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Abstract. The paper is devoted to construction and development of new method for numer-
ical solution of hyperbolic type equations [14, 17].

In the previous papers [4, 5, 6, 7, 8, 9] authors have investigated theoretically and tested
experimentally 26 different finite-difference schemes on 4 point patterns for the simplest hy-
perbolic equation: linear advection equation. This equation has the main features of every hy-
perbolic equation and is the important part of many mathematical models. In other cases the
advection operator is the important part of the full operator of the problem. All 26 schemes
have been compared experimentally on the special representative set of tests. Nevertheless
to simplicity of the equation, almost all schemes have different disadvantages. They are dis-
cussed in detail in the cited papers. So, the investigation of new schemes for this equation is
still an important task.

In [4, 5, 6, 7, 8, 9] some new schemes were constructed for solving this advection equa-
tion. The nonlinear monotone Babenko scheme ("square") proved to be the best among all
26 schemes. So, it is a big interest to generalize this scheme to more difficult equations. The
important example is a quasi–linear advection equation.

In this paper our basic aim is to construct a quasi-monotone nonlinear Babenko scheme for
solving the quasi-linear advection equation and to test it experimentally. The monotonisation
of the scheme is done by adding the artificial diffusion with limiters. We also present advanced
results of comparative analysis of the new scheme with other known schemes. We have con-
sidered explicit and implicit upwind approximation schemes [4, 6, 13, 16] which is firstorder
accurate in time and space, the Lax–Wendroff scheme [4] which is the first order accurate in
time and second order accurate in space. We also analyze the monotonised "Cabaret" scheme
proposed in [10, 11]. It is second order accurate in time and space, and its monotonisation is
based on apriori knowledge of the dependence region of the exact solution. The authors of this

1 Authors are grateful to T.G. Yelenina for her help and useful discussions. This research was
partially supported by the Russian Foundation for Basic Research (RFBR project 03-01-
00461).
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scheme called it by "jumping advection". The considered schemes are compared numerically
by using a set of tests, which is similar to one used in [4, 5, 6, 8].

Key words: Nonlinear Babenko scheme, quasi-linear advection equation

1. Problem statement

Let us consider the Cauchy problem for the quasi-linear advection equation

∂u

∂t
+

∂

∂x

(

u2

2

)

= 0, x ∈ (−∞, +∞) , t ∈ (0, T ] (1.1)

with finite (mostly) initial condition u(x, 0) = u0(x). We are going to construct the
Babenko scheme for this equation and to test it on the special set of test solutions.
The initial functions for this set have following forms:

1. u0(x) =















2(x−l1)
l2−l1

, x ∈ [l1, 0, 5(l1 + l2)) ,

2(l2−x)
l2−l1

, x ∈ [0, 5(l1 + l2), l2] ,

0, x /∈ [l1, l2] ,

2. u0(x) =

{

1, x ∈ [l1, l2] ,

0, x /∈ [l1, l2] ,

3. u0(x) =

{ (x−l1)
l2−l1

, x ∈ [l1, l2] ,

0, x /∈ [l1, l2] ,
4. u0(x) =

{ (l2−x)
l2−l1

, x ∈ [l1, l2] ,

0, x /∈ [l1, l2] ,

5. u0(x) =

{

1, x ∈ (−∞, l1] ,

0, x ∈ [l1, +∞) ,
6. u0(x) =

{

0, x ∈ (−∞, l1] ,

1, x ∈ [l1, +∞) ,

They have a form of triangle, rectangle, left-hand triangle, right-hand triangle, step-
down and step-up functions, respectively.

Here are the exact solutions for initial conditions defined above:

1.

u(x, t) =



















































2(x−l1)
l2−l1+2t

, x ∈ [l1, 0.5(l2 + l1) + t] , 0 < t < 0.5(l2 − l1),

2(l2−x)
l2−l1−2t

, x ∈ [0.5(l2 + l1) + t, l2] , 0 < t < 0.5(l2 − l1),

0, x /∈ [l1, l2] , 0 < t < 0.5(l2 − l1),

2(x−l1)
l2−l1+2t

, x ∈
[

l1, l1 +
√

1
2 (l2 − l1)(l2 − l1 + 2t)

]

, t ≥ 1
2 (l2 − l1),

0, x /∈
[

l1, l1 +
√

0.5(l2 − l1)(l2 − l1 + 2t)
]

, t ≥ 0.5(l2 − l1),
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2.

