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Abstract. A Fedorenko Finite Superelements Method (FSEM) for 3D linear elas-
ticity problems is considered. We present special weak statement for traces of orig-
inal problem solution which natural Bubnov-Galerkin approximation leads to the
FSEM. Some applications of the FSEM for the problems of mechanics of composites
are considered and results of numerical experiments are presented.
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1. Introduction

In this work we discuss some applications of a Fedorenko Finite Superelements
Method (FSEM) for 3D linear elasticity problems. We consider a simple case
of isotropic inhomogeneous linear model for continuous media.

FSEM has been proposed in works of Fedorenko (see [8]) as a numerical
approach for solving problems which solutions have local sharp singularities
concentrated in relatively small subdomains of original computational domain.

In this work we generalize the approach which was used previously in [11,
12, 13, 14] for linear elasticity problems. All works share the same theoretical
background for construction of FSEM approximations. As examples of applied
problems we consider some problems of mechanics of a composite media. Let
us note that simulation of displacement field of an composite media were
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performed in original works of Fedorenko ([17]). Nevertheless, only qualitative
analysis of the numerical method and results of simulation were presented.
In this work we present some results on quantitative comparison between
numerical results which were obtained and analytical and experimental models
of behaviour of composite media.

We would like to thank Prof. Kuvyrkin for his suggestions and attention
to this work.

2. Problem Statement

Our goal is to find displacement, stress and strain field in a bounded domain
£2 € R? with some displacements and forces applied at boundary 042 of 2.
We use the following model for a linear elastic media:

Uij,j + fz = 0, (21)
0ij = 2peij + Aeprdig,
€ij(u) = 1/2 (uij + i), (2.2)

where 0A/0z; = A ; for some A = A(z;). Also we will use the following
operator form of (2.1):
dive + f = 0.

Here 0 = 0;; is an elastic stress tensor, € = ¢;; is a strain tensor, f is some
forcing, A = A(x;), p = p(z;) are Lame coefficients, I = d;; is the identity
tensor.

At the boundary I' = 02 the following boundary conditions are defined:
ulr, =ug on Iy, ~yoln, = fyonly; I'=I,Ul,,

where v = {v;} is outwards normal to I.

3. Classical Weak Statement
Further we will use the following Green’s formula ([18]):

(0,€e(u)) + (divo,u) = (y,0,vu), (3.1)

where

(E,n):/éndﬁ, <§ﬂ7>:/§ndf-
(%}

o8

Here &1 is a dot product in some Euclidean space X. In our case either X = R3
and then

&n = &ini,

or X = Fj3 is a space of symmetric tensors of rank 3, and then

&n = &jnij,



FSEM for Elasticity Problems 239

Y0 = ov|gn are normal stresses at 02, you = u|sq is displacement field at
the boundary.

Formula (3.1) is valid for any sufficiently smooth displacement field u,
linear dependency e(u) of the form (2.2) and arbitrary dependency o(e).

Let V be a space of sufficiently smooth vector fields in {2, and V; 4 consists
of such elements in V' which vanish at 7.

Using Green’s formula the following weak statement can be obtained: find
displacement field uw € V', such that

(O’(U), 6(’1))) = (f,’l)) + <fg”70U>Fn’ Vv € VO,gﬂ U|Fg = Ug. (3-2)
4. Weak Statement for Traces

According to FSEM a computational domain should be decomposed into a
number of subdomains, so called superelements (SE). Then all unknowns are
considered only at SE boundaries. To eliminate any unknowns defined inside
SE Poincaré-Steklov (P.-S.) operator is used.

Poincaré-Steklov operator is defined as follows:

Py =v,0(Gp)log,

where G is the Green operator. Green’s operator maps an arbitrary field ¢
defined at the boundary of domain to a field u defined in whole domain, here
u is a solution of problem (3.2) with ¢ as boundary condition and f = 0.

P.-S. operator maps some function defined on SE boundary to another
function defined on the same boundary. For any ¢, Py is a normal stress at
the SE boundary caused by boundary displacement field ¢, i.e. P.-S. operator
maps Dirichlet BCs into the equivalent Neumann ones.

Given Green’s formula and definition of P.-S. operator we obtain the equal-
ity

(0(Gyp), €(v)) = (P, v0v), (4.1)

which is valid for arbitrary sufficiently smooth field v. This formula can be used
for numerical computation of values of P.-S. operators in an implementation
of this method.

Now we will construct a weak statement of the problem. The Bubnov-
Galerkin approximation of this problem leads to FSEM. Just for simplicity
we consider only homogeneous problem, i.e. the case f = 0. Generalization to
the case f # 0 is straightforward.

