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Abstract. In this work we consider a template for implementation of parallel
branch and bound algorithms. The main aim of this package to ease implementa-
tion of covering and combinatorial optimization methods for global optimization.
Standard parts of global optimization algorithms are implemented in the package
and only method specific rules should be implemented by the user. The paralleliza-
tion part of the tool is described in details. Results of computational experiments
are presented and discussed.
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1. Introduction

This paper presents the template implementation of generalized branch and
bound (BB) algorithm analyzes the performance of parallel algorithms imple-
mented in the template.

Branch and bound algorithm is a popular method that can be applied for
a variety of optimization problems. It has a general logical structure and using
this feature a template programming can be applied.

The idea of the template programming is to implement general structure
of the algorithm that could be later used to solve different problems. All gen-
eral features of the algorithm and its interaction with the particular problem
must be implemented in the template. The particular features related to the
problem must be given by the template user. The user only has to identify
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the needed algorithm, choose the right template and implement problem de-
pendent parts. Templates eases programming, clears algorithm logic, allows
easy re-use of the implementation.

Template based programming can be very useful in parallel programming
[11, 20, 23]. Parallel algorithm template must fully or partially specify the
main parallel algorithm features: partitioning, communication, agglomeration
and mapping. The goal is to provide a technique for quick and reliable de-
velopment of parallel applications that employ frequently occurring parallel
structures [23]. From the user’s point of view, all or nearly all the coding
should be sequential; all the parallel aspects (or almost all) should be provided
by the tool. Often parallel programs are created by parallelizing the existing
sequential programs. Then parallel algorithm template can use features im-
plemented by the sequential algorithm template. If a sequential template was
used to create the sequential program, then there is no need to rewrite exist-
ing code to obtain parallel one. In this way, templates save time and efforts of
the users. On the other hand generalization of main parallel aspects of algo-
rithms may result in lower efficiency of the implementation. Some examples
of parallel templates of different algorithms are MST [21], Mallba [1], ARNIA
[20], CODE [23].

Unlike the data parallel applications optimization problems characterized
by an unpredictably varying unstructured search space [25]. It produces ad-
ditional difficulties for creation of parallel BB algorithms:

the change of space search order with respect to sequential one,
processor load disbalance,
costs of additional communications.

Developing a single parallel BB application these difficulties can be con-
trolled, but it is a real challenge to solve these problems in a template. Some
examples of BB parallelization tools are BOB [20] , PICO [7], PPBB [24],
PUBB [22].

The rest of the paper is organized as follows. In Section 2 sequential version
of the general branch and bound algorithm is described. In Section 3 parallel
branch and bound algorithms are discussed, some notes on their implementa-
tion are given and a general structure of the BB template is described. The
analysis of performance of different experiments are given in Section 4 Here
our main goal is to show that template programming allows us to test various
variants of parallel BB algorithms without additional programming efforts,
when the parallel template of BB algorithm is implemented. Section 5 gives
some conclusions.
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2. Parallel Branch and Bound for Combinatorial and
Global Optimization

2.1. Optimization

Many problems in engineering, physics, economic and other subjects may be
formulated as optimization problems, where the minimum value of an objec-
tive function should be found. Mathematically the problem is formulated as
follows

£ = min f(X). (2.1)

where f(X) is an objective function, X are decision variables, and D is a search
space. Besides of the minimum f*, one or all minimizers X* : f(X*) = f*
should be found.

Type of optimization is defined by the search space and the objective func-
tion of the problem. In combinatorial optimization search space is discrete. In
local optimization and global optimization the objective function is a nonlinear
function of continuous variables f : ®” — R, where n is number of variables,
and a continuous search space D C R” is called feasible region. Differently
from global optimization, local optimization is based on assumption that the
objective function is unimodal, in other words it has a single local minimum.

