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Abstract. We present the explicit non-recursive formulas for the Taylor series
expansion coefficients for the functions S, (t) defined as solutions of the Emden —
Fowler type equations =/ = —nz>"~! with the initial conditions z(0) = 0, z’(0) = 1,
where n = 1,2, ...
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1. Introduction

In this note we give the expressions of the Taylor series expansion coefficients
for the lemniscatic sine function and similar ones. The lemniscatic function

slt can be defined as )
ds
t:/7, y =slt (1.1)
1 _ 54
J vV s

\/5_57, and then extended to entire R in a
sin-like manner. The integral in (1.1) appears in the theory of the lemniscate

curve given by (22 +y?)? = 22 —y?. The alternative way to define the function

slt is to consider the nonlinear Cauchy problem

1
on the interval [0, A], where A = [
0

" = —22%, 2(0)=0, 2/(0) = 1.
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It is known ([9][§ 22.8]) that the lemniscatic sine function slt can be expressed
in terms of the Jacobian elliptic functions ([1][Ch. 16]) as

S
Slt—k‘obd< ko) Zkod

or

slt =sn(t;i), i=+v-1.

As far as we know there are no formulas for the general term of the Taylor
series expansion for the Jacobian elliptic functions. In seventieth of the XX-
th century Schett in [6], [8] and [7] provided the recurrent formulas for the
Taylor series expansion coeflicients of the Jacobian elliptic functions. Dumont
in [2] has interpreted these results from combinatorial point of view. Myung
in [4] considered Schett’s functions X,Y, Z and provided some recursive for-
mulas using the algebraical approach. Wrigge in [10] considered the integral
definition of sn(¢; k), namely

sn(t;k) ds
t= .
/0 S o)1)

Expanding the integrand and then integrating we get that

sn2”+1(t k) E o1
- n ’ h n nP
t= ZOQ 1 where Cy, (k) =k < 2k)

and P,(s) is the n-th Legendre polynomial. Using Biirmann—Lagrange’s in-
version formula [1], one obtains the Taylor series expansion

oo t2n+1
sn(t; k) = = 02n+1(k),
— (2n+1)!
where
d2n 1 2n-+1 2m
a1 (k) = ld 52n (W) o Z Com (K 2m +1°

The author discusses then the computational complexity of this method and
provides the “more practical” recurrence formulas for the Taylor series co-
efficients of sn(t; k) and sn?(¢; k). The first nine nontrivial coefficients were
computed. In the work [11] the expansions of sn(¢; k) and sn?(t; k) were con-
sidered in powers of the modulus k. Closed expressions for the first nontrivial
coefficients were obtained.

In this paper we obtain the formulas for the Taylor series coefficients for
the function sl¢ and similar functions S, (¢) using the same approach. The
functions are defined as solutions of the initial value problems
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2" = —na®71 2(0)=0, 2/(0)=1,

where n =1,2,.... First we consider the function ¢t = t(y) defined by (1.1) or
similar integral relations. Then we expand this function at zero point using
the binomial formula. The coefficients for the Taylor series for sl¢ (and S, (¢))
are obtained by inversion of those in the Taylor series expansion for ¢t = t(y).
For this, we use the recent formula by Zabreiko - Lysenko [12].

2. Main result

Theorem 1. The nontrivial coefficients of the Taylor series expansion for the
o0
function Sp(t) = > Spmt™ are given by S,1 =1 and

m=0

k
1 —2k+ Z ﬂ]‘
Sn2nk+1 = k1 Z (=2) =
1814 +kBr=k

ﬁ (2] 1)

Jj=1

X (Vvﬁla 76k;2nk) k
T1nj + 1%

, (2.1)

where k =1,2,... and

(V;ﬂla cee 761@7 2nk) =

(B + B2+ + Br + 2nk)! (2j—1>_(2j—1)!
BilBal - Bl (2nk)! j-1) G-

Proof. Let F,,(z) be the inverse function of S, (¢). Thus

2nk+1

x) = O/\/% = kZ:OFn,gnka
in some neighbourhood of zero, where
F2M00)  @k-1t 1

(2nk + 1)! 2K 2nk+1
(2k—1)N=1-3.5--(2k—1) (k=0,1,2,...), (-1 =1;
2k =2-4-6---2n (k=0,1,2,...), Ol=1.

