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Abstract. We have developed a method for analytical solving of the plane thermoelasticity
problem in terms of stresses for a strip, which is infinite with respect to width. To derive the
governing equations, we have used a method of direct integration of differential equilibrium
and compatibility equations. Reducing the governing equations to the integral Volterra type
equation of the second kind, we have solved it in Fourier transforms by applying a method of
simple iteration.
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1. Introduction

Recently, the demands of engineering caused the development of new directions
in mechanics, thermoelasticity theory of inhomogeneous solids inclusive. It is well
known that all the materials are inhomogeneous to certain extent [10]. Of special in-
terest for theoretical and practical research are the solids with continuous dependence
of their elastic properties on coordinate. As an example, wemention the function-
ally graded materials [9], whose elastic properties can be formed technologically,
composites, etc. [10].

The main methods for constructing the analytical solutionsof thermoelasticity
problems for inhomogeneous solids are described in [5, 7, 10]. The essential diffi-
culty one faces while using them consists in solving the differential equations with
variable coefficients. In most cases, certain approximations are used, e.g., replace-
ment of an inhomogeneous solid by a set of conjuncted homogeneous solids [17].
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See [3, 4, 6] for application of such an approach to a plane elasticity problem in a
strip inhomogeneous with respect to width.

Plevako showed [11] that representation of the continuously inhomogeneous ma-
terial (elastic cylinder inhomogeneous in radial direction) by the soldered homoge-
neous layers gives a very slow convergence to an exact solution if the number of lay-
ers increases. So, he proposed to consider the inhomogeneous cylinders having such
elastic characteristics that enable easy construction of the solution. Then the elastic
characteristics can be approximated by continuous polylines instead of piecewise-
constant functions, improving the approximation towards an exact solution.

Despite of many approaches to solution of the thermoelasticity problems for in-
homogeneous solids, there exists a strong need in analytical methods. Those methods
would enable finding solutions in the form of a functional dependence on the load-
ings thus being efficient for different kinds of inhomogeneity, loadings, and shapes.
It is known, that such solutions are most convenient for solving inverse problems of
thermomechanics and the problems of optimal control of thermo-stressed state [13].

The paper deals with construction of an analytical solutionof the plane thermoe-
lasticity problem in terms of stresses for a strip inhomogeneous in its cross-section.
To solve the problem, we use a method of direct integration ofequilibrium and com-
patibility equations proposed by Vihak [14]. Such an approach enables easy appli-
cation of the method for solving the problems for inhomogeneous solids, since the
equilibrium equations, which are integrated directly, areindependent of the math-
ematical model of physical relations between stresses and strains. The method has
been already applied to some one-dimensional problems [15,16].

2. Statement of the Problem

We consider a plane quasi-static thermoelasticity problemin the strip

D = { (x, y) : (x, y) ∈ (−∞,∞) × [−1, 1] }

for the case of inhomogeneous isotropic material. The problem is governed by the
equilibrium equations [1, 8]
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compatibility equation in terms of strains
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∂x∂y
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and the physical relations for plane strain (ez = 0)

Eex = σx − ν(σy + σz) + αET, Eey = σy − ν(σx + σz) + αET,

σz = ν(σx + σy) − αET, Gexy = σxy, 2G = E/(1 + ν).
(2.3)
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We prescribe the tractions at the boundary

σy
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y=−1
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(2.4)

and assume that stresses are tending to zero as|x| → ∞. Hereσj , σxy; ej, exy,
(j = x, y, z) are the stress and strain tensor components, respectively;x = x∗/b,
y = y∗/b; x∗, y∗ are the Cartesian coordinates (y∗ ∈ [−b, b]); E, G, ν, α denote
the Young’s modulus, shear modulus, Poisson’s ratio, and the coefficient of linear
thermal expansion, which are the functions of they-coordinate;Fx, Fy are the body
forces in the dimension of stress, andT denotes a prescribed temperature field. We
assume that the force and thermal loadings depend on time parametrically, so, we
skip thet-variable for shortening of notation.

3. Reduction of the Problem to Governing Equations

Following [14], we reduce the set of equations (2.1)–(2.4) to two governing equations
for the normal stressσy and total stressσ = σx +σy (we call them the key stresses).
To derive the first governing equation, we represent (2.2) interms of stresses. For
that, we eliminateσz from (2.3) and expressσx in terms of the key stresses, to obtain

2Gex = (1 − ν)σ − σy + 2αG(1 + ν)T,

2Gey = −νσ + σy + 2αG(1 + ν)T.

Using the obtained expressions for strains in terms of stresses, the fourth relation
(2.3), and the equilibrium equations (2.1), we represent (2.2) in the form
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Further, we use the relation
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=
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+
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,

following from (2.1) by elimination of shear stress. Addition∂2σy/∂x2 to both sides
of the latter equation yields

∆σy =
∂2σ

∂x2
+

∂Fx

∂x
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+
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We complement (3.1) – (3.2) by two boundary conditions (2.4)for σy and those for
the derivatives
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They follow from (2.4)3,4 by satisfying (2.1) at strip’s sidesy = ±1.

