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Abstract. Various problems of electrical engineering lead to mathematical mod-
els being difference, differential or integral equations. In this paper some math-
ematical models in certain problems of electrical engineering are presented. Our
considerations are restricted to the radiative heat transfer and density theory
(Fredholm integral equations). Respecting time in current density problems we
get integro-differential equations or generally Volterra-Fredholm integral equations
(heat-conduction theory). The new numerical method for these equations is anal-
ysed.
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1. Introduction

The paper emphasizes advantages of the method of integral equations (MIE)
in various branches of technology, with special attention paid to power engi-
neering. These problems usually lead directly to integral equations or integro-
differential equations. The numerical methods for a general class of integral
equations in space-time (Volterra-Fredholm integral equations) will be pre-
sented. Many power-engineering problems including time-dependent models
may be reduced to such class of problems. We restrict to some integral math-
ematical models in electrotechnics. The report analyses the methods of nu-
merical solutions of various tasks defined in the terms of boundary-initial
value problems of differential or integral equations. In natural and techni-
cal sciences mathematical models are defined by differential equations and
solved mostly by using finite-difference method (FDM), finite-element method
(FEM), boundary-element method (BEM).

! The author is thankful to the editor and the referees for useful remarks improving
this paper.
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A choice of calculation method is affected by many factors. First of all, it is
determined by the possibility of accurate definition of the problem, including
its formulation and specification of boundary-initial conditions. It depends
as well on the system of algebraic equations and parameters of computer
hardware used for carrying out the task.

The FDM is the oldest, the simplest, and the most popular method, based
on replacing finite differences for derivatives. It was formulated as an approx-
imate discrete method for solving boundary-value problems defined in terms
of differential equations. Furthermore, its application was widened to varia-
tional problems. It may be used as well for boundary-initial value problems
related to differential equations of parabolic type, describing temperature dis-
tribution in the theory of heat conduction. Therefore, it is usually applied
to internal problems. It might be also used for external problems but leads
to huge systems of equations, as the elements must cover the whole field of
analysis.

Recently the BEM approach is very often used for solution of mechanical
problems. It leads to considerable reduction of the number of equations. It
appears very advantageous, as for solving large systems of equations, since
large computer memory size is required and the process itself is much labour-
consuming. Success of the method consists in omitting of discretization of
the field. Only its border is subject to discretization, causing reduction of
the dimension size by unity and lowering the computation time. The FEM
and BEM approaches might be considered as complementary as their faults
and advantages compensate each other. Extensive work aimed at connecting
of both methods lead to hybrid techniques joining advantages of both and
eliminating their faults.

The work presents advantages of the method of integral equations and pos-
sibility of its application to various branches of technology, particularly to the
problems arising in comprehensively understood power engineering. It is an
analytical-numerical method and requires deep engagement of highly skilled
specialists (mathematicians, specialists of numerical and computer sciences,
engineers).

Taking into account growing popularity of integral equations, the present
paper is devoted to the most modern methods of numerical solving of wide
class of integral equations in space-time, called the Volterra-Fredholm equa-
tions. It should be noticed that the algorithms provided here can be in par-
ticular applied for integral equations of both Volterra and Fredholm types. In
this paper we restrict to mathematical models describing the radiative heat
transfer, the density theory and the heat conduction problems.

2. Radiative Heat Transfer

The problem of proper radiative heat transfer analysis [6] takes place when
considering issues related to heat transfer in electrotechnical equipment and
in luminous flux transfer in confined space. Luminous flux transfer can be
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regarded as a specific (limited to the visible range) case of optical radiation
transfer. Both radiative thermal flux transfer governed by laws of thermody-
namics and luminous flux transfer governed by laws of lighting engineering
can be solved using the same calculation methods.

For any body taking a “passive” part in radiative transfer, i.e. for a body,
which does not emit radiation in a given range there must be a balance of
radiant (flux) power — both for the stationary stage and for the scope of
radiation being analysed. This means that monochromatic (\), spectral (A))
or total (c) radiant flux striking a body must be equal to the total sum of the
reflected (P,-—..), absorbed (P,._,) and (P,_;) transferred flux, respectively.

