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Abstract. For a set of n discernible objects, the probability of choosing at random
a permutation with m objects fixed is determined with the help of the generating
function method. It is shown that the expected number of objects left fixed is one,
which represents a special interpretation of Burnside’s Lemma. Furthermore, the
higher moments about the origin are represented by Stirling’s numbers of the second
kind, or simpler, by Bell’s numbers, and the factorial moments are all one. A short
discussion of an estimation problem concludes the paper.
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1. Problem Formulation

Let us consider n discernible objects and all its n! permutations, and let us
draw at random one of these permutations. Then the question arises as to the
probability p,, ., or of a given number of m objects left fixed for any m with
m=0,1,...,n, n=1,2,....

According to Feller [9] a special case of this matching problem or probleme
des rencontres was formulated for the first time by Montmort in 1708 [6].
There are many, more or less serious illustrations of it. Rohatgi [12] gives as
example the careless secretary who mixes letters and envelopes and hopes that
at least a few letters get into the suitable envelopes. In Munich the story goes
as follows: All inhabitants and guests attend the Oktoberfest and get drunk
thus, the Lordmajor wants to know what the probability is that at least one
or any given number of inhabitants and guests find their own beds.

In the preface of his book on combinatorics, Jacobs [10] points out that
there are basically two different ways of studying combinatorics: Either one
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can follow the trend of the Rota school to systematize combinatorial ideas and
proofs; as an example, take Aigner [2]. Or one can try, in the Indian-Israelian-
Hungarian style, to pose and to solve single problems in the spirit of some
guiding ideas. Obviously, this paper is an example for the second approach.

In the following we will see that, in analyzing our problem, we will en-
counter some well known relations and names from the past. Some of the
results, e.g., (2.11), (3.7) and (5.2), and also the interpretation of (3.1) are
new, or more precisely, could not be found in the literature despite of intense
investigations.

2. Probability Distribution

In order to tackle the problem, let us define L, ,,,, m =0,...,n,n =1,2,...
as the number of possibilities to permutate n objects such that precisely m
objects remain fixed, and let us define Ly o = 1. The following self-explaining
relation,

m

me = <n > Ln7m70a (21)

is crucial for all subsequent considerations. Furthermore, let us define L,, as
the number of possibilities to permutate n objects such that at least one object
remains fixed and let us put Lo = 0. With (2.1), we obtain

Now we have
Ly o+ Ly =nl, (2.3)

therefore we get the following recursive relation for L,,:

= ~ (). i ) =
Ln Zl < Z. ) ((n i) —Ln_;), Lo=0. (2.4)
Let furthermore, p,, be defined as the probability to choose one permutation of
n objects such that at least one object is left fixed. Then we have by Laplace’s

rule I
Pn = F (25)

and therefore, using (2.4), we get the following recursive relation for the p,:

(1 _pn—i)7 po = 0. (26)

We solve this recursive relation by means of the generating function
method. We define
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F@) =3 pua” (2.7)
n=1

(formally, without discussing convergence questions) and get with the help of
the recursive relation (2.5)

flz) = ZZ.—,xn—Zzpn.—'_za:".
=11 " —1im1 v

Changing summations and transforming the summation variable n to k ac-
cording to n = i + k we obtain

flay=23_ 5> 2" =3 5> mat,
i=1 " k=0 i=1 " k=0
or, performing the sums,
xT 1 T
fl@) = (" =)=~ (" = (/@) + po).

With (2.6), we have py = 0. Thus, we get the explicit form of the generating
function as follows,

1—e %
f@) = _ex for 0<z< 1. (2.8)

In order to get the probabilities p,,, we may use again the power series expan-

sions of 1 — e~ * and

and multiply them. According to (2.6), p,, is than
—x
found as the coefficient of z".

Alternatively, one can determine p,, according to

1
pa= S| for n=12..
n: x

Using Leibniz’ formula for the n-th derivative of the product uv,

(1) =3 (T;) WDy

Jj=0

1
and takingu =1—e % and v = 1, e get
—x

— (=1)’
Pn=1-Y - forn=1,2,.... (2.9)
1=0

Special values are

~ 0,666, ps = - =~ 0,625.