2.2. Generalized Branch and Bound Algorithm

Branch and bound is a technique used in combinatorial optimization and cov-
ering global optimization algorithms. Covering global optimization methods
can solve global optimization problems of some classes with guaranteed ac-
curacy. They detect the sub-regions not containing the global minimum and
discard them from further search. The partitioning of the sub-regions stops
when global minimizers are bracketed in small sub-regions guaranteeing the
prescribed accuracy. A lower bound (LB) for the objective function over the
sub-region may be used to indicate the sub-regions which can be discarded.
Some methods are based on lower bound constructed as convex envelope of an
objective function [8]. Lipschitz optimization is based on assumption that the
slope of an objective function is bounded [15, 16]. Interval methods estimate
the range of an objective function over a sub-region defined by a multidimen-
sional interval using interval arithmetic [14]. Branch and bound technique is
used for managing the list of sub-regions and the process of discarding and
partitioning. The general branch and bound algorithm is shown in Figure 1,

where L denote candidate set, S the solution, UB(D;) and LB(D;) denote
upper and lower bounds for minimum value of the objective function over
sub-space D;.

An iteration of the classical branch and bound algorithm processes a node
in the search tree representing a not yet explored sub-space of the search
space [4]. Tteration has three main components:
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Cover solution space D by L = {L;|D C|JL;,j =1, m} using covering rule.
S =0, UB(D) = oo.
while sub-space list is not empty L # () do
Choose I € L using selection rule, exclude I from L.
if LB(I) < UB(D) + ¢ then
Branch I into p subsets I; using branching rule.
for all I;,j7 =1,p do
Find UB(I; (D) and LB(I;) using bounding rules.
UB(D) = min(UB(D), UB(I; N\ D)).
if LB(I;) < UB(D) + € then
if I; is a leaf then S = I;.
else L = {L, I,}.
end if
end if
end for
end if

end while
Figure 1. General branch and bound algorithm.

1. Selection of the node to process.
2. Branching of the search tree by dividing the selected sub-space.
3. Bounding of the branches by discarding not promising sub-spaces.

Before the cycle of iterations the list of candidate sub-spaces should be ini-
tialized by covering search space by one or more sub-spaces. In combinatorial
optimization ‘leaf of search tree means that the node is a solution, in global
optimization it means that it is a small sub-region bracketing a solution with
predefined accuracy. The rules of covering, selection, branching and bounding
differ from algorithm to algorithm.

Covering and branching rules

The rules of covering and branching depend on type of partitions used. For ex-
ample, in global optimization partitions may be hyper-rectangular, simplicial,
hyper-conic or hyper-spherical. Partitions obtained with branch and bound
algorithms for global optimization differ from those used in combinatorial op-
timization in that the classes of partitions may overlap and the number of
possible partitions is infinite [15]. Usually feasible regions of general global
optimization problems are hyper-rectangles. All interval and most of Lips-
chitz global optimization branch and bound algorithms use hyper-rectangular
partitions. In this case initial covering is very simple: L = {D}. Covering by
hyper-spheres causes overcovering of feasible region as well as overlapping of
spheres themselves. Use of regular simplexes causes overcovering of feasible
region and a non-overlapping branching is not known in more than two di-
mensions. The use of irregular simplexes enables non-overcovering of feasible
region as well as non-overlapping branching.
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Selection strategies

Main strategies of selection are the following:

e Best first. Select a candidate with minimal lower bound. Candidate list
L can be implemented using heap or priority queue.

e Depth first. Select the youngest candidate. A node with the largest level
in the search tree is chosen for exploration. First-In-Last-Out structure is
used for candidate list which can be implemented using stack.

e Breadth first. Select the oldest candidate. First-In-First-Out structure
is used for candidate list which can be implemented using queue.

e Improved selection. It is based on heuristic [18, 5] or probabilistic [6]
criteria. Candidate list can be implemented using heap or priority queue.

Node selection strategies influence the efficiency of branch and bound algo-
rithm and the number of nodes kept in candidate list. For particular problems
some strategies can considerably improve the performance of the algorithm.

Bounding rules

The bounding rule describes how the bounds for minimum of the objective
function are found. For the upper bound for minimum over the search space
UB(D) the best currently found value of the objective function might be
accepted. In global optimization the lower bound for minimum of the objec-
tive function over sub-region LB(I) is the lower bound for values of objective
function over considered sub-region which can be estimated using convex en-
velopes, Lipschitz condition or interval arithmetic.

3. Parallel Branch and Bound Algorithms

Any parallel algorithm for a given problem attempts to divide it into sub-
problems which can be solved concurrently on different processors. Four main
steps are performed during development of a parallel algorithm [9]: partition-
ing, communication, agglomeration, mapping.