(k=0,1,2,...); (2.2)

Fn,2nk+1 -

Let us consider y = f(x) and let = g(y) be an inverse function. It was
shown in the recent article of Zabreiko and Lysenko [12] that the Ostrowski’s
formula [5] for the m-th derivative of an inverse function can be written as

m ot da 2a —|——|—mozm'
o= Y (e 22 )

(22 . .. | 1om
Lot (D)1 ! (2N -, !(m))

<@ (o)™ (@)
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where y = f(z), f'(z) # 0. We will refer to this formula as the OZL-formula.
Let g = S, and f = F,,. Notice that F,,’(0) = 1. It appears that

0o
= § Sn,mtmv
m=0

where S, 0 =0, S,1 =1 and

m > jaj |!

S = ! 1J§2aj <‘_ ' 2

nm = > (=1) 7 I1 ( )
lag++(m—1)am=m—1 IT a;t(jhes =2

where m =2,3,... 1

Proposition 1. Since the nontrivial Taylor series expansion coefficients of
the function F,, are F,, 1, Fp, onky1 (K =1,2,...), the nontrivial Taylor series
expansion coefficients of the function S, are Sp 1, Sponkt1 (k=1,2,...).

o0
Therefore S,,(t) = Y. Sponk+1t2™**1 and we use in OZL-formula only
k=0
those sums, which satisfy

k k

Z 2nj)aon;y1 = 2nk or Z]ﬂj =k, where fBx = agni+1 (k=1,2,...).

j=1 j=1
Then

> A
1 j
Sn,2nk+1 S ) (_1)j=1
(2 k+ ) 181+-+kBr=k
k
221(2n] +1)8; |! . N
y kjf H( 72nj+1 ) J,
T A51((2n + 1)) 51
j=1
or
1 Xk: B; b 3
S’n72nk+l I — Z (_1)]:1 (V7 ﬂla oo 7/8/€7 2nk) H Fn]2n3+17
2nk + 1 ,
181+ +kBr=Fk j=1 ( )
2.3

where

k k k k
S @nj+1)8;=2n) B+ Bi=2nk+> B
j=1 j=1 j=1 j=1
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<2nk + zk: ﬂj>'
s Br, 2nk) e

(2nk)! ] 5
j=1

(V7617

is a permutation with repetitions (cf. [1]) formula. If follows from (2.2) that

(25 — D! 1 >5ﬂ'

k
3
F :
Jl;[ m2nj+l H( 2NN 2nj+1

j=1

One obtains that

i ((2]'—1)!!(2]‘—2)!!) i ﬁ(y_gl—'; 1)&

k
(27 — 1) .
j:l_[l J:l_Il (25 —2)!! i
! <(2J - 1)‘)
= 2 j=1 s
JHl (=1t
ﬁ (2] 1)
k k 72k+zkj B i
I (@i =2 TG0 T8 25" 2
=1 7=1 7=1 H (2nj + 1)%
B (2.4)

where (2*~') (k= 1,2,...) are binomial coefficients (cf. [1]).
Notice that
S B, 2kt S B 2kt 3 B
(_1);::16] B +jz::1 P )7 +jz::1 ﬁ;. (2.5)

) follows from (2.3), (2.

The formula (2.1 4) and (2.5).
Corollary 1. The function S;(t) coincides with the elementary sint with the
well known nontrivial coeflicients of the Taylor series expansion at ¢t = 0:

S _ =
1,2k+1 = m

Using (2.1) one obtains the set of identities:

&
—2k+ 3 B

o (2 ST (ViBu B 2k)

181+ +kBy=k
Jj=1

where £ =1,2,...
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Corollary 2. The function S3(t) coincides with the lemniscatic sine slt [3],
which can be expressed through the Jacobian elliptic functions. Hence the
nontrivial coefficients of the Taylor series expansion at ¢ = 0 for the lemniscatic
sine are given by S>; =1 and

k
1 —2k+ 3 B
= — p— j=1
S2,ak+1 Tl dooo(-2)
181+ kBu=k
k
2j—1\5j
1:[1 (jjfl )
X(V;ﬂ17"'76k54k) jk_ (k:172’ )
(45 +1)Pi
j=1

3. Verification
3.1. Function sint

oo
Consider sint = 1+ Y sor+ 1121, The values of sar 41 (kK = 1,2, ...) obtained
k=1

by computation using the formula (2.1) (for n = 1) are
(=D*

= —— k=1,2,...).

et = rypp b2

3.2. Function slt

o0

Consider slt = Y sqy1t**+1. The first nontrivial coefficients of the Taylor
k=0

series expansion for the function slt¢ at ¢ = 0 given by the MAPLE program

are:

1 1 11

s1 =1, =710 %~ 20" 3~ 15600’
o 607

177 35360007 "1 T 318240000

As far as we know, the MAPLE program does not have explicit formulas for
the Taylor coefficients of the Jacobian elliptic functions and calculates the
series by repeatedly differentiating and evaluating at 0 (or whichever value
we’re expanding around). Of course it knows formulas for derivatives of the
Jacobian elliptic functions.