u(x, t) =















































x−l1
t

, x ∈ [l1, l1 + t] , 0 < t < 2(l2 − l1),

1, x ∈ [l1 + t, l2 + 0.5t] , 0 < t < 2(l2 − l1),

0, x /∈ [l1, l2 + 0.5t] , 0 < t < 2(l2 − l1),

x−l1
t

, x ∈
[

l1, l1 +
√

2(l2 − l1)t
]

, t ≥ 2(l2 − l1),

0, x /∈
[

l1, l1 +
√

2(l2 − l1)t
]

, t ≥ 2(l2 − l1),

3.

u(x, t) =











x−l1
t+(l2−l1)

, x ∈
[

l1, l1 +
√

(l2 − l1)(t + (l2 − l1))
]

,

0, x /∈
[

l1, l1 +
√

(l2 − l1)(t + (l2 − l1))
]

, t ≥ 0,

4.

u(x, t) =



















































x−l1
t

, x ∈ [l1, l1 + t] , 0 < t ≤ (l2 − l1),

l2−x
l2−l1−t

, x ∈ [l1 + t, l2] , 0 < t ≤ (l2 − l1),

0, x /∈ [l1, l2] , 0 < t ≤ (l2 − l1),

x−l1
t

, x ∈
[

l1, l1 +
√

(l2 − l1)t
]

, t > (l2 − l1),

0, x /∈
[

l1, l1 +
√

(l2 − l1)t
]

, t > (l2 − l1),

5. u(x, t) =

{

1, x ∈ (−∞, l1 + 0.5t],

0, x /∈ (−∞, l1 + 0.5t];
6. u(x, t) =















0, x ∈ (−∞, l1),

x−l1
t

, x ∈ [l1, l1 + t],

1, x ∈ (l1 + t, +∞).

To compare numerical and exact solutions we use finite-dimensional analogs of
norms in spaces C, L1, L2.

2. Nonlinear Monotonisation of the Babenko Scheme

For the numerical solution let us introduce the uniform (for simplicity) space-time
grid ω̄hτ = ω̄h × ω̄τ :

ω̄τ = {tn = nτ, n = 0, 1, 2...} , ω̄h = {xi = ih, i = 0, 1, 2...} ,

where h is the space grid step and τ is the time grid step.
Further we use the following standard notation of grid functions and operators

[15, 16]
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y = yn
i , ŷ = yn+1

i , y+1 = yn
i+1, y−1 = yn

i−1, yt =
ŷ − y

τ
, yx̄ =

y − y−1

h
,

where the superscript is a time layer number and the subscript is a number of point
on x. We assume that the solution yn is known.

For equation (1.1) the Babenko scheme has the following form:

1

2
yt +

1

2
yt,−1 +

1

4
(ŷ2)x̄ +

1

4
(y2)x̄ = 0.

It can be rewritten as

yt +
1

2
(yt,−1 − yt) +

1

2
(y2)x̄ +

1

4

[

(ŷ
2
)x̄ − (y2)x̄

]

= 0. (2.1)

Suppose a = 1
2 (ŷ + y), then equation (2.1) takes the form:

yt +
1

2
(yt,−1 − yt) +

1

2
(y2)x̄ +

1

2h
[aτyt − a−1τyt,−1] = 0,

or

yt +
1

2
(y2)x̄ +

1

2
yt,−1(1 − γ−1) −

1

2
yt(1 − γ) = 0, (2.2)

where γ = aτ/h is the Courant number. In the rest of the paper only difference
derivatives are used. Therefore we use the notations for difference derivatives similar
to the partial ones.

It is well known [5], that for smooth solutions the Babenko scheme [2, 3] is
second order accurate in x and t, but it is non-monotone. This is an implicit scheme,
but it does not prevent us from calculating the solution on a next time layer by an
explicit formula. For the linear advection equation the Babenko scheme gives the
exact solution on some grids, when the corresponding Courant number is equal to 1.
Let us notice that first two terms in (2.2) give the usual upwind scheme.

We monotonize the scheme by adding to (2.2) two terms

−
1

2
µ−1yt,−1(1 − γ−1),

1

2
µyt(1 − γ),

where µ is the artificial diffusion. Since time derivatives ut, ut,−1 of the exact so-

lution approximate space derivatives −
(

u2

2

)

x
, −

(

u2

2

)

x,−1
, the introduced items

produce diffusive terms. Hence the modified scheme takes the following form:

yt +
1

2
(y2)x̄ +

1

2
yt,−1(1 − γ−1)(1 − µ−1) −

1

2
yt(1 − γ)(1 − µ) = 0. (2.3)

Let us note that for µ ≡ 0 we get the original Babenko scheme and for µ ≡ 1 we get
the upwind scheme.

