media is given by ( = —. Then the exact

solution of a problem like (2.6), but in the case of homogeneous boundary
conditions and another initial conditions, is given by

10 1

cos (Tﬂ-) sin(0.5z)e~0-25¢, z< g

p(z,t) = ) )

sin (E) cos (4m(1 —x))e 0%t x> G
1
—2cos ( 3 ) cos(0.5x)e~0-25¢ z < 5

u(z,t) =

2 cos( 15 1
t:ﬁ;i&i; sm( )sin (4m(1 —2))e 02 x> 5

The initial conditions are calculated from the above formulae at ¢t = 0. An-
alytical expressions for the fluid velocity and for the stress of the solid are

Op(x,t
calculated from the Darcy law v(zx,t) = fk:p((,)ixx’) and from the stress-strain
0 t
relationship s(z,t) = v u(z, )
ox

Convergence results are summarized in Tables 1-4. Note, that the grid
steps are decreased in such a way, that a constant value of the parameter 6
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is preserved in the expression ( = x,_¢.5 + 6h. Convergence results in the
tables are presented for two time moments t = 0.1 and ¢ = 1.0. It follows
from the presented results that there is no big change in the errors at the two
monitored time levels. Existing theoretical error estimates for this problem
(see, e.g. [4] for the case of continuous coefficients), predict dependence of the
error on time. Thus these theoretical estimates are severely overestimating
the error in our case.

Table 1. Example 1: convergence in the Lo-norm at ¢ = 0.1.

h T lewllze  leplla lleolles llesie

1/10 1/10 0.222E-02 0.155E00 0.130E00 0.739E-01
1/40 1/40 0.508E-03 0.243E-01 0.153E-01 0.106E-01
1/160 1/160 0.368E-04 0.105E-02 0.789E-03 0.488E-03
1/640 1/640 0.222E-05 0.634E-04 0.639E-04 0.298E-04
1/2560 1/2560 0.137E-06 0.393E-05 0.657E-05 0.185E-05

Table 2. Example 1: convergence in the Lo-norm at ¢ = 1.

h T llewllzs llepll e llevllre llesllzs

1/10 1/10 0.276E-01 0.559E-01 0.737E-01 0.273E-01
1/40 1/40 0.178E-02 0.248E-02 0.399E-02 0.156E-02
1/160 1/160 0.107E-03 0.157E-03 0.248E-03 0.973E-04
1/640 1/640 0.662E-05 0.977E-05 0.159E-04 0.607E-05
1/2560 1/2560 0.413E-06 0.610E-06 0.110E-05 0.379E-06

Table 3. Example 1: convergence in the maximum norm at ¢ = 0.1.

h T llewlle lleplle llevlle lleslle

1/10 1/10 0.518E-02 0.226E+00 0.322E4-00 0.196E-+00
1/40 1/40 0.306E-02 0.304E-01 0.833E-01 0.273E-01
1/160 1/160 0.337E-03 0.139E-02 0.470E-02 0.114E-02
1/640 1/640 0.224E-04 0.841E-04 0.107E-02 0.712E-04
1/2560 1/2560 0.142E-05 0.522E-05 0.262E-03 0.442E-05

From numerical experiments we conclude that displacement, pressure and
stress converge with the second order in time and space in both L; and C
norms. The fluid velocity converges with second order in Ly norm, and with
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Table 4. Example 1: convergence in the maximum norm at ¢ = 1.

h T llewlle lleplle llevlle lleslle

1/10 1/10 0.645E-01 0.963E-01 0.145E+00 0.581E-01
1/40 1/40 0.620E-02 0.481E-02 0.619E-02 0.277E-02
1/160 1/160 0.382E-03 0.284E-03 0.387E-03 0.151E-03
1/640 1/640 0.238E-04 0.174E-04 0.832E-04 0.913E-05
1/2560 1/2560 0.148E-05 0.108E-05 0.210E-04 0.566E-06

Pressure (after the final time step)

Figure 2. Example 1: convergence of displacement (left) and pressure (right).

