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It is more important to "be roughly right than precisely wgin/A.Einstein/

Abstract. The development of regional urban system still remains étigeamain problems
during the human race history. There are a lot of problemdérthis system like overcrowded
cities and decaying countryside. All these situations camaproduced by modelling them
using Cellular Automata (CA) [1, 2, 5]. CA models implemetgaithms with simple rules
and parameter controls, but the result can be a complex lmemav

A stability of naturally formed self-organized urban systdepends on its critical state
parameterr in the power lawlog(f(z)) = —7log(x). If the system reaches self-organized
critical (SOC) state then it remains in it for a long time. T®& model URBACAM (URBAnN-
istic Cellular Automata Model) describes the long-lastiagn behaviour and shows that the
change in behaviour is sensitive to the urban parametéithe power law.
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1. Introduction

Urbanization is a social process whereby cities grow anieses become more
urban. Urban system is a good example of clustering proe#idsnds of cities are
situated in space differently and have different amountogfytation inside.

Clusteris a set of agents (cells) connected by side or by corner (ge&)FPrimi-
tive definition of city is an agglomeration of buildings (ageor cells). Consequently
in our model a city is represented as an agglomeration oféhcelts( /) and we call
it cluster.

The model is a rough view of the reality. Even though the sy&tdehaviour
has a simple form, it may not be at all easy to construct theahfod it. When the
behaviour is complex it may take an irreducible amount of gotational work to
answer any given question about it. However, this is notmaignodel imperfection,
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Figure 1.Examples of clusters.

it is merely a fundamental feature of its complex behavi@ith traditional models
based on differential equations we try to find the unique rhéatesvery problem,
consequently the result is unique, too. But we can obseatsttis possible for quite
different methods to yield essentially the same large-edsahaviour, implying that
with different tools there can be many models that have theesasonsequences, but
a different detailed underlying structure.

Systems, which exhibit scale-free power law behaviouesudiquitous in phy-
sics, biology, geology, sociology and economics. Shoatliynctionf(z) produces
power law if the independent variablehas an exponent. There are many different
systems generating power law behaviour, the SOC systeneiamong them.

The self-organized criticality manifests that open, dyitat far from equilib-
rium systems consisting of many constituents may evolveatds a critical state
without any control from outside agents. In the criticaltsta small local pertur-
bation may spread to the whole system through domino—lifecefind form an
"avalanché&. The spatial and temporal sizes of "avalanches" at thieatitate obey
a stable scale-free power law. Our model should simulaterealysituation just by
changing parameters. These parameters for the regiora syistem are weights of
empty placg E), houseq H), time stepsTl’, initial pattern and grid size. The main
goal is to find which parameters are essential in controtliegoehaviour of the sys-
tem. This task requires a lot of calculations, so in this page will evaluate only
parameters that reflex SOC long-lasting stability state.

The algorithm of calculations is pretty simple: accordingite definition the size
of clusters is found going from the upper left corner to thdra right corner of the
pattern, from the first house cell around its environmenil tim¢ cluster is closed
and so on. The distribution of cluster sizes should reptakersituation that we are
modelling. So again, we have to find ruling parameters in codeh

2. Simulating Urban Growing

2.1. Data analysis

Analysing data from real urban situations in Lithuania aoshe other neighbouring
countries (see Fig. 2) we obtained that these systems fitrdawevith the following
urban parameters Lithuania —0.83, Estonia .94, Sweden -, Norway —0.92.
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Figure 2.Power law in urban systemBig(rank of cities) = —7log(population).

The main goal of CA modelling and simulation is to get the san@n parame-
ter7 in the model as in practice. We make the main assumptiontibes ire counted
conglomerates of houses (clusters) in the model insteadmilption in the cities:
one house in a model is directly proportional to two persarsthe scale i : 2).

2.2. Model description

URBAnN Cellular Automata Mod€lURBACAM) is done according to simple rules
with an interface of Borland Delphi 6. This notwithstandoedlular automata model
can be implemented within different software [1]. Modelindes are the following
[3, 4]

1. A set of cells’ weights

wheren is the dimension of the patterny; are weights of cells representing
values of parameters (houses, empty place);

2. Wy <= Wiytom.nt2m IS a torus withm rings neighbourhood (in our model
m=1,2,3,4);

3. w;; is the weight of cell’s neighbourhood

i+m  Jj+m ]
> > wy, forneighbourhood of empty cells,
ﬁ}kl = { k=i—-ml=j—m

0, for neighbourhood of house cells,

S = > > w; is the total weight of neighbourhoods of empty places. # 0
i=1j=1
then the process is stopped.
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4. Transformation o2 D matrix into1D vector:

Whpn & Wya = [, ..., W2,
W _l’li) wk—la Ifk22a
FTSY T Y0, ifk=1

Then we have that < w; < 1 andw,2 = 1.
5. Transition rule from (E) to (H):

pr = random(1l), k= (i — 1)n+ 7.

If p € [Wg, Wr41], k= 1,...,n%—1, then celhw;; turns into house cell, where
i=(k-1)divn+1, j=(k—1)modn+ 1.
6. Recalculate all weights and repeat the procedure.