When considering and incident wave (ray) or beam of waves (rays) inci-
dent on any body, reflected radiation and transferred radiation can be regular
(specular), diffused (Lambertian) or mixed. Therefore, if a wave strikes an ele-
mentary surface whose unevenness is significantly smaller than the wavelength
of the wave, and a beam strikes a surface (consisting of elementary surfaces)
void of macroscale — compared to the width of beam — unevenness and if the
body is optically homogeneous (non-diffusing) or optically non-homogeneous
but highly suppressing (e.g. metal), then the reflected radiation of such wave
(beam) can be regarded as specular. In other cases such radiation is mixed
(non-diffuse) or close to diffuse (Lambertian) radiation.

For diffusing bodies the degree of diffusion of reflected and transmitted
radiation depends on the spectral distribution of incident radiation and the
incident direction thereof. Thus, the reflectance, absorption and transmittance
of the body are not invariable features of the body, rather they depend on the
direction and spectral distribution of the incident radiation and, additionally,
on the body’s energy state and — for translucent bodies — on the dimensions
thereof.

Bodies which are “active”, from the radiation point of view can radiate in
a specular, mixed or diffused way. Examples of such bodies for visible radia-
tion are light sources or luminaries, for monochromatic optical radiation are
quantum radiation amplifiers, for total or optionally spectral thermal radia-
tion radiant flux are radiating bodies across the whole or selected wavelength.
In the case of thermal radiation the value of monochromatic, spectral or to-
tal radiant flux is directly proportional to the value of the monochromatic
€, spectral e o) or total £, emissivity. Values of individual above mentioned
emissivity factors, being a function of wavelength and direction, depend ad-
ditionally on the energy state of the radiating body (e.g. temperature) and —
for translucent bodies — on the dimensions.

Actual transfers of optical radiations (including visible ones) are extremely
complicated and can be presented by the following formula

Pef 2 (.Z', T; 903 ¢0) = Pe, ) (.Z', T; 903 ¢0)

+ /pbd,k (.Z', 90) ¢Oa 9) ¢)pi,A ((E, T;a 9) ¢) COSQdu),
2
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where p is surface contained within the elemental solid angle dw, (6,9),
monochromatic (\) spectral radiance are defined at point z, T' is temperature,
effective (ef), emitted (e) and incident (i); ppq is bi-directional reflectance dis-
tribution function BRDF, or by formula

L)\ (.Z', 90) ¢0) = Le,>\ (.Z', 903 ¢0) + /Pbd,/\ (:E; 903 ¢Oa 97 ¢) Li,/\ ((E, 9) ¢) COSQduJ7
2

where L is monochromatic (\) luminance at point z in direction (6, ¢), con-
tained within the elemental solid angle dw.
The above problems lead to systems of Fredholm integral equations [1].

3. The Density Theory

3.1. The current density in the conductor with rectangular
cross-section

Let us consider the conductor of infinite length on arbitrary cross-section
situated parallel to z-axis of the rectangular coordinate systems. The current
density J(z,y) inside of the conductor is a solution of the following Fredholm
integral equation of the second kind [6]

Jwho?y (zo —u)* + (yo —v)?
J(z,y) — J(xo,y0) + J(u,v)1 dudv = 0,
(2, 9) (0, o) o // (u,v) n\/ (x —u)?+ (y —v)? udv
s
where iy means the magnetic inductive capacity, v is conductivity, xg, yo are
coordinates of relation point, S is cross-section of the conductor.
Additionally condition

/ / T, v) dudv = I (3.1)
S

guarantees uniqueness of solution for that problem.

S is discretized by using uniform rectangular elements AS7, ASs, ..., ASy
with middle points (z,,ym), m = 1,2,..., N. Assuming that the center of
element ASy is a relative point, i.e. o = zy and yo = yn, the given integral
equation can be reduced to NI algebraic linear equations

N
>l =0,
n=1

where J,, means approximate value of the current density in element AS,,,
and
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Jwpoy (zn —u)® + (yny —v)?
lin = Omn — OnN + - //hl\/( T 5 dudv =0, (3.2)
AS

2 Ty — W) Ym — V)

form=1,2,....N—1;, n=1,2,..., N, d,, is Kronecker’s delta.

