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Abstract. In this paper, a nonlinear mathematical model is proposed for the trans-
mission dynamics of HIV and a curable TB pathogen within a population of varying
size. In the model, we have divided the population into four sub classes of suscep-
tibles, TB infectives, HIV infectives and that of AIDS patients. The model exhibits
four equillibria namely, a disease free, HIV free, TB free and a co-infection equilib-
rium. The model has been studied qualitatively using stability theory of nonlinear
differential equations. It is shown that the positive co-infection equilibrium is always
locally stable but it may become globally stable under certain conditions showing
that the disease becomes endemic due to constant migration of the population into
the habitat. A numerical study of the model is also performed to investigate the
influence of certain key parameters on the spread of the disease.
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1. Introduction

There are many infectious diseases which afflict human population around the
world and spread by sexual contact between susceptibles and infectives. Re-
cently, the Human Immuno-deficiency virus (HIV) infection, which can lead
to Acquired Immuno-deficiency Syndrome (AIDS), has become an important
infectious disease in both the developed and developing nations. It is a fatal
disease, which breaks down the body’s immune system, leaving the victim
vulnerable to a host of life threatening opportunistic infections, neurological
disorders or unusual malignancies. It causes mortality of millions of people
and expenditure of enormous amount of money in health care and disease
control. The AIDS epidemic is now spreading rapidly in Asia, where new
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infections are increasing faster than anywhere else in the world. Globally, In-
dia has the highest estimated number of HIV infected people in any single
country, next only to South Africa. India’s epidemic is marked by hetero-
geneity. It is not a single epidemic but made up of distinct epidemics within
the same state and continues to be driven strongly by heterosexual transmis-
sion. Mathematical models have been used extensively in research into the
epidemiology of HIV/AIDS, to help improve our understanding of the ma-
jor contributing factors in a given epidemic. From the initial models of May
and Anderson [1, 2, 14] various refinements have been added into modeling
frameworks, and specific issues have been addressed by researchers, see for
instance [3, 4, 5, 6, 7, 11, 12, 13, 18, 19, 20]. In particular, Doyle et al. [§]
developed a model for the spread of HIV in a heterosexual population taking
into account the group contact tracing and carried out equilibrium analy-
sis. Greenhalgh et al. [11] studied the impact of condom use on the sexual
transmission of HIV and AIDS amongst a homogeneously mixing male homo-
sexual population. Arazoza and Lounes [3] proposed a nonlinear model for an
epidemic with contact tracing and applied it to the Cuban HIV/AIDS epi-
demic to obtain the size of HIV epidemic. Rao [20] presented a theoretical
framework for transmission of HIV/AIDS epidemic in India. Corbett et al.
[5] presented a homogeneous mixing population model for HIV transmission,
which incorporates an anti-HIV preventive vaccine. Naresh and Omar [18] pro-
posed a simple deterministic model to study the transmission of HIV/AIDS
in a population with variable size structure. Hsieh and Chen [13] developed
a theoretical model for a community which has the structure of two classes
of commercial sex workers and two classes of sexually active male customers
with different levels of sexual activity.

TB, caused by Mycobacterium tuberculosis is an infectious disease that
remains a problem worldwide. TB is such a type of disease which increases
due to the environmental factors e.g. discharges of household wastes (garbage,
trash etc.) in residential areas, open drainage of sewage in residential areas,
open water storage tanks etc. [10, 21]. Once infected with M. tuberculosis,
a person stays infected for many years, probably for life. The vast majority
(90%) of people without HIV infection who are infected with M. tuberculosis
do not develop tuberculosis disease. HIV is the most powerful risk factor for
progression from TB infection to TB disease. An HIV positive person infected
with M. tuberculosis has a 50% lifetime risk of developing TB whereas an
HIV negative person infected with M. tuberculosis has only a 10% risk of
developing TB. This is especially important in India where it is estimated
that almost half of the adult population harbours M. tuberculosis [16].

It is seen that TB is the most common serious opportunistic infection oc-
curring among HIV—positive persons and is the first manifestation of AIDS
in more than 50% of cases in developing countries. The number of HIV posi-
tives in India is estimated to be 3.97 million cases. Amongst the AIDS cases
reported so for, nearly 60% had TB [16]. TB shortens the survival of patients
with HIV infection. It accelerates the progression of HIV. Therefore, it is es-
sential to study the transmission of HIV-TB co-infection in the population.
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Some studies have been made by taking into account HIV-TB co-infection
[9, 15, 17, 22, 23]. McLean and Nowak [15] have proposed within host mod-
els for the dynamics between HIV and activated CD4T cells specific to other
pathogens. West and Thompson [22] developed models which reflect the trans-
mission dynamics of both TB and HIV and discussed the magnitude and du-
ration of the effect that the HIV epidemic may have on TB. They found the
effect that HIV will have on the general population to be dependent on the
contact structure between the general population and the HIV risk groups, as
well as a possible shift in the dynamics associated with TB transmission.