Let (2 be superelements, 2 = Uf2, I, = 02 be a boundary of 2, and
I" = 012 be a boundary of 2. Let Py, Gy, Yo, be P, G, o operators for some
superelements (2. For arbitrary v defined in {2 we use notation vy = v|g, .
For any sufficiently smooth field w € V' denote by ¢ a restriction of this field
on Fk, i.e. Pk = ’w|pk.

In every SE (2 let us consider the field w, which is defined as
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wlnk = Grpk.

Suppose that @ is sufficiently smooth, i.e. @ € V. By definition @ is smooth
at an interface boundary between two arbitrary SEs.

Moreover, w is an exact solution of the problem under consideration in
every separate SE (2. Nevertheless @ is not a solution of this problem in
whole domain (2. Field w will be a solution if it satisfies equation (3.2).

Substituting @ in (3.2) and taking into account that @], = Gr¢k we obtain

(o(@), e(v))) = D (o(@k), e(vr)

k
= Z<%,k0(71’k),70,kvk>k - Z(di?f o (W), Vi)
k k
= (Prpr, Y0506k — Y _(div o (Grpr), v
p !

= (Pepr v0k0k0k = (fg:%00) 1, Y0 € Vog.
k

In order to be a solution the field w should satisfy the following equation
> Pk, Yorvi)k = (fg: 0001, Vo € Vo
k

Taking into account that the equation above consists of quantities defined
only at SE boundaries we can write problem in the following form: find ¢ € Vp,
such that

Z(Pk@kawk>k = (fg.V)r, YV €Vro; ¢lr, = ug, (4.2)
%

where
Vr={p={pvr}: @r=w|r,, for somew eV},
Vro={e={er}: ¢r=uw|n, for some we V,}.

Here ¢ € Vp is a set of functions ¢y, every of which is defined at I. If Vi, is
a space of functions defined at I, and which are traces of function from Vj,
then ¢ € [[ Vi, VP C [] Vk- Also we have by definition that

orlrn = wilrg, T =TrNI;.

Equation (4.2) is a weak condition of a static equilibrium of superelements.
Rewriting (4.2) and using new notation we obtain the following problem to
be solved for ¢:

"2 S VF : b((Pa d}) = F(¢)7 V¢ S VF,O; @'Fg = Ug, (43)
where b(-,-) and F(-) are given by

b(gD, 11/}) = Z<Pk§0k7’l/)k>ka F(/l/}) = <fga7/}>l“n 5071/) S VF'

k
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Thus we have reduce original problem (3.2) in the whole domain {2 to the prob-
lem (4.3) which is defined only at SE boundaries. Problem (4.3) has a form of a
variational equation. Theory of abstract variational equation is well developed as a
theoretical background of finite element approximations. This theory can be used to
obtain error estimates, but this is not a purpose of this work.

5. Finite Dimensional Problem

Finite superelement method can be considered as a projection method for solving
problem (4.3). Further we consider only Bubnov-Galerkin approximations, i.e. the
case when spaces of basis and trial functions are the same. More general Petrov-
Galerkin approximations can be considered in the same way.

In order to construct the approximation of the variational problem some finite di-
mensional space V-, € Vr, has to be defined. Let {(}, ; } be a set of basis functions,
such that

Virn = span gy, ;.
An approximate solution has the following form

©n = Z A;Ph,i
i

and it is a solution of the finite-dimensional problem

on €Vrn: blen,vn) =0, Yn € Vron: @nlrg = ug.
This problem can be considered as a system of linear algebraic equations for a;.

Solution of this problem can be performed in two steps. First we compute Pyy, ;
for every i in each SE (2. This can be done by solving problem (3.2) in every (2;, and
taking ¢y, ; as boundary conditions. Finite difference or finite element approxima-
tions can be used. All these problems can be solved independently so parallelization
of FSEM is quite straightforward.

The second step is to compute SE stiffness matrices and assemble a full stiffness
matrix. To compute stiffness matrices of SE the definition of P.-S. operators can be
used but it is more convenient to use equation (4.1) instead. In this case we avoid
numerical differentiation of Green’s operator.

A solution of the variational discrete problem in the whole domain (2 then is
given by

un =Y a;Gpn .

Let us note that there is no need to compute functions Gy, ; at this step. It has
been already done during procedure of computing P.-S. operators at the step one.

In general FSEM computational procedure follows FEM one. The only difference
is that one have to precompute SE basis function before applying stiffness matrix
assembling procedure.

In this work we use 2D bilinear approximations at the SE boundaries. All SEs are
brick-shaped and every face is considered as a cell of 2D boundary mesh. In general
case one can use standard 2D approaches and finite elements to construct the mesh
of boundary finite elements.