Stress after

) time step)

Figure 3. Example 1: convergence of velocity (left) and stress (right).

first order in the maximum norm. On very coarse grids velocity converges
with higher than first order in the maximum norm. The reason is that these
grids are far from the asymptotic regime.

Fig. 2 and 3 represent the analytical and numerical solutions calculated
on different grids. Fig.4 illustrates these convergence orders.

Ezxample 2. In the second test we consider compressible fluid (a1 and as
are nonzero). The following values for the coefficients are used:
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C-norm

of errors after the last time step

C-nor

rm of erfors after the last time step

Log(Error)

Log(Error)

160
Log(number of grid points)

160
Log(number of grid points)

297

Figure 4. Example 1: errors in the maximum norm for pressure and displacement
(left) and velocity and stress (right).

tan(2) tan( L2
an(%gm(g) ~0.0153, ki=1, f(x,t)=0,

1 10.1
~ 0.6547, a; = 0.01, ag = ————
10 tan(2) tan(2) ! ?7 tan(2) tan(L2)

v =1, vy =

~ 66.1227.

ky =

2
Position of the interface is ( = 3" Exact solution is given by

1 2

cos <—0) sin(z)e~T01¢, x < =,

3 3

p(z,t) =

(2 o, 2

sin ( = | cos (10(1 — z))e 100!, x> =,

3 3
1 2
— cos 10 cos(z)e~ 101t x <=,
3 3
u(z,t) = . 5 5
- in (= ) sin (10(1 — -t g > 2
10 tan(2) tan(2) * (3) sin (10(1 —z))e” e 3

Convergence results for Example 2 are summarized in Tables 5-8. The con-
vergence orders for the compressible case are the same as for the incompress-
ible as it is illustrated in Fig.6. Analytical and numerical solutions, calculated
on different grides are plotted on Fig.5.

Ezample 3. In the third test we consider again incompressible fluid, but the
ratio between coefficients k1 and ko is large (about four orders of magnitude).
The values for the coefficients are the following:

1 8 80
V1= 1, Vo = 1—00tan (1—5) tan (?) ~ 016017 ]{?1 = 1,
b — 1
> tan(1002) tan(%)

~6.2479-107%, a3 =0, ay =0, f(x,t)=0.
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Table 5. Example 2: convergence in the maximum norm at ¢t = 0.1.

h T llewlle lleplle llevle lleslle

1/10 1/10 0.542E-02 0.270E-01 0.696E-01 0.308E-01
1/40 1/40 0.116E-02 0.210E-02 0.468E-02 0.209E-02
1/160 1/160 0.730E-04 0.151E-03 0.581E-03 0.139E-03
1/640 1/640 0.453E-05 0.963E-05 0.132E-03 0.907E-05
1/2560 1/2560 0.282E-06 0.608E-06 0.322E-04 0.575E-06

Table 6. Example 2: convergence in the maximum norm at ¢ = 1.

h T llewlle lleplle llevle lleslle

1/10 1/10 0.631E-01 0.621E-01 0.301E-01 0.422E-01
1/40 1/40 0.471E-02 0.423E-02 0.183E-02 0.231E-02
1/160 1/160 0.300E-03 0.265E-03 0.107E-03 0.149E-03
1/640 1/640 0.188E-04 0.165E-04 0.206E-04 0.937E-05
1/2560 1/2560 0.118E-05 0.103E-05 0.477E-05 0.586E-06

Table 7. Example 2: convergence in L norm at ¢ = 0.1.

h T lleullzs llepllze llewllze llesllzs

1/10 1/10 0.289E-02 0.128E-01 0.358E-01 0.139E-01
1/40 1/40 0.275E-03 0.938E-03 0.194E-02 0.861E-03
1/160 1/160 0.163E-04 0.689E-04 0.125E-03 0.641E-04
1/640 1/640 0.101E-05 0.443E-05 0.931E-05 0.419E-05
1/2560 1/2560 0.627E-07 0.279E-06 0.859E-06 0.264E-06