Wl o
co| Ut

1
po=0, pr =1, p2=75, ps=

For n — oo, we get
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(1)

1!

=1- l ~ 0.6321.
e

M=

lim p, =1-—
n—oo
i=0

Of course, it can be shown directly that (2.9) satisfies (2.6). For that purpose
one has to prove the identity

n—1i

"1 —1)7
> 5 (J_') =1, for n=1,2,....

7!
i=0 =0

BN

which, according to Knuth [11], was already known to Stirling [14].

It should be mentioned here (see also Jacobs, [10]) that in 1736 L. Euler [8]
has given the following recursive relation for the so-called Rencontre numbers
D,, :=n! — L,, i.e., the number of possibilities to permutate n objects such
that no object remains fixed,

Dn+1 = n(Dn—l + Dn)v DO = 17 Dl = 07

which can be understood as follows: we count, how many permutations of
n + 1 objects without fixed objects can be obtained. First, on place n + 1 we
put a number k different from n + 1, there are n possibilities. The possibilities
to occupy the remaining n places without fixed objects, can be separated into
two classes.

1. In the first class, place k is occupied by object n+ 1, and there remain the
n — 1 places different from k& and n 4+ 1 and therefore, D, possibilities
to occupy them without fixed object.

2. In the second class, there are all occupations of places 1, ..., n with objects
1,...,k—1,k+1,...,n+1, where object n+ 1 for place k£ and any object
4 for place j is forbidden, i.e. D,, possibilities.

This recursion leads to the same formula for our L, (with different initial
values, of course) and therefore, to the following recursive relation for p,:

(Tl =+ l)pn—H =npp +Pn-1, po=0, p1 =1

Also, it should be mentioned, that we can get (2.9) as well, if we apply the
exclusion inclusion principle to the event U A;, where A; is the event that

the i-th object remains fixed (see, e.g., Rohatgl [12]). Whereas this way we
obtain a better insight into the structure of (2.9), the way used here leads us
immediately to the determination of the more general probabilities.

Let us define the probability p, ., that m out of n objects remain fixed
("matches"). It is given by

Lym 1 (n 1 /n
= 2 = — == — —_ ' —_—
Pn,m n nl (m) Lnfm,O n (m) ((TL m) Lnfm)
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or finally, with (2.5), by

1
Pnm = %(1 _pn—m)a (2.11)

where p,, is given by (2.9). Explicitly, we get

Pnom = % ZO il

Special and intuitively comprehensible cases are

%

,forn=1,2,..., m=0,1,...n. (2.12)

—1)° 1
.|) =1 —Pns, Pnn—-1= 07 Pnn = e
2. n.

Pn,0 =

L

Il
=]

K2

Furthermore, we obviously have

Pn = Z DPn,m; (213)
m=1

which also can be shown formally, if (2.11) is used since this way, again the
recursive relation (2.6) is obtained. Also, if we use (2.12), we arrive again at
the identity mentioned previously.

The normalization of the probabilities p,, ,, is obtained according to

an,m: an,m—i—pn,ozpn—kl—pnzl, for n=1,2,.... (2.14)

m=0 m=1
Finally, from (2.11) we get the useful recursive relation

1
DPn—1,m—1 = m(l—pn,m) =Mpnm, for n=1,2,..., m=1,2,...,n.

(2.15)
Returning to the L, ,,, as given by (2.1), this recursive relation leads immedi-
ately to
nLn—l,m—l = an,m-

This form we can obtain directly from (2.1),

n
Ln,m = (m) Ln—m,Oa

by writing it down again for n — 1 and m — 1,

n—1
Lnflﬂnfl = (m _ 1) Ln7m70a

and eliminating L,,_, o from both forms.
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3. Moments about the Origin

In order to determine the expected number ., of objects left fixed, we use
the recursive relation (2.15). We get for alln = 1,2, ...

n n n—1
Hn 1= Z Mpn,m = Z Pn—1,m-1 = an—l,i =1, (31)
m=1 m=1 =0

independent of n. If we use again (2.10), we get the relation

i mLy m =nl, (3.2)

m=1

which means that the total number of objects left fixed under all permutations
is just the number of all permutations. This is a special case of Burnside’s
Lemma (see, e.g., Rotman, [13]) which, according to Burnside himself, was
first proved by Frobenius in 1887. It should be mentioned that according to
the author’s knowledge, so far this proof, or vice versa, this interpretation of
Burnside’s Lemma, has not yet been documented in the literature.