242 M. Galanin, E. Savenkov, Yu. Temis

6. Numerical S mulation

In this section we apply computational approach described above for simulation of
displacement, stress and strain fields in a composite media reinforced with short
fibers. We are interested to compute averaged elastic properties of composite as well
as to investigate its micromechanical behaviour.

Many approaches are known for calculation of effective properties of compos-
ites with given structure and elastic properties of its components. We can mention
asymptotic homogenization approach ([3]), numerous “fusion” ([4, 6, 7, 20]) and
micromechanical models ([1, 2, 5, 9, 16]) which are widely used in engineering
practice.

We use theoretical models with known effective composite properties from [4, 6,
7, 20] for validation of our computational results.

The method of cells can be used for simulation of the micromechanical behaviour
of a composite (see [10] and references therein). This approach is based on the analy-
sis of a repeating cell in a composite. In order to obtain stress/strain field or effective
properties of a media some model problems have to be solved in one cell of compos-
ite.

FSEM let us to perform direct numerical simulation of a composite media with a
large number of fibers without applying any homogenization procedure. As a result
of simulation we obtain detailed displacement/stress/strain field in a media as well
as media effective properties.

Let us point out that application of a conventional FEM method for this problem
is quite difficult because it leads to a computational problem of very large dimension.
To resolve all singularities of a solution one has to use very fine computational mesh
with about ~ 10° equations per one cell of a composite. If we want to obtain a good
quality solution in a computational domain with several inclusions, then we have to
solve a computational problem, which consists of ~ 105 — 107 equations and such a
problem is unacceptably large.

Following FSEM procedure we decompose computational domain into a num-
ber of subdomains — superelements. Every such SE describes one cell of a composite
and contains one inclusion (fiber). In general case all SEs (and corresponding fiber)
are different i.e. they can have different geometry and elastic properties. In this work
all SEs are cubes, fibers have spherical or brick-shaped geometry. Elastic properties
of matrix and fiber don’t change from one SE to other. Every inclusion is contained
inside one SE. In this case solution of a problem is smooth at the interfaces be-
tween different SE, so simple bilinear interpolation at SEs boundaries can be used.
To resolve all singularities of a solution in a particular SE (i.e. at the matrix-fiber
interface) a fine adaptive FE mesh is introduced in every SE. These FE meshes are
defined independently in every SE.

In the rest of this paper we consider some numerical results concerning deter-
mination of effective media properties and direct simulation of behaviour of some
particular composite medias. Obtained results are compared with some theoretical
and experimental estimates.

To determine effective elastic properties we use the following procedure. At the
boundary of the computational domain we define boundary conditions which, in a
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case of homogeneous and isotropic media, leads to uniaxis stress/strain state. Then
effective properties can be calculated via comparison of a simulated solution for
composite media and explicit solution of this problem for homogeneous and isotropic
media. More detailed explanation is presented in [15].

In all simulations the computational domain contains from 125 to 3375 superele-
ments (from 5 x 5 x 5t0 15 x 15 x 15 superelement cells).

The first case we consider is the composite media which consists of a humber
of SEs of the same type, i.e. all SE are cubes, fibers are either cubes or spheres of
the same size, geometry, orientation and elastic properties. The only parameter we
change is fiber volume ratio.

On Fig. 1a the experimental and simulated values of Young modulii are presented
as well as some theoretical estimates. Experimental values are denoted as a diamond
marker, simulated ones as circles. We use experimental values from [19]. Elastic
modulii are the following

Em =10, pm =029, Ef =341, py=0.22.

It can be seen that simulated values are in a good agreement with the experimental
ones. On this figure some analytical estimates are presented too (Foight-Reissner,
Hashin-Shtricman estimates and estimates obtained by Kuvyrkin, ([4, 6, 7, 20]). In
this simulation all fibers are cubes of the same size.

Cubical fibre, E=E(p) Spherical fibre, E=E(p)

—©- Numerical estimates —©- Numerical estimates
Foight-Reissner P Foight-Reissner
y 18F
— - Hashin-Shtrikman 7 — - Hashin-Shtrikman

—- Kuvyrkin 170 —- Kuvyrkin

Experiment 7
< periment g el

05 L L L L L L L L L , 0.9
0

Figure 1. Experimental and simulated Young modulii: a) all SE are cubes, b) composite with
Al matrix and spherical SiC fibers.

On Fig. 1b the same dependency is presented for the case of a composite with Al
matrix and spherical SiC fibers. Elastic properties of matrix and fiber are given as

Ep =1, fiy = 0.33, Ef = 6.5, iy = 0.33.