Table 8. Example 2: convergence in Lo norm at ¢ = 1.

h T leullz lleplles llewllza lleslize

1/10 1/10 0.277E-01 0.219E-01 0.967E-02 0.206E-01
1/40 1/40 0.183E-02 0.169E-02 0.530E-03 0.152E-02
1/160 1/160 0.117E-03 0.108E-03 0.324E-04 0.974E-04
1/640 1/640 0.733E-05 0.681E-05 0.217E-05 0.613E-05
1/2560 1/2560 0.459E-06 0.426E-06 0.171E-06 0.384E-06
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Displacement (after the final time step) Pressure afer the final ime step)

Figure 5. Example 2: Convergence of displacement (left) and pressure (right).

Maximum norm of erors afier he asttme siep

107 =
x 5 displacement eror x S+ velosiy error
<  pressure error LNS S stress emorr

Maximum norm of errors after the last time step

L L L L 107 L L L .
10 40 160 640 2560 10 40 160 640 2560
Number of grid ponis Number of grid points

Figure 6. Example 2: Errors in the maximum norm for pressure and displacement
(left) and velocity and stress (right).

2
Position of the interface is ( = 3" The exact solution is given by
10 _ 16, 2
e T
p(l’,t) = ] 9
sin (—) cos ( lfx))efzjt x> =
15 ’ 3’
> (10) os( :I:)e_&t x < 2
——cos|—)c 25 =
(2.1 4 3 5 ’ 3’
u(x,t) = 8
’ 5cos(1x) 16 2
———=2~5in (80(1 — —25t -
4tan(%)sm( ( x))e x> 3

Convergence results are summarized in Tables 9-12. It is seen that con-
vergence order does not depend on the jumps of coefficients (see also Fig.8).
At the same time, on very coarse grids the numerical solution can give a bad
approximation to the exact solution. This can be observed on Fig.7, where
analytical and numerical solutions are plotted.
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Table 9. Example 3: convergence in the maximum norm at ¢t = 0.1.

h T llewlle lleplle llevle lleslle

1/10 1/10 0.632E00 0.105E01 0.197E02 0.101E01
1/40 1/40 0.151E00 0.157E00 0.549E01 0.142E00
1/160 1/160 0.991E-02 0.102E-01 0.134E01 0.909E-02
1/640 1/640 0.617E-03 0.641E-03 0.326E00 0.568E-03
1/2560 1/2560 0.388E-04 0.400E-04 0.808E-01 0.355E-04

Table 10. Example 3: convergence in the maximum norm at ¢ = 1.

h T llewlle lleplle llevle lleslle

1/10 1/10 0.155E01 0.138E01 0.189E01 0.114E01
1/40 1/40 0.185E00 0.380E-01 0.867E00 0.401E-01
1/160 1/160 0.138E-01 0.413E-02 0.165E00 0.401E-02
1/640 1/640 0.811E-03 0.226E-03 0.379E-01 0.224E-03
1/2560 1/2560 0.496E-04 0.135E-04 0.928E-02 0.136E-04

Table 11. Example 3: convergence in Lz norm at ¢t = 0.1.

h T lleullzs llepllze llewllze llesllzs

1/10 1/10 0.258E00 0.455E00 0.804E01 0.455E00
1/40 1/40 0.656E-01 0.602E-01 0.101E01 0.615E-01
1/160 1/160 0.454E-02 0.380E-02 0.115E00 0.387E-02
1/640 1/640 0.285E-03 0.238E-03 0.140E-01 0.242E-03
1/2560 1/2560 0.179E-04 0.148E-04 0.174E-02 0.151E-04

Table 12. Example 3: convergence in Ly norm at ¢t = 1.

h T leullz lleplles llewllza lleslize

1/10 1/10 0.843E00 0.542E00 0.754E00 0.521E00
1/40 1/40 0.757E-01 0.823E-02 0.204E00 0.819E-02
1/160 1/160 0.480E-02 0.123E-02 0.186E-01 0.124E-02
1/640 1/640 0.296E-03 0.773E-04 0.209E-02 0.774E-04
1/2560 1/2560 0.184E-04 0.481E-05 0.254E-03 0.481E-05
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Figure 8. Example 3: errors in maximum norm for pressure and displacement (left)
and velocity and stress (right).

