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Abstract. We have developed a method for analytical solving of theeltaermoelasticity
problem in terms of stresses for a strip, which is infinitehwiéspect to width. To derive the
governing equations, we have used a method of direct irttegraf differential equilibrium
and compatibility equations. Reducing the governing équatto the integral Volterra type
equation of the second kind, we have solved it in Fouriersfiaams by applying a method of
simple iteration.
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1. Introduction

Recently, the demands of engineering caused the develdprhexew directions
in mechanics, thermoelasticity theory of inhomogeneolidsinclusive. It is well
known that all the materials are inhomogeneous to certaanékl0]. Of special in-
terest for theoretical and practical research are theswiith continuous dependence
of their elastic properties on coordinate. As an examplemeation the function-
ally graded materials [9], whose elastic properties candoméd technologically,
composites, etc. [10].

The main methods for constructing the analytical solutiohthermoelasticity
problems for inhomogeneous solids are described in [5, |7, TH& essential diffi-
culty one faces while using them consists in solving theedéftial equations with
variable coefficients. In most cases, certain approximatare used, e.g., replace-
ment of an inhomogeneous solid by a set of conjuncted honsmgensolids [17].
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See [3, 4, 6] for application of such an approach to a plangieiy problem in a
strip inhomogeneous with respect to width.

Plevako showed [11] that representation of the continydollomogeneous ma-
terial (elastic cylinder inhomogeneous in radial direg}iby the soldered homoge-
neous layers gives a very slow convergence to an exact@olfithe number of lay-
ers increases. So, he proposed to consider the inhomogeadmders having such
elastic characteristics that enable easy constructioheo$olution. Then the elastic
characteristics can be approximated by continuous p@glinstead of piecewise-
constant functions, improving the approximation towant&x®act solution.

Despite of many approaches to solution of the thermoelgsticoblems for in-
homogeneous solids, there exists a strong need in andlyiathods. Those methods
would enable finding solutions in the form of a functional degence on the load-
ings thus being efficient for different kinds of inhomogédpdbadings, and shapes.
It is known, that such solutions are most convenient forisglinverse problems of
thermomechanics and the problems of optimal control oftieestressed state [13].

The paper deals with construction of an analytical solutibiiie plane thermoe-
lasticity problem in terms of stresses for a strip inhomagers in its cross-section.
To solve the problem, we use a method of direct integratiagoilibrium and com-
patibility equations proposed by Vihak [14]. Such an apphoanables easy appli-
cation of the method for solving the problems for inhomogersesolids, since the
equilibrium equations, which are integrated directly, m@ependent of the math-
ematical model of physical relations between stresses taaithis The method has
been already applied to some one-dimensional problemd4gl5,

2. Statement of the Problem

We consider a plane quasi-static thermoelasticity proliretine strip
D={(z,y): (x,y) € (—00,0)x[-1,1]}

for the case of inhomogeneous isotropic material. The prohs governed by the
equilibrium equations [1, 8]

0oy 004y

+F,. =0, (z,y)€D,

;:w gzy (2.1)
o Ty =0
compatibility equation in terms of strains
2 2 2
5+t = @2
and the physical relations for plane straip & 0)
Fe, =0, —v(oy+0.) +aFET, FEe,=0,—v(o, +0,)+ aET, 2.3)

o, =v(oy +0y) —aFET, Gegy = 05y, 2G=E/(1+v).



Reduction of Plane Thermoelastic Problem in a Strip to Vadt&quation 93
We prescribe the tractions at the boundary

o'y‘yzl - _pl(I)’ Uy‘y:_l - _pQ(I)v

(2.4)
Uzy‘yzl = ql(I)a Uzy‘y:_l = QQ(I)

and assume that stresses are tending to zefo|as> co. Hereo;, 0,y; €, €xy,

(j = z,y, z) are the stress and strain tensor components, respectivety;* /b,

y = y*/b; x*, y* are the Cartesian coordinates (¢ [-b,b)); E, G, v, a denote
the Young’s modulus, shear modulus, Poisson’s ratio, aactctiefficient of linear
thermal expansion, which are the functions of ¢heoordinate ., I, are the body
forces in the dimension of stress, afidlenotes a prescribed temperature field. We
assume that the force and thermal loadings depend on tinaengsrically, so, we
skip thet-variable for shortening of notation.

3. Reduction of the Problem to Governing Equations

Following [14], we reduce the set of equations (2.1)—(24\Mo governing equations
for the normal stress,, and total stress = o, + o, (we call them the key stresses).
To derive the first governing equation, we represent (2.2gims of stresses. For
that, we eliminater, from (2.3) and express, in terms of the key stresses, to obtain

2Ge, = (1 —v)o — oy +2aG(1 + V)T,
2Gey, = —vo + oy +2aG(1 4+ v)T.

Using the obtained expressions for strains in terms of stesthe fourth relation
(2.3), and the equilibrium equations (2.1), we represei (@ the form

0% (1-v 1—v 0% 0T

Loy (1N L d (1)1 (0R 0,
~ 2 (G> B\G) e\ Ty ) G

Further, we use the relation

o*c, OF, 0%, OF,

92 T or T o oy

following from (2.1) by elimination of shear stress. Additid?o, /02? to both sides
of the latter equation yields
0?0 OF, OF, 0? 0?