We now rewrite (2.3) in the following form:

yt + ϕ

(

y2

2

)

x̄

= 0,
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where

ϕ =
1 + 1

2 (1 − γ−1)(1 − µ−1)yt,−1/(y2/2)x̄

1 − 1
2 (1 − γ)(1 − µ)

.

The scheme (2.3) is constructed taking into account the assumption that y ≥ 0
in the whole space–time region. Then it satisfies the maximum principle [15] if the
following conditions are valid

{

ϕ ≥ 0,

1 − γϕ ≥ 0.
(2.4)

Notice that quantity ã = 1
2 (y + y−1) is used in the literal condition of maximum

principle fulfillment. So, it is different from the second inequality in (2.4). But the
desirable condition follows from the second inequality in (2.4) if ŷ ≥ 0. Let us
introduce functions

R−1 =
y2

x̄

2yt,−1
=

τ

h

y2 − y2
−1

2(ŷ−1 − y−1)
, R =

τ

h

y2
+1 − y2

2(ŷ − y)
(2.5)

and denote µ = µ(R, γ) , µ−1 = µ(R−1, γ−1).
Inequalities (2.4) are valid if function µ = µ(R, γ) takes the form [5]:

µ(R, γ) =







































1, R ≥ 0,

1 + 2R
1−γ

, −0.5(1− γ) ≤ R < 0,

0, −R∗ ≤ R ≤ −0.5(1− γ),

2(R+R∗)
1−γ

, −R∗ − 0.5(1− γ) ≤ R ≤ −R∗,

−1, R < −R∗ − 0.5(1− γ).

(2.6)

Function µ provides the monotonisation of the considered scheme. Note that the
third line in (2.6) corresponds to the line segment, where the scheme preserves the
second order of approximation for linear and closed to linear profiles [18, 12]. The
fourth line in (2.6) provides change from zero to negative values of µ. In this case
anti-diffusion items in the scheme appear. They decrease the numerical diffusion at
discontinuity points of the solution.

In this work parameter R∗ is selected experimentally and R∗ = 1.2 is used in all
numerical experiments [5].

Equation (2.3) is nonlinear due to dependence of R on ŷ. The unknown ŷ value
can be calculated using the known value of R by:

ŷ = y +
τ

2h

y2
+1 − y2

R
. (2.7)

We can find R using relation µ = µ(R,γ). First we rewrite equation (2.3) in the form:

(ŷ − y)
(

1− 0.5(1− γ)(1 − µ)
)

+ 0.5(1 − γ−1)(1 − µ−1)(ŷ−1 − y−1) +
τ

2h
(y2 − y2

−1) = 0. (2.8)
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According to (2.5) this equation takes the following form:

1

R

(

1 − 0.5(1− γ)(1 − µ)
)

= −
0.5(1− γ−1)(1 − µ−1)(ŷ−1 − y−1) + τ

2h
(y2 − y2

−1)
τ
2h

(y2
+1 − y2)

. (2.9)

We denote by b the right-hand side of equation (2.9):

b = −
0.5(1− γ−1)(1 − µ−1)(ŷ−1 − y−1) + τ

2h
(y2 − y2

−1)
τ
2h

(y2
+1 − y2)

. (2.10)

Equation (2.9) with a known right-hand side is a nonlinear equation with respect to
R. The left-hand side is a monotone function of R. Considering the form of function
µ = µ(R, γ), we get the following relations:

R =











































1
b
, b > 0,

γ
b
, γ

−R∗
−0.5(1−γ) < b < 0,

R∗+0.5(1+γ)
b−1 , − 0,5(1+γ)

R∗
< b ≤ γ

−R∗
−0.5(1−γ) ,

0.5(1+γ)
b

, − 1+γ

1−γ
< b ≤ − 0.5(1+γ)

R∗
,

1
b−1 , b ≤ − 1+γ

1−γ
.

(2.11)

Remark 1. The value of b is indefinite if y2+1 − y2 = 0, but in this case R = 0 (as
it follows from (2.5)). Also, we get from (2.11) that the value of R is indefinite, if
b = 0, but in this case the equality ŷ = y can be obtained directly from (2.10) and
(2.8).