The aim of partitioning is to decompose the computations into sub-tasks.
Attention is focused on recognizing opportunities for parallel execution. Dur-
ing this step we should take into account that a larger number of sub-tasks
gives more possibilities to improve a load balancing among processors, but at
the same time it increases data communication costs.

Then communication required to coordinate task execution is determined.

In agglomeration step, if necessary, tasks are combined into larger tasks
to improve performance and to reduce development costs. This step is not
necessary for parallel BB algorithms described further.

Then each sub-task is mapped or assigned to a processor. During this step
we try to minimize the computation time 7T}, or, equivalently, to preserve a
good load balance among processors.

There are three main approaches to design parallel branch and bound
algorithms [10]:
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1. Parallelism of type 1 introduces parallelism performing the operations
on each separate sub-problem. It consists, for example, of executing the
bounding operation in parallel for each sub-problem to accelerate the exe-
cution or the value of the objective function may be computed in parallel.
Thus, this type of parallelism has no impact on the general structure of
branch and bound algorithm and depends essentially on the given partic-
ular problem.

2. Parallelism of type 2 consists of building branch and bound search tree
in parallel by performing operations on several sub-problems simultane-
ously. Hence, this type of parallelism may affect the execution and sub-
space search order of the algorithm. Algorithms may be synchronous or
asynchronous, to have single or multiple (distributed) lists of candidates.

3. Parallelism of type 3 implies that several branch and bound search trees
are built in parallel. The trees are characterized by different operations
(branching, bounding, testing for elimination, or selection), and the infor-
mation generated when building one tree can be used for the construction
of another tree.

3.1. Implementation of parallel branch and bound

Application of algorithms to solve practical problems crucially depends on
efficiency and reliability of algorithms implementing optimization methods.
Development of such algorithms is not trivial. However, branch and bound
algorithms have general scheme and differ only by rules of covering, selection,
branching and bounding. Parallel branch and bound algorithms for combina-
torial and global optimization possess many similarities and few differences
as discussed in [4]. We propose a template for development of sequential and
parallel branch and bound algorithms, where only particular rules should be
implemented.

Parallel aspects of algorithms of type 1 are strongly problem dependent.
Although the sequential part of branch and bound algorithm from the tem-
plate can be used to create the program, the user has to take care of all parallel
aspects at lower level operations like computing the objective function. Algo-
rithms of type 3 are parallel by their definition, but we will not consider this
type of parallelization in this paper.

Our aim is to develop parallel branch and bound algorithm template ori-
ented to type 2 parallel algorithms. They are based on domain decomposition
method and perform the same branch and bound steps over different sub-
spaces of the solution space. Due to such structure of the algorithm it can
be generalized for different problems and BB algorithms are suitable for tem-
plate programming. The domain decomposition is achieved by distribution of
candidate list.

We note that a full list of feasible search subspaces has unstructured and
non-deterministic structure, thus it is very difficult to distribute local sub-
problems among processors preserving the good load balance. In addition we
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should guarantee that the total costs of parallel BB algorithm are similar to
sequential costs.

Master — slave algorithm

Parallel BB algorithms of type 2 with a single list of candidates can be imple-
mented using Master — slave algorithm. At least two processes should execute
Master — slave algorithm, one process is called Master, others — Slaves. Mas-
ter process forms and controls the job pool, takes a job form the pool and
sends it to the idle Slave process. The Slave processes gets the job from the
Master process, calculates it and sends the result back to the Master. Then
Master process collects calculation results and adds them to the totals. End
of calculations is determined when there is no jobs in the job pool and all
slaves had finished their calculations. This algorithm has a strict structure
and a parallel template was created and used for parallelization of Master—
slave logic programs [2]. After writing a sequential Master — slave program
following some instructions given by the template, parallel program can be
obtained automatically.

For the BB algorithm the list of subspaces is considered as a job pool.
The Master process selects the subspace and sends it to the idle Slave process
to perform bounding and branching. After that Slave sends newly generated
subspaces to the master process together with the new upper bound UB(D),
if obtained. Master executes algorithm presented in Figure 2 and Slave’s al-
gorithm is presented in Figure 3.

Automatic parallelization of such algorithm can be obtained using Master
— slave algorithm template MST [2]. PUBB [22] , PICO [7] BB algorithm
templates have implementations of Master — slave algorithm.