Respecting the condition (3.1) we get the approximation

N
Z JnAS =T
n=1
Hence
N I
J, = —. )
nz::l 15 (3.3)

Equations (3.2) and (3.3) form the system of N1 linear algebraic equations,
which can be described in the form

I lig -+ bLn J1 0

loq loo -+ lan J2 0
IN—11IN—12 " INC1N JN;l 0

1111 In /A8

Remark 1. Similar results may be presented for few conductors.

3.2. Nonstationary current density

Analysis of the current density leads to the system of integral equations of the
Fredholm type [6]. This problem is time-dependent and provides the mathe-
matical model determined by the system of integro-differential equations [5].

Consider the conductor of infinite length on arbitrary cross-section S sit-
uated parallel to z-axis of the rectangular coordinate systems. The current
vector J and the magnetic vector potential A are parallel to the z-axis and
independent of z. Thus the problem is two-dimensional

J=1I.J(z,y,t), A=I,A(x,y,t).

Assuming that magnetic inductive capacity is given by po and conductivity
by 7, the magnetic vector potential satisfies:

—pol.J(x,y,t) inside the conductor,

A?A =1, 0% Az, y,t) = i
0 outside the conductor.

The solution of this equation has the following form
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Ho ’o 1.,
A ty=— [ J t)In — dx'd
(z,y,t) 27T/ (.9, t)In — da'dy’,
S

where

r=(z—a)?+ (y—y)?
is a distance between the source filament (z’,y’) and the field point (z,y).
The electric intensity is conveniently found from:

A
E = —aa—t —gradV. (3.4)

For 2D case equation (3.4) reduces to

0A
ot -
Then the above problem leads to system of integro-differential equations (see

[5]), which after discretization gives the approximate distribution of the cur-
rent, density.

In Figure 1 numerical results for the distribution of the current density
at time ¢t = 0.01 s are presented. The remaining parameters of the model are
the following: the size of the conductor is 1cm x lem, the conductivity v =
56M S/m and the current i(t) = 100¢. The number of rectangular subsections
AS was equal to 625 elements (N, = N, = 25).

[ e e .

Figure 1. The distribution of the current density for t= 0.001 s.

Remark 2. The above problem can be extended for few conductors.



Mathematical Modelling in FElectrical Engineering 263
4. Mathematical Models in the Heat-Conduction Theory

The problems of the heat conduction theory and diffusion theory are of great
importance in technology and engineering sciences. The same mathematical
model, i.e. the parabolic initial-boundary value problem, describes both the
phenomena. Only a few of solutions of those problems were found in an exact
form. An analytical solution can be obtained only for not very complex bound-
ary conditions and for bodies of simple shapes like rectangle, circle, cylinder
etc. The solutions of both heat conduction and diffusion problems are not so
easy to find for bodies of more complex shapes. In those cases the numeri-
cal or approximate methods have to be applied. In this paper we restrict to
a method of integral equations, which often is used in the electromagnetic
theory. For the sake of simplicity only heat conduction theory is considered,
because it is reduced to the special class of integral equations in space-time,
called Volterra-Fredholm integral equations [2, 3, 4]. In this section we will
present certain mathematical models in the heat conduction leading to these
integral equations [8].

4.1. First Fourier’s problem in heat conduction theory

Heat conduction equation is defined by

10T
———=0, (4.1)
a? ot
m 92
where A = > 722 a is a certain physical constant, 7" means temperature at
7=1 0;
time ¢ in point x = (21, xa,...,Zm), m > 2 of the considered domain D with

border S being closed surface of the class C2.
Let us notice that a function

w(z,t) = a®(4a’nt) ™% exp —ﬁ
’ 4a?t
defined for ¢ > 0 is a fundamental solution of equation (4.1).

The first internal Fourier’s problem is to find function T satisfying equation
(4.1) and the following initial-boundary conditions in domain D;

Ti(€,t) = (&, 1),

lim T'(z,t) =
Jim T(z,t) = p(@),
where ¥, ¢ are given bounded and continuous functions on D; and S, respec-
tively.
Then the temperature 7T is given by formula

a2
D;

T(x,t) = 1 /(p(y)w(a:—y,t) dy—l—//f(n, T)a%w(m—n,t—r) ds,dr, (4.2)
0S
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where the density function f is a solution of the integral equation

)+ / / N(E,t,0,7)f (1, 7) dSydr = g(€.1)
0S

with a kernel NV of the form

N tm,) = 25w(e—n, t—7) = EIGE ) e 7). (a5)

ony, a?(t—T)

where £ — 7 means a vector starting at the point 7 and finishing at the point
¢ and function g is given by

(6.)=20(6.0) - = [ wlwyule - 1) dy.