So, using equations (2.7), (2.10), (2.11) we can find _

y . Note that γ depends on
_

y , therefore the value of _

y is calculated numerically using iteration method. In this
work at first iteration step we count the value of_

y as 0.5(
_

y
−1 + y+1). For this value

we calculate γ, then we define R basing on the known value of b and calculate desired
value of _

y using (2.7).

3. Numerical Experiments

As it was done in [4, 5, 8] the numerical solution of problem (1.1) is obtained for all
stated above initial data for following parameters:

l = 520, l1 = 0, l2 = 20, T = 1000, h = 1.

The Courant number γ = max
x,t

τ
h
|y(x, t)| is bounded by γm, which took values

0.1, 0.25, 0.5, 0.9. For the implicit upwind scheme calculations were also made for
γm = 3. So, the time step τ took the same values as the Courant number. Results of
numerical experiments are presented in [1].



Nonlinear Monotonization of the Babenko Scheme 119

To illustrate the features of different schemes we present below numerical solu-
tions captured at some intermediate time moments. These solutions correspond to
pointed above initial data. Every figure plots the exact solution and numerical so-
lutions for different values of Courant number. Figures are presented for the new
quasi–monotone Babenko scheme, explicit upwind scheme and jumping advection
method. Specification of results obtained for all considered schemes is also presented
below.

The obtained results make possible to analyze qualitative and quantitative fea-
tures of the new developed scheme and to compare it with the other schemes consid-
ered in this work.

3.1. Explicit upwind scheme

The solution obtained by this method is very rough, diffusion of solution discontinu-
ity takes place at few steps (from 4 to 10 steps). If γ is smaller, the solution diffusion
is greater. The solutions of depression wave type are diffused on more steps com-
pared with shock waves. This solution drawback grows in time. For initial profiles 1,
2, 4 on time intervals where the exact solution evolutes without amplitude change the
amplitude of numerical solution diminishes permanently. It is difficult to trace time
moments when shock waves arise. The speed of propagation of shock waves for the
numerical solution is the same as for exact solution and is independent of γ.

t = 6 t = 10

Figure 1. Numerical solution obtained using the implicit upwind scheme for 1 initial data
(γ = 0.1; 0.5; 0.9).

3.2. Implicit upwind scheme

The solution obtained using this scheme is even less similar to exact solution than
the solution obtained by using the previous one. For this scheme even greater solu-
tion diffusion is typical (from 7 to 15 space steps). This diffusion becomes stronger
as the Courant number value increases. As shown in Figures 1–6, at initial time mo-
ments the bending of back front of the wave is typical for the numerical solution. In
process of time the dependence of numerical solution on Courant number becomes
less expressed. For initial profiles 1, 2, 3 and 4 the numerical solution obtained by
using explicit and implicit upwind schemes evolutes to a wave of triangle profile
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with diminishing amplitude and shock wave spreading to the right side. It conforms
to the exact solution, but the maximum of numerical solution amplitude goes behind
the maximum of the exact solution. So, the upwind schemes badly reproduce such
features of solution as appearance and propagation of shock and depression waves.

t = 18 t = 40

Figure 2. Numerical solution obtained using the implicit upwind scheme for 2 initial data
(γ = 0.1; 0.5; 0.9).

t = 60 t = 160

Figure 3. Numerical solution obtained using implicit scheme with upwind difference for 3
initial data (γ = 0.1; 0.5; 0.9)

t = 5 t = 20

Figure 4. Numerical solution obtained using the implicit upwind scheme for 4 initial data
(γ = 0.1; 0.5; 0.9)
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t = 20 t = 80

Figure 5. Numerical solution obtained using the implicit upwind scheme for 5 initial data
(γ = 0.1; 0.5; 0.9)

t = 10 t = 40

Figure 6. Numerical solution obtained using the implicit upwind scheme for 6 initial data
(γ = 0.1; 0.5; 0.9)

3.3. The Lax–Wendroff scheme

The phenomenon of normal dispersion is typical for this scheme. The appearance
of shock waves is accompanied by oscillations behind their front. Appearance of
oscillations on the left front of generated depression wave is typical for initial profiles
2, 4 and 6. These oscillations are progressing in time. It leads to growth of errors
especially in the C norm. For instance at γ = 0.5 for initial profile 2 at time moment
t = 10 the relative error in the C norm is equal to 0.17 and at time moment t = T
the error is equal to 1.076.