Case B: IBVP with no analytical solution known

In the second set of numerical experiments we satisfy all boundary conditions
and initial conditions corresponding to the continuous model. Let us consider
the case when pore fluid is incompressible. In such situation initially the whole
vertical load is taken by the pore fluid and there is a very little compression
of the soil sample immediately after placing the load. This gives the following
initial conditions:
p(x,0) = 09, u(z,0)=0.

Then during the consolidation process fluid pressure is dissipating and simul-
taneously effective stress of the solid is increasing.

There is no known analytical solution in this case and we only qualitatively
compare our solutions with the results of other authors. Note that all param-
eters in the tests below are non-dimensional and all results are also plotted
non-dimensionally.

Ezxample 4. In this test material properties of layers are the following:

ki =1.0, ks =100, 11 =10, o =0.1.
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Figure 10. Example 4: Displacement in the profile (left) and rate of settlement of
the soil surface (right).

It means that upper layer is ten times less permeable, but ten times stiffer.
Figure 9 shows distributions of pore pressure and stress of the solid at different
time moments. Remind that in this set of numerical experiments exact solution
of the problem is unknown and we can not compare it with our numerical
results, we can only analyze behaviour of the numerical solution during the
grid thickening. Figure 10 shows displacement calculated on different grids at

the fixed time moment ¢ = 0.05, and the rate of the settlement of the soil
surface in time.

Example 5. In this test we change the location of layers from the previous
example. Now upper layer is ten times more permeable and ten times less
stiff. We use the following values of parameters:

kl = 10, ]{12 = 01, v = 10, Vo = 10.0.

Some results of this experiment are plotted in Fig. 11.

Distributions of pore pressure and rate of settlement obtained in the pre-
vious two numerical experiments were compared to results published in the
paper [11], and a very good qualitative agreement was observed.
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Figure 11. Example 5: Pressure distribution in time (left) and rate of settlement
of the soil surface (right).

5. Summary

One dimensional poroelasticity problem with discontinuous coefficients is
studied. No requirements about the location of the interface are posed (it is,
in general, not aligned with the grid). Accurate finite volume discretization is
derived. Various numerical experiments for the compressible and incompress-
ible cases are performed in order to study numerically the convergence rate of
the derived scheme for various combinations of the discontinuous coefficients.

In the existing publications no discussions on the order of convergence of
the schemes for such problems was found, and the paper is filling this gap.
In discrete Lo norm we observe second order convergence for basic variables
(pressure and displacements), as well as for fluxes (velocity and stress). In
the maximum norm, first order convergence for velocity is observed, while all

other variables converge with second order, independently of the location of
the interface.
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Skaitinis vienmadiy lygéiy poringai elastiSkai terpei sprendimas dau-
giasluosnéje srityje

A. Naumovich, O. Iliev, F. Gaspar, F. Lisbona, P. Vabishchevich

Straipsnyje pateikta Bioto sistemos poringai elastiSkai terpei daugiasluosnéje srityje
diskretizacija baigtiniy turiy metodu. Norint i§vengti skaitinio sprendinio ne fiziniy
osciliacijy atsirandanciy naudojant kolokacinj tinkla, naudojamas judantis tinklas.
Straipsnyje pateikti jvairus skaitiniai eksperimentai iliustruoja baigtiniy skirtumy
schemos tikslumg. Pirmoje tokio eksperimento dalyje sprendZiami uZdaviniai, tur-
intys analizinius sprendinius, ir analizuojama greifio, slégio, i§stumimo, jtempiy
artutiniy sprendiniy konvergavimo eilé. Antroje eksperimento dalyje pateikta skai-
tinis realiy procesy modeliavimas.