D;

The first external Fourier’s problem leads to solve equation (4.1) with the
following conditions
Te(&t) =¥(&,t) t>0, €5,
lim T'(x,t) =
Jim T(z,8) = o(@),
where ¥, ¢ are the given bounded and continuous functions on D, and S x
(0, 00), respectively.

Then a solution of this problem is given by formula (4.2), where the
density-function is calculated from the following integral equation

fe.t) - / / N(E,t,n,7)f (. 7) dSydr = §(€.1)
0SS

with 5
6.0 = ~20(6.0) - = [ ol - v.t)dy
D,

and the kernel N is defined by formula (4.3).

4.2. Second Fourier’s problem in the heat conduction theory

Second interior Fourier’s problem for equation (4.1) is defined by the following
boundary-initial conditions

oT
(a—%)i(&t)zw(&t) t>0, £€8,

Jim T(z,t) = ¢(@),
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where ¢, ¥ are the given bounded and continuous functions on D;, S, respec-
tively. It leads to the following solution

a2
De

t
1
T(x,t) = = /(p(y)w(x —y, t)dy + //f(n, Tw(x —n,t —7)dS,dr. (4.4)
0S5
The density-function f is a solution of the integral equation

fen) / / N*(&,t,1.7)f (n,7) dSydr = k(€. 1)

0s
with
0 _ _
N*(ga tvna T) = 28_”-510(5 - 777t - T) = |§ ntllsz):(nT) E’nf)w(é- - 777t - T)7
(4.5)
and

D) = 2060 + 5 [ elo)gu(e = unt)dy

e

The second external Fourier’s problem consists to find the solution of equa-
tion (4.1) with the boundary-initial conditions in domain D,

(g—i)e (§,1) =w(&t) t>0,

Jim Tz, t) = ¢(@),

where ¢, ¥ are known given functions. Then a solution of this boundary-initial
value problem is defined by formula (4.4) with the density-function satisfying
the integral equation

t
fE&+ [ | N*(&t,n,7)f(n,7)dSydr = k(& 1)
Il

with
1

a2

ben =2 - [ w(y)a%w@ gty dy

De

and the kernel N* is defined by (4.5).

5. Numerical Method for Integral Equation in
Space-Time

The current density problems were reduced to the system of integro-differential
equations of the Fredholm type, which after discretization in time gives the
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system of algebraic equations [5]. It is possible to reduce the mathematical
model in the current density to the following integral equations in space-time

u(z,t) = f(x,t) // (z,t,y, s)uly, s) dyds.

This equation arise also in the mathematical model of the heat-conduction
theory.

In this section we consider that integral equation in space-time, where f
is a given function in domain D = M x [0,T] (M is a compact subset of
m-dimensional Euclidean space) and w is unknown function in D. The given
kernel k is defined in domain

2 ={(z,t,y,s):x,y€c M,0< s <t <T}.

Numerical methods for these equations were presented in papers [2, 3, 4].
In the next section we propose a new numerical method for equation

u=f+ Ku,

where

tb
/ k(x,t,y, s)u(y, s) dyds.

0a

5.1. Presentation of the method

From a numerical point of view the method of successive approximations is
not efficient. Then we can introduce some corrections to obtain the following
method

ug = f+ K(ugp—1+ cn),

where ¢,, can be defined in various ways.
We restrict our presentation to the following integral equation

tb
u(x,t) +//I<: (x,t,y, s)uly, s) dyds, (5.1)

where the given functions fand k are defined in domains D = [a,b] x [0,T]
and
Q={(z,t,y,5): a<z, y<b 0<s<t<T}.

We seek approximate solution of equation (5.1) in the following form

b

t
u(z,t) = //k: (z,t,y,s uk_l(y,s) +p}§(y,s)] dyds, k=1,2,3,...