Our study is focused on the design and analysis of a new population model
for the transmission dynamics of HIV and a curable TB pathogen in a pop-
ulation with a variable size structure. In this paper, therefore, a mathemat-
ical model is proposed to study the transmission of HIV/AIDS in presence
of curable TB pathogen within a given population with varying size includ-
ing demographic features. Qualitative and numerical analysis of the proposed
model are carried out to understand the dynamics of HIV-TB co-infection.

2. The Mathematical Model

We consider the population of size N(t¢) at time ¢ with constant immigration
rate Qo. The population size N (t) is divided into four subclasses of suscepti-
bles S(t), tuberculosis infectives I1(t), HIV infectives I2(¢) (also assumed to
be infectious) and AIDS patients A(¢). The susceptibles become tuberculosis
infected following contact with the tuberculosis infectives I at a rate 5;. The
population in this class is diminished by HIV infection at a rate 3. Some
members of this class are also cured and recovered at a rate A\ and become
susceptible again. The population in class I5 is generated by the HIV infection
of both the susceptibles and tuberculosis infected individuals at a rate G2 and
(O3 respectively. It is assumed that the members of I are not susceptible to
infection by the tuberculosis. It is further assumed that anti-HIV treatment
is not available within the community and therefore, individuals of the I5 are
bound to develop ‘full blown’ AIDS with a rate § as shown in the transfer
diagram presented in Fig. 1.

Thus, the spread of disease is assumed to be governed by the following
system of differential equations,
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Figure 1. Transfer diagram of the mathematical model.

where d is the natural mortality rate constant and « is disease-induced death
rate constant. It is assumed that all the dependent variables and parameters
of the model are non-negative.

Since N(t) = S(t) + I1(t) + I2(t) + A(t), the above equations can now be

written as

dN

— = —dN — aA 2.1
dt QO aA, ( )

dl G(N-L-L—-AL Bshl

et _ - I 2.2
u - LE_Grgn @2
dly;, Bo(N—-©L—-I,—A)I, [shl

i — I .
dt N TN (0+d) by, (2:3)
A

C;—t — 5T, — (o + d)A. (2.4)

From the model, it is noted that in the absence of any infection, the population
size approaches the steady state value Qo /d.

3. Stability Analysis

The model (2.1)—(2.4) has four non-negative equillibria namely,

(i) Eo(Qo/d,0,0,0) the disease free.

(i) F (

Qo Qo[B1 — (A +d)]
d )

7 ,0, 0) the HIV free, which exists if 51 > (A +d).
1

(iii) E5(N,0, I, A) the TB pathogen free, which exists if 8, > (6 4 d) and

ad

Qo > ——1I,, where

+d
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(iv) E*(N*, I7, I;, A*) the co-infection equilibrium, where
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It is noted that E* is positive only when,

Qo> =208 fi>(Ohd), o> (+d)

and

Qo[B1 — (0 + d)] - Br(a+d+0)

d a-+d

d(a + d) z

+ B3 +

From the above, it is found that the equilibrium level of infectives (i =
1,2) increases as Qo or (3;(i = 1,2) increases or A and § decreases leading to
increase in A*. Further the equilibrium level of AIDS patients A* decreases
as disease induced death rate « increases. When the disease remain endemic,
the disease induced deaths reduce the equilibrium population size from Qo /d
to N*.

Now we state a theorem for local stability of the above equilibrium points.
The proof of the theorem is omitted as it is easy and can be obtained by
computing variational matrices corresponding to the equilibrium points.

Theorem 1. (I) The equzlzbrzum point Ey is locally asymptotically stable if
d <1 (i.e. Ry < 1) and the second equilibrium
E1 18 unstable Here R; and Rs are basic reproduction numbers associated
with tuberculosis and HIV HIV infection respectively.