A=——+—. (3.2)

i _ %
T a2 * Ox oy’ 0x2 Oy

We complement (3.1) — (3.2) by two boundary conditions (®4), and those for
the derivatives
9oy dgy day _daz

i R B b G )
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They follow from (2.4} 4 by satisfying (2.1) at strip’s sides= +1.

After determining the key stresses, the stregss calculated by the formula
o, = 0 —oy. Finally, the shear stress is determined by integratioh@gtuilibrium
equations:

1

0oy

4Uzy =q1+q — Oz
2

i F) sign(y — ¢) d

-/ (% i F) sign(e — n) dn. (3.4)

— 0o

4. Solution of the Governing Equations

To calculate the key stresses, we apply the integral Fotraesform [2] byz to
(3.1), (3.2), (2.4) 4, and (3.3), to obtain the following problem in Fourier space

d’c _ dF,
dyo—;! — 525'y = —525' + ’LSFz — d—yy, (41)

d? (1—-v_ - 9o (1—v_ -
d_yQ( 5G a—i—a(l—i-V)T)—s ( 5 a—i—a(l—i-V)T)

oy d (1N _sd 1\ _ 1 (. -  dF
_2dy2(G> Fydy c) o\t dy )’

5y|y:1 = _Z_)la &y|y:71 = _ﬁQa (42)
doy . - doy -

— | =-isq1 — F,(1), — = —isqx — F(—1

. IO A ,(—1)

Heres denotes a parameter of the integral transfore,y/—1.
By solving (4.1) — (4.2), we arrive at the expressiondgr

oy = — pacosh(s(1 +y)) — (iqg + éFy(—l)) sinh(s(1 +y))
+ / (iﬁm(g) _ %%5(5) _ sa(g)) sinh(s(y — &) dé  (4.3)

and two integral conditions
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isinh(s) cosh(s)

1
/ sinh(s{) d§ = (q1 + ¢2) — (p1 — P2) (4.4)
—1
Slr;rz(s) (Fy(1) + Fy(-1)) + é / <zFI - éﬂdf) sinh(s¢) de,
Z1

1 . -
/ cosh(s§)dg = (71 — G2) icostls) _ (p1 + D2) S'n:(s)

—1

n C°§2(5> (F,(1) — Fy(—1)) + i / <zF . lddig) cosh{s¢)dé
21

The second equation (4.1), accompanied by (4.3), yields

2G : s
= 1_—U{Acosr(sy) + Bsinh(sy) + Pap2 + Q242 + @ — (1 +v)T

Y 3
d? 1 _ .
) & (g ) sist =€) [ osinn(ste ) dnas. 49

Y

& % 1 j_; <%> sinh(s(y — 5))_/5 <iFI(77) a éd}%n))

x sinh(s(& —n)) dndé — %/ {Fy@d% (%)

+ s (1570 + 219D Jsinntsy — ) de + LA ).

[ (1
Py = /d§2 < (§)> cosh(s(1 + &))sinh(s(y — &)) d&,

i i &2 1 . .
Q2= —%_/I e <@) sinh(s(1 + &))sinh(s(y — €)) dé.

The constantsl and B are determined by (4.4).

Change of order of integration in the integral of (4.5) ygetHe integral \olterra
type equation of the second kind for the transform of totasst:
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2G ;
i — (ACOSV(Sy) + Bsinh(sy) + Pop2 + Q242 + P

—al+ T3 [owEEny) ). @)

DN =

where

Fd /1N . .
k(e = [ 5 (g ) Smhlsty — ©)sinn(s(e ~ ) de.
n
Following [15, 16, 18], we solve (4.6) by a method of simpéétion [12]:

2G |
on = 7 (AuCostisy) + Businh(sy) + Paps + Qaiiz + @

Y
_ 1 [
a0 = 5 [ ouaK(Eny)dn).
—1
To compute the constants, andB,, it is assumed that, = 0, and (4.4) is used.

After having founds, we determines, by (4.3). Applying the inverse Fourier
transform [2], we calculate the normal stresses, and, after that, the shear stress
0.y Dy means of (3.4).

D B . . .
Note that |fa is linear iny, equation (4.6) has an exact solution already at 1:

7= % {AcosH{sy) + Bsinh(sy) + H — a(1 +v)T'}, (4.7

7y = —pacosh(s(1+y)) — (iCb + éFy(—l))Si“h(S(l +y)) - 24s

) /” G(costise)sinn(s(y ~ &) . 238/‘” G(&)sinh(s¢)sinh(s(y — €))

d
J T J T ¢
[ QOF©) 1ot e ae — 90 | COHE L
—|—s_/1 =G T(&)sinh(s(y — &) d& — 2 _/1 o) sinh(s(y — €)) d¢,
where
- IQ Il - 13 Il
T Ll —I? Ly I? Vo, B=gpT 2 Ry 2 7
1 1
_ [ _G© . . G(§) .
I __/11 JE )smh( €)cosh(s€) de, I /1 smh2 (s€) dE,
[ G
I3 = / : y(g)COSH)(SO de,
1
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1 1
/acosk(sg)dg H.+ 60, Uy = %/ sinh(s¢)d¢ — Hs + @S,
—1 -1