00
(5.2)
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where N
pr(a,t) =Y agn(t)p; (@), (5.3)
§=0
up is any function defined on interval [a,b] x [0,T] and ¢; are some basis
functions. Unknown coefficients a; satisfy the following conditions:
pi(z;,t) = Aug(z;,t), k=1,2,..., (5.4)

where
Aug(xj,t) = uk(z;,t) —ug—1(zj,t), 7=0,1,...,n,

and z; are collocation points such that

1, for i=j,
pi(x;) {

0, for i+ j.
Basis functions ¢;, i = 0,1,...,n can be defined as Lagrange fundamental
polynomials
liz) = (x—z0)(x—x1)...(r —wim1)(@ — 2i41) - .. (. — )

(l‘i — l‘o)(l‘i — 1‘1) N (.Z‘l — l‘i—l)(l‘i — -ri-i—l) N (.Z‘l — l‘n)

From (5.3) and (5.4) we get

pr(j,t) = a;k(t).
Then N
pr(z,t) = ZPZ(‘TJH t)e;(x)
j=0
is a collocation polynomial of the Lagrange type with respect to variable x
for almost every ¢ € [0,T]. From (5.3), (5.4) and (5.1) we get

tb
an(t) = gyu(t) + / / kg by, $)p0(y, ) dyds,
0a

where
tb
gik(t) = [ [ k(zj,t,y, ) [ur—1(y, 8) — ur—a(y, s) — pi_1(y, s)] dyds.
Oa
Introducing the notation
b
cit:5) = [ Koot 5)oi(w) dy

a

we obtain the system of linear integral equations of the Volterra type of the
second kind
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n t
ajk(t) = gin(t) + ) / cij(t, s)ai(s) ds (5.5)
i=0 )
with unknown functions agk, a1k, a2k, - - -, Gnk and given gok, 91k, 92k, - - - » nk,
cij, 5,7 =0,1,...,n. Let us introduce notation:

kn(ﬂf, t,y, 5) = Z k(xja t,y, S)@j(z)a
=0

where points z; (j =0,1,...,n) are zeros of some orthogonal polynomials.
Let R be a space of the Riemann integrable functions on D with a norm

lullr = sup {|u(z,t)[}.
(z,t)eD

Let w(x) be a bounded and positive weight-function, then L2, L? are spaces
provided with the norms
1/2

Tb Tb
lullzs = //|u(x,t)|2w(x) dedt | fullpe = //|u(m,t)|2dxdt
0a a

0

1/2

Remark 3. [2] Integral equation (5.1) has a unique solution for g € R(D) and
k € C(02) of the form

tb

u(z,t) = g(z,t) + //T(z,t,y, $)g(y, s) dyds,
0a

T(.T, t? y’ S) = Z k(n) (:L', t? y, S)’
n=1
where iterated kernels are defined in the following way:
tb
ky(z,t,y,s) = //k(x,t, z,w)kn—1)(z,w,y,s) dzdw, forn=2,3,...
0a

k(l)(‘rv ta Y, S) = k(ﬂ?, t, Y, S)
Lemma 1. [7] If u(z) € R[a,b], then

b
Iu—all = [ [ o"ute) —u@)Pu@ias] =0 for 0o

where
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plu(r) = Z u(zi)pi(w)

is an interpolation polynomial of the Lagrange type with the knots x;,i =
0,1,...,n being zeros of some orthogonal polynomials with the weight-function
w(z) in [a,b] and Lagrange basis functions ¢;(x).

Theorem 1. Let the following assumptions

a) points x;(i = 0,1,2,...,n) are zeros of an orthogonal polynomials with
weight-function w(z) in [a,b],
b) Auy is a Riemann integrable function in D

are satisfied. Then
llpr — AUkHL?U —0 if n— oo,
where

pR(,t) =Y Aug(wi,t)pi(z)
i=0

is an interpolation polynomial of the Lagrange type with respect to variable x
built on the knots x; and the basis functions l;(z),i =0,1,2,...,n.

Proof. By lemma we obtain
lpi(-,t) — Aug(-,t)|| = 0 if n — oo for almost every ¢ € [0, T.
Introducing the notation
1Dk (-, 1) = Aur (- 1)]|* = W(2),

we get
b
W2 = [ Iohnt) — Augle Do) do = 0, if 1 — o0
Then (see [8])

T Tb
Jwwde= [[ i) - Auste 0P drd —o,
0 0Oa

HWn||2L2 = ||p7§ - AUkH%gU — oo for n — oo.