(I1) The third equilibrium Es is unstable due to one positive eigenvalue and
will be locally asymptotically stable if 51 < (A +d), 32 < (0 + d) and provided
aras — az > 0, where ai,as and as all are positive the values of which are
given by

2[2 é}

al—a+2d+62[N — B — (6 +d)],
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as = d(a+d) + 62]3[2 +ﬁ2(a+d)[2—]é2+%} — (a+2d)[B2 — (6 + d)],

az = {5(d+a[%+ﬁ})}ﬁj§2 er(aer)ﬂz{%Jr%}

—d(a+d)[B2 — (6 +d)].
(III) The fourth equilibrium E*, if it exists, is locally asymptotically stable

provided b; > 0 (for i = 1,2,3,4), biba — b > 0 and b1babs — b3 — biby > 0,
where by, ba, by and by are given by
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It is noted that FEjy is locally asymptotically stable if R; < 1 and Ry < 1,
thus the desease dies out and under this condition the equilibria F;, F; and E*
do not exist. The basic reproduction number is obtained as R = max{ Ry, Rz},
[6]. Thus, the disease free equilibrium is locally asymptotically stable if R < 1
and unstable if R > 1. If Ry > 1, Ry > 1 the equilibrium point Ej is a saddle
point which is stable in NV — A manifold and unstable in I; — I5 direction. In
such a case both the infections are maintained in the population.

Now to show that E* is globally asymptotically stable, we state the fol-
lowing lemma.

Lemma 1. The region

— — — 6l
2= {(N7]1;127A);0<N§N;0§11 SI0LS L <0< AL 2 }
(a+d)

is a region of attraction for f1 > (A +d), B2 > (0 + d), where

we G =0 m= 5 05
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Theorem 2. If the endemic equilibrium E* exists, then it is globally asymp-
totically stable provided the following conditions are satisfied in (2 :

a’N* .
7— < ki <min{gu, g2}, i <pula+d),
P11
where
—2
pb11 = 7452(61 + P q11 = AN'HN
96(83 — f2) 9[B1(I1 + I + A) + BsIo]?’
_ 4dN* (B — BN
qi12 =

9B2[(I1 + Iz + A)2(B1 + Bs)

Proof. Consider the positive definite function defined in the neibourhood of

E*:

(N — N*)?
2

I

V= I

+k1([1*[f*]ikhl )+k2([2*]§*[2* Il—)

1
+ §k3(A — A*)?,

where constants ki, ko, k3 can be chosen suitably. It is easy to show that V'
is a Liapunov function with respect to E*, whose domain contains (2. The
values of ko and k3 have been found as

(Bt 055 ks
in(ﬁs—@)kh kgiN*(S'

4. Numerical Analysis and Discussion

In this section we give results of numerical simulation of the equilibrium and
stability conditions of the model (2.1)—(2.4). We integrate this system by
fourth order Runge-Kutta method using the following set of parameter values:

Qo = 2000, d= 5—10, 81 =0.925, A =0.3,
B2 =0.365, 03 =115 a=1, §=02
and initial values
N(0) = 20000, I(0)= 2000, I»(0)= 3000, A(0)= 500.
The co-infection equilibrium values are computed as

N* =39275.6009, Iy =5349.520, I, =6193.2075, A* = 1214.4879.
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Table 1. Effect of )\ from equilibrium point F;.

A 0 0.2 0.4 0.6 0.8 0.91
Ry 46.25  4.205 2.202 1492  1.128 0.995
I 97387.8 76216.2 54594.6 32973.0 113514 O

In Tablel we have shown the effect of recovery rate A. The higher values
of recovery rate A lead to the reduced TB infection and at A = 0.91 we found
that I; = 0 implying that if 91% TB infected people are recovered effectively
then the TB pathogen can be eradicated from the population. This condition
coincides with the case where both R; and R, are less than one so that the

disease free equilibrium is stable.

In Table 2 we have shown the effect of F2. As the contact rate decreases,
the HIV infected population also decreases. From this table we find that as

B2 — 0 then I — 0. We get the expected results given in Theorem 1.

Table 2. Effect of 52 from equilibrium point Es.

B 1 08 06 04 03 02
R, 4545 3.636 2.727 1.818 1.364 0.909
I, 8820.6 8731.0 8587.6 8025.0 6999.1 0

The results of numerical simulations are displayed graphically in Fig.2-9.
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Figure 2. Variation of popula-
tion in different classes for Qo =
0, \ =0,d =002, = 1,6 =
0.2, 41 = 0.925, 32 = 0.365 and
Bs = 1.15.

In Fig. 2 the distribution of population with time is shown in different
classes without migration and recovery rate, i.e. Qo = 0 and A = 0. It is seen
that susceptible population decreases continuously and infective population
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Figure 3. Variation of popula-
tion in different classes for Qo
2000, X = 0.3, d = 0.02,a
1,6 = 02,81 = 0.925,03

0.365 and 35 = 1.15.
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increases because there is no migration and recovery. Therefore, all infectives
ultimately develop AIDS and will die out by disease-induced deaths. Thus the
total population, being constant, in this case will be eradicating after some
time period.