The values of the coefficients sqx+1 (K = 1,2,...) above coincide with
those obtained by computation using the formula (2.1) for n = 2. Denote for
brevity:
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—2k+2k: Bj
A(ﬁ):(_2) =t ) B(ﬁ) :(V;/Bla"'7ﬂka4k)7
koo 1\ k
cw>=H(?_1) , D) = [+ 1.
=1\ j=1
3.2.1. k=1
1-6=1
B AB) B(B) C(B) D(B)
1 -3 5 1 5
1 1 1 1
85284»1+1=g (—5) b) AT,
3.22. k=2

171 1 1 31 1
%0 = st 9[4 g 25+( 8) ) 9] 120

3.23. k=3

1-81+2-024+3-63=3.

O B2 B3 AB) B(B) C(B) D)
3 0 0 —% 455 1 125
0 0 1 —-%& 13 10 13
1 10 & 182 3 45

B —1[14551+ 1) g, 10
513 = 84341 = 15| \ 7R 125 32 13

1 3}_ 11
16 45

15600
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3.24. k=4
1-814+2-6o+3-03+4-064=4.

B B2 Bz Bs A(B) B(B) C(B) D(B)

~—

4 0 0 0 = 4845 1 625
0 0 0 1 - 17 3 17
2 1 0 0 —3 2907 3 225
1 0 1 0 & 306 10 65
0 2 0 0 & 153 9 81
171 1 1 3 1 3
= S4. = —|— . 4845 — — — .17 . — — —. 2 R
ST A 17[16 555 T1es 17 a2 20T s
1 10 1 9 211
— 306 — + —-153- —| = :
51 65 o1 81) 3536000

3.25. k=5
L-f1+2-P2+3-Ps+4-04+5-05=5.

Bi B2 Bs Ba Bs A(B) B(B) C(B) D(B)

5 0 0 0 0 —1/3253130 1 3125
3 1 0 0 0 1/64 42504 3 1125
2 0 1 0 0 —1/128 5313 10 325
1 0 0 1 0 1/256 462 35 85
0 1 1 0 0 1/256 462 30 117
0 0 0 0 1 —1/512 21 126 21
1 2 0 0 0 —1/128 5313 9 405
17 1 11 3 1 10
= S4riq =— |—— -53130 —— + — - 42504 ——— — — .5313. —
%21 Sb+l Toy [ 53 3130 gi9s T a0 s T 1as P13 5gp
1 35 1 30 1 126
4622 462 S 91
" 256 85 " 256 117 512 21
1 9 1607
S T N ) [
+< 128) 405] 318240000
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4. Conclusions

In this article we study the functions S, (¢) defined as solutions of the following
Cauchy problem

.73” — _nxQn—l

z(0)=0, 2/(0)=1

and their Taylor series expansions around the point ¢ = 0. For n = 1 one
obtains the sint¢ function, the case n = 2 refers to the lemniscatic sine func-
tion slt. Integrating the differential equation and making use of the initial
conditions one gets the integral representation

v du

¢ /O Vet S (t).
The function under the integral can be expanded in a Taylor series with respect
to u and then integrated. Thus the Taylor series expansion for the function
F,(x), which is defined as an inverse to S,,(t), can be obtained. We were able
to compute the coeflicients of the Taylor series expansion around zero of the
functions S, () (n = 1,2,...) making use of the Ostrowski-Zabreiko—Lysenko
formula [12] for the higher derivatives of an inverse function. This formula is
stated as the main result of the article in Theorem 1. Manual computation
of the coefficients up to the 21-st term in the Taylor series expansion of the
lemniscatic sine function slt was carried out.
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Emdeno-Flauerio tipo lygé¢iu sprendiniy déstiniy Teiloro eilutémis koefi-
cientai

A. Gritsans, F. Sadyrbaev

Pateikiamos vadinamos Emdeno-Faulerio lygties =’/ = —nz?"~! pradinio uzdavinio

z(0) = 0, 2'(0) = 1,(n = 1,2,...) sprendiniy S, (t) Teiloro eilute koeficienty
igreikstinés formulés. Jos yra nerekursyviné.