Hence
lpp — Augl|7. — 0 if n— oo.
w
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Theorem 2. If u € R(D) and

tb
k(x,t 2
C= sup / @ty ) s < oo

T w
(z,t)ED ) (y)
then
qn = 1- MK, s

where M =14+ N and

Tbtb

N = / / / / WUJ(@ dydsdadt,
0a0la

Tbtb
kn(z,t — k(z,t 2
Kn:/// |k (2, t,y,5) — k(2,t,y, 5)| w(w) dydsdad,
w(y)

O0Oa0a

and the sequence {uy} defined by formula (5.2) tends to unique solution of
equation (5.1); moreover, the following estimates

a) fux — ulr < Cqy~ [ Vallzz, ) lluk —ullze < Loy ' Vallze

Tbtb
- /// WU}@) dydsdzdt.

0a0a

hold, where

Sketch of the proof. From the presented method we get

\“

kn [Uk 1(% ) uk*Q(ya S) +p2 (ya S) 7p2—1(y5 S)] d’de
0a

After some calculations we can prove that V. defined by the formula

Vi(y,s) =u(y,s) —ur-1(y,s) —pp(y,s), k=12,... (5.6)

satisfies the Volterra-Fredholm integral equation

tb
Vi(2,t) = gr(2,1) +/ k(z,t,y, s)Vi(y, s) dyds,
0a

where gy, is given by the formula

tb
k(‘rvt) = // [kn(xatvya S) - k(m,t,y,s)} [Vk(yvs) - Vk—l(yvs)} dyds
0a
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By Remark 3 the solution of the above equation can be described in the form

tb
Vi, t) = oo t) + / / r(@t,y, $)gu(y, s) dyds,
0a

then
IVillzz, < llgwllzz, (14 N).

Hence we get the following estimates
lgllzs, < (IVillze, +1IVi-1llz2) Kn,  Villzs, < anllVi-illzz -
By the mathematical induction we obtain
IVillze, < it IVallLs,- (5.7)
The convergence of the method follows from Theorem 1, because
n—o0

||kn — /{3||Lz — 0.

We get the estimates a), b) by subtraction (5.1) and (5.2) and using (5.6).
Then

tb
fun(et) = )] = | [ [ bt Vi) dyds|
0a

From the Buniakowski-Schwarz inequality we obtain
lur —ullr < ClVillrz, [luk —ullrz < L||Villpe, -

By (5.7) we have estimates a) and b), respectively.

6. Numerical Experiments

In the presented method the corrections p} are determined from the system of
Volterra integral equations (5.5). In the collocation-iterative method (see [4])
the corrections have constant coeflicients calculated from an algebraic system.
The given tables contain relative errors § of the solution at points ¢; and x;:

ug (i, tj) — ulzi, t))
’U,(l‘i,tj)

5=

Here n + 1 means a number of basis functions and & is a number of iterations.
Fundamental Lagrange polynomials are used as basis functions.

Ezxample 1.

t1
tm tm T ST
—sn (Y e —gin (T T v n
u(x,t)—sm(2) [e 5111(2)} +//2€ cos( 5 )u(y,s)dyds7
0-1

n=5, k=10.
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Table 1. Relative errors for the first test function.

-1 -0,4 -0,2 0,2 0,4 1 z\t

0,428-1072 0,287-1072 0,192-1073 0,129-10~2 0,864-10~2 0,579-107% 0,1
0,933-1072 0,626-10~2 0,419-1072 0,281-10~2 0,188-1072 0,126-10"2 0,2
0,154-10~1 0,103-10~! 0,690-10~2 0,463-10~2 0,310-10~2 0,208-1072 0,3
0,280-107* 0,148-10~ 0,989-1072 0,663-10"2 0,444-1072 0,298-102 0,4
0,311-107' 0,188-10~! 0,126-10~* 0,846-10~2 0,567-10~2 0,380-10"2 0,5
0,280-10~1 0,208-10~! 0,139-10~! 0,936-10~2 0,628-10~2 0,421-1072 0,6
0,182.10* 0,188-10~! 0,125-10~* 0,843-1072 0,565-102 0,379-1072 0,7
0,672-1071 0,122-10~! 0,819-1072 0,549-10~2 0,368-10~2 0,247-1072 0,8
0,153-1072 0,451-10~2 0,302-10~2 0,202-1072 0,136-102 0,910-1072 0,9
0,234-1072 0,103-10~* 0,688-1073 0,461-10° 0,309-10~3 0,207-10% 1

Ezxample 2.

t1
2
u(z,t) = 2? (et — gtg) +/ z*t?eu(y, s) dyds,
0-1
n=>5, k="17.