2.3. Predicting a long-lasting development

Urban model [4] generates clusters that have global systeharacteristic. We ex-
pect to get dog-log distribution as a stable result of complex system evolutin
setting different parameters we can model any real or insdg@situation, stabiliza-
tion of which is a long lasting process. But not all real diitoias are stable, unstable
ones increase a gap between small and big clusters, reced®rlog distribution.
Our task is to define which parameters should be taken anddeary their values
in order to getog-og distribution with the gradient.

Initially we freeze all parameters except one. During claftons we have
changed the value of only one parameter and observed thenilysaf cluster distri-
bution. The analysis proved that only two parameters arengiss £/ (empty place)
andH (houses).

Next we do the following experiment calculations: we setapaeters(E, H)
and find area where = 1. Let’s have in mind that in this simplified model we don’t
have the decay of houses, therefore initial clusters Higion should be constructed
in such a way that initial amount of houses is not more thi#b of houses in a final
stage. For example, if we are planning to make0 steps, initial situation should
hold 100 H cells. A sensitive dependence of the solution on initialdibons is
associated with a kind of instability in the system. Most of experiments are done
with the blank pattern or the pattern with only one house clitoesn’t give us an
idea about stability or instability.

3. Modelling Results

We useURBACAM described in Section 2.2., to investigate the sensitioftyhe
model with respect to initial values of parameters: empgcel (see Table 1 and
Figure 3), amount of time steps (see Table 2 and Figue &nd weights of houses
(see Table 3 and Figurép
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It follows from computational results that different dibtrtions of clusters are
observed for the different weights of cells. A cluster in oase is a set of weights of
houses connected by side or corner. Results aren't hardeahtecause of random
component. We conclude from Fig. 2 that the obtained resutd up very high
correlation ¢ 0.98) with power law.

Table 1. Dependence of cluster Table 2. Dependence of cluster distri-
distribution on the weight of bution on the amount of time steps.
empty place.
Cluster size
Cluster size Time steps >1 >10 >100 >1000

E >1 >10 >100 >1000
14000 257 103 34 1

1 129 60 18 4 15000 231 94 27
2179 75 25 16000 219 89 32
3 193 86 24 17000 163 58 13
4 246 94 23 18000 141 58 15
19000 116 40 11

(G2
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Table 3.Dependence of cluster distribution
on the weight of houses.

Cluster size
H >1 >10 >100 >1000

795 185 72 21 3
796 223 82 23 2
797 173 85 21 1
798 203 93 31 4
799 200 79 26 3
800 199 83 24 4
801 209 77 18 4
802 210 81 25 2
803 186 83 23 4
804 197 86 22 3
805 208 84 22 4

These and many other calculations enable us to formulafelibeiing hypothe-
sis: when the weights are small, the system is very sensitighanges. On the other
hand, if the weights are large, small changes don'’t play adigy But anyway the
interval of chosen parameters is not wide. Such intervalg bacause parameters
depend on each other and because the formation of a clusieraisdom process.
The reason for discrepancy is that the probabilities fdedéint cells are in fact cor-
related. In general, such approximations tend to work bgdtesystems described in
large number of dimensions, where correlations tend to$miteportant.
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Figure 3. Graphical results of Tables 1-3.

4. Conclusions

In this work we have obtained the main parameters (housggygtace, time steps)
that make system dynamically stable. The initial valuesheké parameters are the
following: weight of house$H) = 800, empty plac€ E') = 3, time stepg17000 —
18000] in a pattern(200 x 200). With these parameters we have got linearity in
log-og distribution, but the urban parameter= 1 wasn’t reached because of not
big enough pattern. Actually in our case a geit) x 200 is not enough to form a
necessary structure. Bigger grid requires more compuseurees and time, so the
algorithm should be improved.

In modern science it is usually said that the ultimate tesarof model is an
agreement of computational results with real system datethss is often interpreted
to mean that if a real data ever disagrees with a model, themibdel is wrong.
Particularly when the model is simple and the system is ceryplowever, it is quite
a common situation: obtaining the data collection is a cexpahsk rather than the
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model that is wrong. We have tended to find still less religbih the results of
complex system [2].
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Lasteliy automatais sugeneruoty klasteriy stabilumanalize

R. Siugzdait

Regionires urbanistias sistemos vystymasis iSlieka viena i$ opiausiy problgmaqnijos is-
torijoje. Keletas tokiy uzdaviniy kaip miesty perpiildgs, nykstagios kaimo vietoes ir t.t.
gali b'uti nesunkiai modeliuojami naudojant lastelitpenatus (LA). LA metodas ypatingas
tuo, kad realizuoja algoritma paprasty taisykliy beigmaetry valdymo pagalba,diau rezul-
tate galima gauti sutinga elgsena. Nat uraliai susiformavusiy urbamissiistemy stabilumas
priklauso nuo sistemos krizis savirangos b'usenos (KSB) parametrdei sistema pasiekia
KSB, tai ji ilga laika iSlieka joje. LA modelis URBACAM chakterizuoja ilgalaike elgsena ir
parodo, jog modelyje jos kitimus jtakoja eksponentingsiio urbanistinis parametras