On Fig. 2a plots for the same case as on Fig. 1b are presented, but fibers are
cubes. In this case comparison with the experimental estimates wasn’t performed.



244 M. Galanin, E. Savenkov, Yu. Temis

Cubical fibre, E=E(p)

Numerical estimat
Foight-Reissner

6 ~ - Hashin-Shtrikman

— Kuvyrkin /S f

STRN"
1.30935

0.95245

0.595551

0.238651

0 01 02 03 04 05 06 07 08 09 1 Y
P

a) b)

Figure 2. a) Simulated values of Young modulii, cubic fibers (Al — SiC), b) strain field at
xz = 0.5.

Table 1. Theoretical estimates, p = 0.243.

Foight-Reissner Hashin-Shtricman Kuvyrkin
Emin 1.2588 1.4447 1.6393
Enmaz 2.3494 1.8751 1.8074
Hmin 0.2819 0.2915 0.2994
Hmaz 0.3262 0.3120 0.3108

The second case is composite media which consists of a number of SEs of dif-
ferent type, i.e. composite media reinforced with a brick-shaped fibers which have
different orientation in space. The lengths of the fiber’s edges are h1, ha, hs, h;||Ox;
and hy = ho = 3hs. Fiber can be oriented along one of the coordinate axis Ox;.
In this case we have SE of three types which are corresponded to three variants of
orientation of a fiber. Computational domain was randomly filled with these SEs.
Fiber volume ratio in this simulation is p = 0.243. Elastic properties of matrix and
fiber are £, = 1.0, pty, = 0.33, B¢ = 6.5, uy = 0.25. Simulated values of effective
elastic modulii in this case are the following:

E =1.8870, p=0.2662, (6.1)
and for cubic fibers (and the same volume ratio)
E.=1.6832, pu.=0.2796. (6.2)

It is interesting to compare this simulated values with theoretical estimates men-
tioned above (Tab. 1). It can be seen that in the case of cubic fibers the simulated
values are in good agreement with the theoretical boundaries. In this case the sim-
ulation is close to the assumptions under which theoretical estimates were obtained
(local isotropy and homogeneity of a composite media).
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Differences of the simulated values in (6.1) and (6.2) show the influence of mi-
crolevel anisotropy of a media on effective elastic properties.

We obtained the following values of the Young modulii in the case when all fibers
are oriented along one direction: E = 1.5408, u = 0.2424 (all fibers are oriented
along Oz), E = 2.0693, 1 = 0.2934 (all fibers are oriented along Ox or Oy).

In the simulations described above the computational domain was randomly
filled with SEs of different types so only one variant of random arrangement was
used. Now we present some results which show how simulated values of effective
properties depend on a way SE are arranged into a whole computational domain. We
consider computational domains with 5 x 5 x 5, 10 x 10 x 10, 15 x 15 x 15 superele-
ments. For every domain 10 random arrangements of SE were generated. Results
are presented in table Tab. 2. For every domain a mean value of Young modulii, the
Poisson coefficient and the maximum difference of particular and mean value for all
simulation for certain domain are shown.

Table 2. Mean values of elastic coefficients.

E AE 1 Ap
5x5x5 1.8946 0.031583 0.272 0.02852
10 x 10 x 10 1.8899 0.0093559 0.27736 0.018883
15 x 15 x 15 1.8883 0.0064842 0.27262 0.0099899

One can see that difference between particular and mean values decreases very
fast as a number of SE increases.

Finally we present a typical solution of the given applied problem. On Fig. 2b
a distribution of intensity of strain tensor in a computational domain is shown. This
picture corresponds to a slice of the computational domain with a plain x = 0.5.
Computational domain consists of eight SEs (2 x 2 x 2). Fibers are cubes of a different
size.

In all simulations SE basis functions were computed with conventional FE ap-
proach. We have used simple linear finite elements on a thetraedral mesh. To resolve
solution on the matrix-fiber interfaces adaptive meshes were used. The number of
nodes in such mesh was about ~ 10°.
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Baigtiniy superelementy metodas elastiSkumo uzdaviniams

M. Galanin, E. Savenkov, Yu. Temis

Straipsnyje nagrinéjamas Fedorenkos baigtiniy superelementy metodas trimaciams tiesiniams
elastiSkumo uZdaviniams. Pasi ulytas specialus silpnasis sprendinio pdsako formulavimas,
kuris jprasta Bubnovo-Galerkino aproksimacijg susieja su baigtiniy superelementy metodu.
Nagrinéjami kai kurie baigtiniy superelementy metodo taikymai kompozity mechanikos uz-
daviniams. Pateikti skaitinio eksperimento rezultatai.