1. The new method

Table 2. Relative errors for the new method.

-1 -0,4 -0,2 0,2 0,4 1 z\t

0,109-1072% 0,109-10~25 0,109-102% 0,109-10~2° 0,109-10~2° 0,109-107%° 0,1
0,413-1072° 0,413-1072° 0,413-1072° 0,413-1072° 0,413-10~2° 0,413-1072° 0,2
0,146-107** 0,146-10~'* 0,146-10~** 0,146-10~* 0,146:10~'* 0,146-10"** 0,3
0,743-107*! 0,743-10~ 1 0,743-10~'! 0,743-107*! 0,743-10~ ! 0,743-107'! 0,4
0,129-107° 0,129-10° 0,129-10~° 0,129-107° 0,129-107° 0,129-10~° 0,5
0,112-107% 0,112:107% 0,112-10°® 0,112-107% 0,112:107% 0,112-107® 0,6
0,609-10~% 0,609-10~% 0,609-10~% 0,609-10~% 0,609-10~% 0,609-10~% 0,7
0,242-107% 0,242:107% 0,242-107% 0,242.107% 0,242.107% 0,242-107% 0,8
0,793-107° 0,793-107° 0,793-10~° 0,793-107° 0,793-107° 0,793-10~° 0,9
0,242:107% 0,242-1073 0,242-107% 0,242-:107% 0,242-1073 0,242-107% 1
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2. Collocation-iterative method [4]

Table 3. Relative errors for the collocation-iterative method.

7.

-1 -0,4 -0,2 0,2 0,4 1 z\t

0,221-107° 0,614-10~° 0,304-107° 0,221-10~° 0,614-107° 0,304-107° 0,1
0,361-10% 0,341-10~% 0,344-107® 0,361-10~% 0,341-10® 0,344.1078 0,2
0,137-1077 0,140-10~7 0,138-10~7 0,137-10" " 0,140-10~7 0,138-10"7 0,3
0,283-1077 0,280-10~7 0,273-10~7 0,283-10" " 0,280-10~7 0,273-10" 7 0,4
0,419-1077 0,419-10~7 0,437-10~7 0,419-10~7 0,419-10~7 0,437-10"7 0,5
0,538-1077 0,678-10~7 0,462-10~7 0,538-10" " 0,678-10~" 0,462-10"7 0,6
0,750-10~7 0,901-10~7 0,500-10~7 0,750-10~7 0,901-10~7 0,500-10~7 0,7
0,152-107% 0,136-10~°® 0,164-107° 0,152-107¢ 0,136-107° 0,164-107° 0,8
0,171-1075 0,428-10~° 0,600-107° 0,171-10° 0,428-107° 0,600-107° 0,9
0,291-10~° 0,164-107° 0,165-107° 0,291-10~° 0,164-107° 0,165-107° 1

Conclusions

The main result of this paper is an analysis of the new numerical method for
general class of integral equations in space-time. Some problems of electrical
engineering are reducible to such type of equations. Sketch of the proof for the
convergence of the presented method is given and estimates of an error are
established. This theory is illustrated by two numerical examples and their
comparison is made by computational results. Second example gives better
results for the presented method than the method studied in [4].
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Matematinis modeliavimas elektros inZinerijoje
L. Hacia

Daugelio elektros inZinerijos problemy sprendimui tenka sudaryti matematinius
modelius, kurie daZniausiai buna apraSomi skirtuminémis, diferencialinémis ar in-
tegralinémis lygtimis. Siame darbe apzvelgiami kai kurie modeliai, skirti konkre¢iy
elektros inZinerijos uzdaviniy sprendimui. Apsiribojama silumos perdavimo proceso
su spinduliuote modeliavimu ir tankio pasiskirstymo teorija (Fredholmo integralinés
lygtys).Ivedus laika, lygtys tankiui tampa integr-diferencialinémis arba Volteros-
Fredholmo integralinémis lygtimis. Darbe pateikiamas ir nagrinéjamas naujas skai-
tinis tokiy lyg€iy sprendimo metodas.