3.2. Domain decomposition with distributed list of candidates

In this section we consider some static distribution methods, which are im-
plemented in our template tool.

A priori distribution of feasible search space

Considering a possible parallel execution of BB algorithm we note that any
subspace of the feasible search space can be searched independently and in any
order. Initial space is divided into several large subspaces that are mapped to
the processes and algorithm presented in Figure 1 is performed. The number
of subspaces coincides with the number of processors. Fine-grain subspaces
are generated from these initial subspaces dynamically during the calcula-
tion process performing branching step. There is no need to re-map subspaces
generated later. Communications are required for initial subspace distribu-
tion and final gathering of solution found. In this way a simple asynchronous
parallel BB algorithm with distributed job pool is obtained. We will call it
a parallel branch and bound algorithm with a static distribution of job pool
(SJP).
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Cover solution space D by L = {L;|D C|JL;,j =1, m} using covering rule.
S =0, UB(D)=ooc.
Create list of idle slave processes SL = {Si, k = 1,n}
for all SLy, k=1,n do
Choose I € L using selection rule, exclude I from L.
Select idle process Sk, exclude Sk from SL
Send I, UB(D) to the idle Slave process Sk
end for
while sub-space list is not empty L # () and not all Slave processes are idle
Receive { I;, LB(I;), UB(I;) }, j =1,...,J from Slave process Si
Insert slave Sy into the list of idle slave processes SL
for all I;,7 =1,J do
UB(D) = min(UB(D),UB(I; D)).
if LB(I;) < UB(D) + ¢ then
if I; is a leaf then S = I;.
else L = {L, I,}.
end if
end for
for all slaves Sy in SL do
if sub-space list is not empty L # ()
Choose I € L using selection rule, exclude I from L.
if LB(I) < UB(D) + € then
Exclude Sy, from SL
Send {I, UB(D)} to the slave process S
end if
end if
end for
end while
Send Finish signal to all slave processes

Figure 2. Master’s algorithm.

while signal Finish is not received do
Receive the { I, UB(D) } from Master
Branch [ into p subsets I; using branching rule.
for all I;,57 =1,p do
Find UB(I; (D) and LB(I;) using bounding rules.
if LB(I;) < UB(D) + € then
insert {I;, LB(I;), UB(I; (D)} to the message M
end for
Send message M to the Master process
end while

Figure 3. Slave’s algorithm.

Random distribution of the feasible search space

In order to achieve a better load distribution among processors the space of
feasible solutions is divided into M subspaces, where M is much larger than
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the number of processors. Then subspaces are distributed a priori among pro-
cessors in random order. We expect that each processor will get approximately
the same number of hard and easy sub-tasks. This algorithm will be called
RJP parallel branch and bound algorithm with a random distribution of job
pool.

A similar modification was used for parallel numerical integration algo-
rithms [3].

Ezxchange of the new local minimum objective function value

A subspace is eliminated from the further search by comparing the lower
bound of the subset with the upper bound. The best currently found value of
objective function can be used for the upper bound. In previously described
parallel algorithms processors know only values of objective function found in
the subspaces mapped to the particular process. In some situations this can
result in slower subspace elimination. Processors can share the best known
value. When such new value is found, the process broadcasts it to the other
processes. In order not to stop calculations, this exchange is performed asyn-
chronous. These modifications of the BB algorithm will be called SJP SE and
RJP SE, depending on the rule to distribute the initial job pool.

3.3. Complexity of parallel optimization algorithms

Parallel optimization algorithms have unpredictably varying unstructured
search space [25]. It should be noted that because of the domain decomposi-
tion the order of search can differ for parallel and sequential branch and bound
algorithm even using the same subset selection rule. Sub-spaces eliminated in
the sequential algorithm can be explored in parallel one, and it is possible
that a total number of the sub-spaces searched in the parallel algorithm can
be large.

Let us define the number of nodes in the generated search tree as a unit
to measure the complexity of branch and bound algorithm. Then the growth
of number of sub-spaces searched using parallel algorithm can be measured
by the search overhead factor

Wy
SOF = Wo
where W), is the sum of processed sub-spaces in parallel algorithm, and W is
the sum of tasks processed by the sequential algorithm. This coefficient helps
to estimate efficiency of the parallel algorithms [12].