The spreading of solution is less for the Lax-Wendroff scheme compared with
implicit and explicit upwind schemes. Solution discontinuities are reproduced better
by this scheme, and discontinuity diffusion takes place on 3 to 5 steps.

3.4. Jumping advection method

Compared with schemes given above the numerical solution obtained using the
jumping advection method represents the exact solution better. The main advan-
tage of this method is the ability to represent discontinuities such as shock waves
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precisely. But due to features of the method the numerical solution is changing spas-
modically and the exact position of shock waves can be obtained at some time mo-
ments only. For instance if γ = 0.5 and initial profile 5 is used, then the solution
jumps to the right side by one step for every fourth time layer, overtaking the exact
solution. Thus at these moments there is no computational error.

However, when the Courant number increases, defects of numerical solution such
as "steps" and wrong speed of shock waves appear. It can be seen in Figure 9 that
"steps" appear for the compression wave for initial profile 4 with any Courant num-
ber, and figures 8 and 11 show that when γ = 0.9, then shock wave of the numerical
solution move slower than the exact one. In Figures 7–11 γ = 0.5 corresponds to the
numerical solution which most accurately approximates the exact one.

t = 18 t = 40

Figure 7. Numerical solution for the jumping advection method for 2 initial data (γ =

0.5; 0.9)

t = 60 t = 160

Figure 8. Numerical solution for the jumping advection method for 3 initial data (γ =

0.5; 0.9)

3.5. Monotonized Babenko scheme

The numerical solution which is obtained using this scheme represents the exact
one in the best way compared with schemes examined above in all explored range
of Courant numbers. This conclusion follows from the error analysis. This scheme
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t = 5

Figure 9. Numerical solution for the jumping advection method for 4 initial data (γ =

0.5; 0.9)

t = 20 t = 80

Figure 10. Numerical solution for the jumping advection method for 5 initial data (γ =

0.5; 0.9)

t = 10 t = 40

Figure 11. Numerical solution for the jumping advection method for 6 initial data (γ =

0.5; 0.9)

has no normal and anomalous dispersion, the solution spreads slightly, discontinuity
spreading takes place at smaller number of steps (1–3 steps). For initial profiles 2, 4,
6 little right shifting of a left front of the resulting depression wave can be noticed.
As it is shown on Figures 12–17, numerical solutions are almost the same for dif-
ferent Courant numbers. And for all tests γ = 0.1 corresponds to the most accurate
numerical solution.
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t = 6 t = 170

Figure 12. Numerical solution for the Babenko scheme for 1 initial data (γ = 0.1; 0.5; 0.9).

t = 18 t = 160

Figure 13. Numerical solution for the Babenko scheme for 2 initial data (γ = 0.1; 0.5; 0.9).

t = 60 t = 160

Figure 14. Numerical solution for the Babenko scheme for 3 initial data (γ = 0.1; 0.5; 0.9).

4. Conclusion

Nonlinear monotonised Babenko scheme, considered in this work, gives the best
solution of quasi-linear advection equation in all explored range of Courant numbers.
The obvious advantage of this scheme is its ability to present solution discontinuities
in a most accurate way compared with other schemes. We notice that the jumping
advection method [11] gives worse solution at some initial conditions and for some
Courant numbers, despite of its ability to represent the exact solution at some time
moments. It is connected to the appearance of "steps" leading to strong solution
distortion.

Some additional details can be found in [1].
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t = 5 t = 20

Figure 15. Numerical solution for the Babenko scheme for 4 initial data (γ = 0.1; 0.5; 0.9).

t = 20 t = 80

Figure 16. Numerical solution for the Babenko scheme for 5 initial data (γ = 0.1; 0.5; 0.9).

t = 10 t = 40

Figure 17. Numerical solution for the Babenko scheme for 6 initial data (γ = 0.1; 0.5; 0.9).
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Babenkos skirtumų schemos kvazi-tiesinei pernešimo lygčiai netiesinė monotonizacija

T.A. Alexandrikova, M.P. Galanin

Šiame straipsnyje pasi ūlyta kvazi-monotoniṅe netiesinė Babenkos skirtumų schema kvazi-
tiesinei pernešimo lygčiai spręsti. Schemos monotoniškumas pasiekiamas pridedant dirbtinę
difuziją su apribojimais. Pateiktas šios schemos palyginimas su kitomis schemomis. Taip pat
analizuojama antros eilės pagal laiką ir erdvę monotoninė "Cabaret" schema. Pateikti testų
rezultatai.