Also, it should be mentioned here, that the expected value (3.1) can be
determined without knowledge of the distribution (2.12) by using the linearity
of the expectation (see Aigner, [3]).

In general, the k-th moment uslk ) about the origin of the number of objects
left fixed is defined as

,uglk) = Z mkpn,m, for k=1,2,...n, uflo) =1. (3.3)

m=0

Using the explicit form (2.12) of the p,, ,,, we get

W n n—-m (—1)imk
Hn _mzzog mlil

which gives with m — ;i > m =741

1 mfllk

I o)l =l L

or, after another change of the order of summations

n m k
1 m—1 [ m
ulk) = E — E (-1) ( I ) Ik = E,OS]CM fork=1,2,...,n, (3.4)
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since Sk,m = 0 for m > k. Now Sy, is Stirling’s number of the second kind
[14], explicitly given by

Sk = % > o (=ym! (’?) I*, form <k (3.5)

" 1=0

(see, e.g., Abramovitz and Stegun, [1] ).

Since Stirling’s number Sy, ., is the number of ways of partitioning a set
of k elements into m non-empty subsets, (3.4) says that the k-th moment
about the origin of the number of objects left fixed under a randomly chosen
permutation of n objects equals the number of ways of partitioning a set of k
objects into non-empty subsets. Now, this number, which we call By, is just
the k-th Bell number (after E.T. Bell, see Becker and Riordan, [4]) which can
be calculated recursively according to

k
k
Bii1=) < ; ) By, By:=1 (3.6)

=0

and which is, after Dobinski [7], explicitly given by
B—lilk fork=1,2
k—el:ol!, =1,4,...,N.

As a result, the k-th moment about the origin is given by the k-th Bell
number
p*) = By, fork=1,2,...,n, (3.7)

it does not depend on n. In fact, from (3.3) we could have obtained directly
by use of (2.15)

n n—1
plEHD) = Z L Z(r + 1) pn_1,
:—:11 L - "k
S (1)

r=0 [=0 =0

i.e., using the independence of the uslk ) of n, the recursive relation (3.6) for
Bell’s numbers. Special values are

Bo=1, Bi=1, Bo=2, By=5, By=15.
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4. Factorial Moments

The k-th factorial moment is defined as

plkl = Zm(m— 1)---(m—Fk+1)pnm, (4.1)

m=l
with (2.15) we get

n

,UL{C] = Z (m - 1) to (m —k+ 1)pn—1,m—1 = ,ugf:ll],

m=2
and so on. This means, because of ug] =lforn=12,...
pfl =1, fork=1,2,...,n=1,2,.... (4.2)

There is an alternative approach. The k-th factorial moment can be ex-
pressed by the moments about the origin (see also Berg, 1983 [5]).

k
P =" s 1), (4.3)
=0

or, using (3.4), by
k J
e )
j=0 i=0

where s; ; and S;; are Stirling’s numbers of the first and second kind. This

can be written as
kE ok
WO =33 s

i=0 j=i
which leads immediately, by use of the orthogonality of both kinds of Stirling’s
numbers, back to (4.1). In passing, it should be mentioned that (4.3), (3.7)
and (4.2) give an interesting relation between Bell’s and Stirling’s numbers of
the first kind,

k
Z SkJ‘Bj =1.
j=0

Inversely, the moments about the origin can be represented by the factorial
moments with the help of Stirling’s numbers of the second kind as

k
W = 30 S,
=0

which, with (4.1), gives again (3.4), and which this way provides another
explanation for the latter form.
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5. Central Moments
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The k-th central moment /?lek ) of the number of objects left fixed is because

of (3.1) is defined as

n

lasﬁ) = Z (m - l)kpn,m;

m=0

special cases are
A =1, g =0, P =0} =1

For k > 1, we get from (4.3)