3.4. Structure of branch and bound algorithm template

The parallel branch and bound algorithm template proposes C++ classes for
implementation of the branch and bound algorithm. A problem to be solved
and the solution of the problem should be described by the user. MPI library
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BBParallel

BBSequential

BestFirstSearch

LastFirstSearch ‘

BBAlgorithm :ﬁ JobQueue

BreadthFirstSearch

Task K=>  Solution

f i

TaskSequential ’ SolutionSequential

T T

’ TaskParallel ‘ ’ SolutionParallel ‘

Figure 4. General structure or the template.

is used for underlying communications. General structure of the template is
given in Figure 4.

BBAlgorithm implements various sequential and parallel BB algorithms.
The algorithm is performed using Task, Solution and JobQueue instances.
BBAlgorithm is implemented by the template.

JobQueue defines the strategies how to select next task from the list of
tasks for subsequent partitioning. The most popular strategies are already
implemented as methods and they are ready for application. The user can
implement his/her own specific rules, in this case he/she should define methods
Insert, Delete, QueueSize, QueueEmpty.

Class Task defines the problem to be solved. It should implement the
basic BB algorithm methods: Initialize, Branch, Bound. Some often used
Branch methods for hyper-rectangular, hyper-conic, hyper-spherical or irregu-
lar simplex could be implemented in the template. Standard Bound calculation
methods such as for Lipschitz functions could be included in the template as
well. Method Ready is used to check the accuracy for global optimization or
the ’leaf condition for combinatorial optimization problems.

Class Solution implements the solution to be found.

Parallel methods Task and Solution additionally have methods Pack and
Unpack that define how to prepare a task and solution in order to exchange
information between processors.
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4. Experiments

4.1. Experimental investigation of heap and priority queue

Implementation of the list of candidates is one of important factors of perfor-
mance of branch and bound algorithms. Implementation of stack and queue for
‘depth first” and ‘breadth first’ selection is trivial. Time of insertion and dele-
tion of element to/form such type of structure does not depend on number of
elements in the list. However the list of candidates for ‘best first’ and ‘improved
selection’ requires selection of candidate with the smallest value of criterion.
Priority queue is often used for this purpose, for example in PROFIL V 2.0 [17]
implementation of the global unconstrained minimization method involving a
combination of local search, branch and bound technique and interval arith-
metic, and in CToolbox (C++ toolbox for verified computing) [13] which
is a library for problem-solving routines covering one-dimensional and multi-
dimensional problems: accurate evaluation of polynomials, automatic differen-
tiation, linear and nonlinear systems of equations, linear optimization, global
optimization, and zeros of complex polynomials.

Although time of selection and deletion of element from the priority queue
does not depend on the number of elements in the list, the worst case inser-
tion time linearly depends on the number of elements. Because of this priority
queue implementation can be usable only for solving small example prob-
lems where the largest number of candidates in the list is small. For most of
optimization problems the list of candidates grows rapidly and insertion of
elements to the list of candidates can take even more time than calculation
of bounds which is supposed to be the most time consuming part of branch
and bound algorithms. ‘Depth first’ and ‘breadth first’ selection strategies can
perform better than other selection strategies because of efficient implemen-
tation of the list of candidates, but not because the number of investigated
nodes is smaller. Parallel branch and bound with priority queue implemen-
tation of the list of candidates can have better speedup because of reduced
time of insertion after distribution of the list of candidates, but not because
of excellent load balancing.

Some of the mentioned problems can be at least partly avoided by using
heap structure, which is a complete binary tree where each node has larger
value of criterion than its parent. Heap and priority queue are implemented in
the proposed template. To compare performance of heap and priority queue,
lists of different sizes have been constructed inserting elements with random
keys. The sum times of construction (insertion of elements) and use (selec-
tion/deletion of elements) for different sizes of lists have been measured and
are shown in Figure 5. The figure shows that priority queue and 100 times
larger heap have similar construction and deletion time. This strongly sug-
gests use of heap structure for implementation of the list of candidates for
‘best first’ and ‘improved selection’. Heap was used for best first in presented
experiment results.
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Figure 5. Comparison of performance of heap and priority queue when inserting
elements with random keys.