Fig. 3 shows the variation of population with migration and recovery rate.
It is noted that due to recovery rate TB infective population decreases and
susceptible population first increases with time and then reaches its equilib-
rium position. Since due to migration susceptible population increases contin-
uously, therefore, infection becomes more endemic and always persists in the
population.

Comparing Fig. 2 and Fig. 3, the role of immigration rate Qo can be seen
easily on the different populations. In particular, the role of immigration is
explicity shown in Fig. 9 and it is seen that the increase in the rate of migration
into the community is to increase the AIDS population.
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Figure 4. Variation of TB in- Figure 5. Variation of HIV &

fected population for different TB co-infected population for
values of . different values of 4.

Fig. 4 depicts the variation of TB infected population with time for dif-
ferent recovery rates. It is seen that with the increase in the recovery rate A,
the TB infected population decreases which in turn increases the susceptible
population. Fig.5 — 6 show the effect of movement rate § on HIV infected and
AIDS population respectively. It is clear that with increase in the value of §
the HIV infected population decreases to increase the full blown AIDS pop-
ulation. This is expected because of shorter incubation period. In Fig.7 the
variation of AIDS population for different values of disease-induced death rate
is shown. It is observed that with the increase in disease induced death rate «,
the AIDS population decreases. The role of 3, is plotted in Fig.8. It is found
that with the increase in contact rate (2, the AIDS population increases.

From the above discussion, it is observed that if TB infection is treated
significantly then acceleration to HIV infection can be kept under control.
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5. Conclusion

In this paper, a nonlinear mathematical model is proposed and analysed to
study the transmission of HIV/AIDS and a curable TB pathogen within a
population of variable size structure. It is shown that there exist threshold
parameters Ry and R,. It is noted that when R; < 1 and Ry < 1 then both
the infections die out and when R; > 1 and Rs > 1 the co-infection is main-
tained in the population. The model has four non-negative equillibria namely
Ey, the disease free, Fy the HIV free, Es TB pathogen free and E* the co-
infection equilibrium. It is found that the equilibrium state Ey corresponding
to disappearance of disease, is locally asymptotically stable if Ry < 1 and
Ry < 1 and for Ry > 1 and Ry > 1 it is unstable and both the infections
are maintained in the population. The co-infection equilibrium E* is always
locally asymptotically stable. For this equilibrium we have found a Liapunov
function and shown that this equilibrium is globally asymptotically stable if
the conditions in Theorem 2 are satisfied. It is also found that these infectious
diseases become more endemic due to immigration. Thus if the migration of
the population into susceptible community is restricted, the spread of the dis-
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ease can be kept under control. The number of HIV infected individuals in
population increases rapidly due to presence of another disease that is tu-
berculosis. Thus if tuberculosis in the population is effectively treated, the
spread of HIV can be slowed down. The model analysis suggests that TB will
be eradicated from the population if approximately above than 90% people
are recovered due to effective treatment. The effect of an increase in disease-
induced death rate is, however, to decrease the AIDS patients population.

From the analysis, it may be speculated that if the HIV infection is sup-
pressed at an early stage by way of drug therapy or other control mechanism,
the progression to the AIDS can be slowed down and the life span of HIV
infectives can be increased.
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ZIV ir TB infekcijy sgveikos kintamo dydzio populiacijoje modeliavimas
ir analizé

R. Naresh, A. Tripathi

Siame darbe pateikiamas netiesinis matematinis modelis, skirtas aprasyti ZIV ir
i8gydomo TB patogeno plitimui kintamo dydZio populiacijoje. Modelyje populiacija
dalinama, j keturias klases — galintys uZsikrésti, TB infekuoti, Z1V infekuoti ir AIDS
pacientai. Modelis turi keturias pusiausvyros padétis: nesergantys, nesergantys ZIV,
nesergantys TB ir sergantys abiem ligom. Modelis analizuojamas kokybiniu poZiuriu,
naudojant netiesiniy diferencialiniy lyg¢iy stabilumo teorijg. Irodyta, kad teigiama
dviejy infekcijy pusiausvyros padétis visada yra lokaliai stabili, be to, esant tam
tikroms salygoms, ta padétis taip pat buna ir globaliai stabili. Tai reigkia, kad esant
pastoviai migracijai j areala, liga tampa endemine. Atlikta modelio skaitiné analizé,
skirta nagrinéti kai kuriy svarbiausiy parametry jtakg AIDS ir TB ligy plitimui.