After determining the key stresses, the stressσx is calculated by the formula
σx = σ−σy. Finally, the shear stress is determined by integration of the equilibrium
equations:

4σxy = q1 + q2 −
1

∫

−1

(
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)

sign(y − ξ) dξ

−
∞
∫

−∞

(

∂σy

∂y
+ Fy

)

sign(x − η) dη. (3.4)

4. Solution of the Governing Equations

To calculate the key stresses, we apply the integral Fouriertransform [2] byx to
(3.1), (3.2), (2.4)3,4, and (3.3), to obtain the following problem in Fourier space:
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Heres denotes a parameter of the integral transform,i =
√
−1.

By solving (4.1) – (4.2), we arrive at the expression forσ̄y

σ̄y = − p̄2cosh
(
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)
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and two integral conditions
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The second equation (4.1), accompanied by (4.3), yields
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The constantsA andB are determined by (4.4).

Change of order of integration in the integral of (4.5) yields the integral Volterra
type equation of the second kind for the transform of total stress:
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K(ξ, η, y) =

y
∫

η

d2

dξ2

(

1

G(ξ)

)

sinh
(

s(y − ξ)
)

sinh
(

s(ξ − η)
)

dξ .

Following [15, 16, 18], we solve (4.6) by a method of simple iteration [12]:

σ̄n =
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To compute the constantsA1 andB1, it is assumed that̄σ0 = 0, and (4.4) is used.

After having foundσ̄, we determinēσy by (4.3). Applying the inverse Fourier
transform [2], we calculate the normal stressesσ, σy and, after that, the shear stress
σxy by means of (3.4).

Note that if
1

G
is linear iny, equation (4.6) has an exact solution already atn = 1:
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and the integral expressions ofσ̄ are determined by (4.4).

Finally, if E, G, ν = const, then (4.7) provides us with the same expressions for
σy andσ that have been found while solving the analogous problem forhomoge-
neous material [14].

In the case of plane stress [1], [8], the governing equation (3.1) takes the form
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+
1

E
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(
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,

and (4.6) reduces to

σ̄ = E
(

Acosh(sy) + Bsinh(sy) + P2p̄2 + Q2q̄2 + Φ

− α(1 + ν)T̄ − 1

2

y
∫

−1
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)

.

5. Numerical Results

Consider an inhomogeneous stripD loaded by the tractions

p1 = p2 =
exp(−x2)

2
, q1 = q2 = 0 at Fx = Fy = T ≡ 0 .

Let G = G0 = const,ν = 1− 2

3 − ay
(a = const). By (4.7), the Fourier transforms

of σ, σy are
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We see that̄σ, σy are independent ofG0, depending on the Poisson’s ratio only,
which is varying iny – coordinate.
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Figure 1.y-dependence of dimensionless stresses inD atx = 0.5 (solid line –
a = 0, dashed line –a = 0.5, dotted line –a = 1.0).

Figure 1 demonstrates they-distribution of dimensionless stresses in a stripD
for different values of the parametera. The solid curves correspond to the case of
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a homogeneous material (a = 0, ν = 0.33). Then the stressesσy andσx are even
functions of planar coordinates, whileσxy is an odd function. The dashed and dotted
lines reflect the influence of material’s inhomogeneity on stress distribution. Due
to dependence of the Poisson’s ratio on they-coordinate, the law of paired normal
stresses is violated. Moreover, the peaks of stresses are shifted in the direction of
greater Poisson’s ratio.

So, the coordinate dependence of the elastic characteristics of material has an
enormous effect on the distribution of stresses.

6. Conclusions

The paper develops an approach to solving the plane thermoelasticity problem in
terms of stresses for an inhomogeneous strip. The approach is based on the method
of direct integration of differential equilibrium equations, which are independent of
the mathematical model of relations between strains and stresses. Due to derived re-
lations between stress tensor components, we can simplify calculation of the stressed
state in an inhomogeneous strip considerably, if compared to solving such a problem
in terms of displacements. In particular, we reduce the order of the governing differ-
ential equations with variable coefficients, derived on thebasis of the compatibility
and equilibrium equations.

The solution we have constructed enables calculation of thestressed state in a
strip inhomogeneous with respect to width. It can be also applied for solving the
corresponding inverse thermoelasticity problems as well as optimization problems.
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Nehomogeninio strypo termoelastiškumo uždavinio suvedimas į Volterra tipo integralinę
lygtį

Yu. Tokovyy, A. Rychahivskyy

Straipsnyje vystomas analizinio sprendinio metodas nehomogeninio strypo termoelastiškumo
uždaviniui strypo įtempimams rasti, kai strypo ilgis yra begalinis plǒcio atžvilgiu. Pagrindiṅes
lygtys išvedamos naudojant diferencialines pusiausvyrosir suderinamumo lygtis ir tiesioginį
integravimą. Suvedus pagrindines lygtis į antrojo tipo Volterra integralinę lygtį, naudojant
Furje transformaciją, ji sprendžiama paprastosios iteracijos metodu.