A = () o+ 3 0m = 1) P
m=2

n—1

= (=1)*pno+ Z P Prit
i=1

Now, with (2.15), written as
Pn1 = (i + 1)pnjt1,
we get with (3.3)

n—1
,[Iw(zk) = (_l)kpn,o + Z ikil(i +1- l)pn,i+1
=1

n

k—1 . _ _
= (_l)kpn,o + ILL’EL—l ) - Z(] - l)k 1pn,j + (_l)k 1pn,0;

§=0
or, finally
e

The solution of this recursive relation is

N
=

~ - k—1—1
A% =N ()Y ()

-~
Il
o

or, if we define (-1 := B_; := 1 and use (3.7)

k

AP =3 (-1)F "By fork=0,1,2,..., n=12,....

m=0

(5.1)

(5.3)

Even though this form look very concise, one must not forget that the moments
about the origin, explicitly written, can only be represented by twofold finite
sums, and therefore the central moments can be represented by threefold finite

sums.
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6. Note on Estimation

We ask for an estimate of the total number n of objects available if a sample
of objects left fixed is given. For our Munich example this would mean that,
with the help of the number of people who have found their own beds, the
number of inhabitants and guests of Munich is estimated.

The maximum likelihood method does not work: taking the maximum of
Dn.m as given by (2.12) with respect to n for fixed m with n > m, one obtains
the estimate 7 = m which is, because of (3.1), far from being an unbiased
estimate of n.

In general, for a factorial series distribution, a special case of which we
have discussed here, an unbiased estimate of n is obtained as follows (see
again Berg, [5]).

Let p,, » be the probability to choose one permutation of n objects such
that  objects are not left fixed ("nonmatches"). With (2.12) and z = n —m
we obtain

K2

_ 1 L (-1)
pn,w:pn,nﬂ:(n_aj)!g 5 , forn=1,2,..., 2=0,1,...,n, (6.1)

which we write as

ﬁn,w = aiw; Qg 1= i (_1)l

(n —x)!

Then, an unbiased estimate of n is given by

Pt (6.2)

Gy

since we have

E(m) =Y (az_l + a:)[)n,z = Z(ﬁ + ) TP
h : =1

r=1

and therefore, because of (3.1),

n—1 n—1
o ay B _ _ _
E(n) = yEZO OS] +n—-1= ygzopn—Ly—Fn—l =1l4+n—-1=n. (6.3)

It should be mentioned, however, that this estimate is not very satisfying.
For large values of n and consequently, for large values of =, one has approxi-
mately 7 = 1+ xz, which is reasonable because of (3.1), but which means that
practically all objects have to be counted. (In the case of Munich nearly all
inhabitants and guests will have to report that they did not find their own
beds).

In addition, 7 = x + 1 itself represents an unbiased estimate of n, and it
is not known which of the two estimates has the smaller variance, since the
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variance of the estimate (6.2) is not known. In other words, it is not clear
whether or not the estimate (6.2) for n is at all worthwhile.
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Montmorto uZdavinys, Bernsaido lema ir Belo skaiéiai
R. Avenhaus

Darbe nagrinéjami klasikiniai kombinatorikos uZdaviniai su tam tikra tikimybine
interpretacija. Autorius taiko generuojanciy funkcijy metodg jvairiems momentams
skai¢iuoti. Kai kurios i§ jrodomy straipsnyje formuliy néra gerai Zinomos kombina-
torinéje analizéje. Kaip atskiri 8iy formuliy rezultatai gaunami klasikiniai Stirlingo ir
Belo skaiiy sarysiai. Straipsnyje pareikta trumpa nagrinéjamy uZdaviniy apZvalga.