4.2. Experiment results

In this section we present results of computational experiments which demon-
strate the performance of our tool. We solve Lipschitz function minimization
and symmetric traveling salesman problems. Our main goal was to test the
ability of the tool to generate automatically parallel BB algorithms subject
to different selection rules and task distribution strategies.

Calculation experiments were performed on up to 15 nodes of Vilnius Ged-
iminas Technical university computer cluster Vilkas (www.vilkas.vtu.lt) and up
to 256 nodes of IDRIS supercomputer (www.idris.fr). Results are analyzed cal-
culating speedup, efficiency of parallel execution [9] and SOF. The aim of the
experiments was to test the usage of the template solving different problems
and the performance and scalability of implemented algorithms.

Lipschitz function minimization

Let f be a real valued Lipschitz function on a compact set D C R?, i.e. it
satisfies the inequality

[f(xz1) — f(z2)| < L||x1 — 2] forall z1,22 € D,

where L is called a Lipschitz constant. We solve the minimization problem
2.1. Let D be a rectangle (a1,b1) % (az2,bs2). The bisection of a rectangle is
implemented at the midpoint of the largest edge. A simple lower bound g for
minimum value of f(z), = € P is defined in the following way

p(P) = f(m) ~ SL3(P),

where §(P) is the diameter of the rectangle P:
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2 1/2
6(P) = (Z(bj - aj)g) :

j=1
The algorithms for computing more accurate (but also more expansive) lower
bounds are given in [16].

Problem 1. Consider minimization problem (2.1) in S = [0, 10] x [0, 10],

when

1 1
fi(z) = 53;2{ —9x1 +20 + 53;3 —9xy +20.

Problem 2. Consider minimization problem (2.1) in S = [0, 10] x [0, 10],
when

fol) = - !

(21 —4)2+ (22 —4)2+0,7 (21 —2,5)2+ (22— 3,8)2+0,73"

In both examples we use Lipschitz constant calculation algorithm given in
[16].

First we present results for minimization of function fi(x). In Figure 6
and Figure 7 calculation time, efficiency and SOF of SJP algorithm using dif-
ferent search orders are given. Although breadth first search is not efficient for
sequential usage, using it for parallel applications we obtain situation similar
to data parallelism. Therefore even SJP algorithm performs quite efficiently.

=S » N —
——DFs 2 06 —= s | DFS
----BIFS i ----BIFS

time
o O R )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 L 2 3 4 5 6 7 8 9 10 11 12 13 14 15
proc. proc

a) b)

Figure 6. Results of experiments for fi(z) and different search orders and SJP
algorithm on Vilkas: a) computation time, b) efficiency of the algorithm.

For the sequential BB algorithm the best first search rule is the most
efficient, but parallel SJP algorithm with this search rule does not produce a
good performance. Two factors influence efficiency of this parallel algorithm.
First search overhead factor SOF is increased and therefore the efficiency is
lower. The second drawback deals with non-uniform load balance distribution
among processors. Best minimum value exchange modification reduces the
search overhead factor and thus improves the efficiency of a parallel algorithm.

In Figure 8 the efficiency of different parallel algorithms using the same
Best first search rule is shown. In SJP and SJP SE algorithms the SOF factor
is poorly controlled (see, b) part of Figure 8).
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Figure 7. SOF of fi(z) using different search orders and SJP algorithm on Vilkas.
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Figure 8. Efficiency and SOF of fi(z) using different parallel BB algorithms and
the Best first search rule on Vilkas.

To test the scalability of the algorithms experiments on up to 256 proces-
sors of on IDRIS supercomputer were performed. In Figure 9 the efficiency and
the SOF of different parallel algorithms using best first search rule calculations
is shown. The best speedups up to 90 was obtained for RJP algorithm.

12 6
1 \ 5
0.8 \,\ ——SIP 4 ——0oD
K - -.-DDSE
w06 N ----SJPSE é 3 _—
BN \/,,\_\</~‘=\_\4\ —— RIP o~ /.~ — — DDSB
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S\ S~ I d _
02 S e e =
Gl e .
1 2 4 8 16 32 64 128 256 12 4 8 16 32 64 128 256
Processors Processors
a) b)

Figure 9. Efficiency and SOF of fi(z) best first search using different algorithms

on IDRIS.