HC:/Ci(OH( )cosr(sg)dg, @C_/%fzg@cosr(s{) dg,
1

= Z1

v(& 1—v()

ZPMO%<%@)+%%ﬂ§&@+@%QH

X Sinh(s(y — 5)) dg,

\/

1 1 _
HS:/GI@H( sint(s¢) de, 6, =/Msinh(s§) 3

[V

H(y) = —

and the integral expressions@fare determined by (4.4).

Finally, if £, G, v = const, then (4.7) provides us with the same expressions for
oy ando that have been found while solving the analogous problentdonoge-
neous material [14].

In the case of plane stress [1], [8], the governing equaBiob) takes the form

» 1cr—|— o 1&4—@82—T
62 E(r“)2 02

oy & (1 d (1 1 (0F, OF,
= — Fy— — _— —|— ] s
2 dy G dy \ G 2G \ O oy

5= E(Acosr(sy) + Bsinh(sy) + Papa + Qoo + @

Y

[otnic.n.vdn).

-1

and (4.6) reduces to

—a(l+ )T —

N =

5. Numerical Results

Consider an inhomogeneous stfiploaded by the tractions

2
exp(—x
p1=p2=%), G=q@=0afF=F=T=0.

LetG =Gy =const,y =1— 3 (a = cons}. By (4.7), the Fourier transforms
—ay

of o, o, are
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_ 2 .
C=1_, (Acosf(sy) + Bsmr‘(sy)),
&, = —p2cosh(s(1 +y)) — igzsinh(s(1 +y))

iy A/ cosh(s¢) ?n_h,/ s(y —¢)) g~ 2 B/ sinh(s€) slln_h( s(y —§))

dg,

whereD = I? — I,13,

= ﬁ [(i((jl + @2)sinh(s) — (p1 — p2)cost(s)) [

+ (i — @1)cosK(s) + (71 + p2)sint(s)) .
B = 2= [(ila — a2)eost(s) — (p1 + pa)sint(s) 1

~ (i + @)sinh(s) — (51 — p2)cos(s)) Is]

B 1sinh(sg)cosr(sg) B lsinr?(sg) B 1cosH"(sg)
ne [SEENSS s = [ TR e 1= [ 2

We see that, o, are independent af,, depending on the Poisson’s ratio only,
which is varying iny — coordinate.

G -0,37- T
-0,38- g RN

-0,39 T T T

G 0,00
-0,05{ 7

-0,10

0,02 |
Xy 0,00 4
0,02

Figure 1.y-dependence of dimensionless stressd3 atx = 0.5 (solid line —
a =0, dashed line « = 0.5, dotted line -« = 1.0).

Figure 1 demonstrates thedistribution of dimensionless stresses in a sfiip
for different values of the parameter The solid curves correspond to the case of
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a homogeneous material & 0, v = 0.33). Then the stresses, ando, are even
functions of planar coordinates, whitg,, is an odd function. The dashed and dotted
lines reflect the influence of material's inhomogeneity aesg distribution. Due
to dependence of the Poisson’s ratio on gheoordinate, the law of paired normal
stresses is violated. Moreover, the peaks of stresses diedsin the direction of
greater Poisson’s ratio.

So, the coordinate dependence of the elastic charaatsristimaterial has an
enormous effect on the distribution of stresses.

6. Conclusions

The paper develops an approach to solving the plane theastaéy problem in
terms of stresses for an inhomogeneous strip. The appredased on the method
of direct integration of differential equilibrium equatis, which are independent of
the mathematical model of relations between strains aeds#s. Due to derived re-
lations between stress tensor components, we can simalifylation of the stressed
state in an inhomogeneous strip considerably, if comparedltiing such a problem
in terms of displacements. In particular, we reduce therasfithe governing differ-
ential equations with variable coefficients, derived onlihsis of the compatibility
and equilibrium equations.

The solution we have constructed enables calculation oftitessed state in a
strip inhomogeneous with respect to width. It can be alsdiegfor solving the
corresponding inverse thermoelasticity problems as veatiimization problems.
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Nehomogeninio strypo termoelastiSkumo uzdavinio suvedias j Volterra tipo integraling
lygtj

Yu. Tokovyy, A. Rychahivskyy

Straipsnyje vystomas analizinio sprendinio metodas nelgeminio strypo termoelastiSkumo
uzdaviniui strypo jtempimams rasti, kai strypo ilgis yegalinis pl&io atzvilgiu. Pagrindias
lygtys iSvedamos naudojant diferencialines pusiausviyregderinamumo lygtis ir tiesioginj
integravima. Suvedus pagrindines lygtis | antrojo tipat®tra integraling lygtj, naudojant
Furje transformacija, ji sprendZiama paprastosios digrametodu.