Using the breadth first search for the same function (Figure 10) the best
efficiency is obtained using simple DD and DD SB methods. Efficiency using
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more processors are shown in b part of Figure 10. Speedups up to 110 were
obtained for RJP algorithm on 256 processors.
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Figure 10. Efficiency of different parallel BB algorithms using the Breadth first
search on Vilkas and IDRIS.

Processors

a)

For function fs(x) , Figure 11 show the efficiency of different parallel al-
gorithms using the best first search rule. As for function f;(z), in SJP and
SJP SE algorithms the SOF factor is poorly controlled (see, b part of Fig-
ure 11), but there’s a great processor load disbalance for RJP SE algorithm
shown in Figure 12. Here 'maz’, ’'min’ and ’avg’ shows maximum, minimum
and average number of tasks executed among the processors.
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Figure 11. Efficiency and SOF of f2(z) using different parallel BB algorithms and
the Best first search rule on Vilkas.

In Figure 13 speedup and SOF obtained on IDRIS are shown.

Traveling salesman problem

Given a collection of cities and the cost of travel between each pair of them,
the traveling salesman problem, or TSP for short, is to find the cheapest way
of visiting all of the cities and returning to the starting point. We will restrict
to the case when the travel costs are symmetric in the sense that traveling
from city A to city B costs just as much as traveling from B to A [19].
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Figure 12. Disbalance of processor load of f(z) using different parallel BB algo-
rithms and the Best first search rule on Vilkas.
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Figure 13. Efficiency and SOF of f>(x) best first search using different algorithms
on IDRIS.

Mathematical formulation is: Given an undirected graph G = {N, A} con-
sisting of n nodes and m arcs together with costs ¢;; for each arc (i,j) € A,
the traveling salesman problem is to find a tour of minimum cost

min E CijTij,
.3

subject to

> @y =1,i=01,.,n—1,
Ji(i)eA

> owi=1,j=01..,n-1
i:(i,j)EA
and Tij € {0, ].}
The tour over 20 cities was calculated. The efficiency and SOF of different

parallel algorithms using the Best first search rule are given in Figure 14 for
Vilkas cluster and Figure 15 for IDRIS.
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Figure 14. Efficiency and SOF of TSP best first search using different algorithms
on Vilkas.
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Figure 15. Efficiency and SOF of TSP best first search using different algorithms
on IDRIS.

5. Conclusions

In this work the template for implementation of branch and bound algorithms
is presented. The main aim of this tool is to ease the implementation of se-
quential and parallel programs for covering and combinatorial optimization
methods for global optimization. Standard parts of global optimization algo-
rithms are implemented in the template and only method specific rules should
be implemented by the user. Parallel programs can be obtained automatically
if the sequential program is implemented by the same template.

Parallel algorithms using distributed search space are implemented in the
template and algorithms with a single search space can be implemented using
Master - slave algorithm and suitable parallelization tool.

The implementation of Best first search sub-space selection strategy is
analyzed and heap data structure is shown to more efficient then priority
queue for problems with larger list of candidates.

Results of computational experiments are presented for the problem of
minimization of the Lipschitz functions and traveling salesman problem. The
portability of the template was tested by running it on two different parallel
computer systems. RJP SE algorithm performs better for test problems. The
increased value of the SOF factor and disbalance of work between processors
reduce the efficiency of parallel algorithms implemented in the template. The
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static load balancing does not control load disbalance enough and dynamical
load balancing algorithms should be used.
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Apibendrinto Saky ir réZiy algoritmo Sablono realizacija
M. Baravykaité, R. Ciegis, J. Zilinskas

Straipsnyje pristatyta apibendrinto Saky ir réZiy algoritmo Sablono realizacija.
Irankis skirtas palengvinti nuosekliyjy ir lygiagre€iyjy optimizacijos uZdaviniy prog-
ramy kurimg. Nuo uZdavinio nepriklausané¢ios algoritmo dalys yra jdiegtos Sablone
ir vartotojui reikia sukurti tik nuo uZdavinio priklausanéiy daliy realizacija. Sablone
idiegti keli lygiagretieji algoritmai, paremti tyrimo srities padalinimu tarp procesoriy.
Pateikiami skaifiavimo eksperimenty rezultatai.



