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Abstract. Many problems in modelling can be reduced to the solution of a nonlinear equa-
tion

F (x) = 0,

where F is a Frechet-differentiable (as many times as necessary) mapping between Banach
spaces X and Y . For solving this equation we consider high order iteration methods of the
type

xk+1 = xk − Q(xk, A
i

k), i ∈ I, I = {1, . . . , r}, r ≥ 1, k = 0, 1, . . . ,

where Q(x,Ai

k) is an operator from X into itself and Ai

k, i ∈ I, are some approximations
to the inverse operator(s) occurring in the associated exact method. In particular, this set of
methods contains methods with successive approximation of the inverse operator(s) and those
based on the use of iterative methods to obtain a cheap solution of limited accuracy for cor-
responding linear equation(s) at each iteration step. A convergence theorem is proved and
computational aspects of the methods under consideration are examined. The solution of non-
linear Fredholm integral equation by means of methods with convergence order p ≥ 2 are
considered and possibilities of organizing parallel computation in iteration process are also
briefly discussed.

Key words: Banach space, Hilbert space, Fredholm integral equations, methods with the high
order convergence, parallel computation
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1. Introduction

A great deal of real-life problems consists of dynamical problems which are de-
scribed by differential, integral and integro-differential or differential-algebraic equa-
tions. The above mentioned equations can be considered as operator equations in ab-
stract spaces. Thus many problems in modelling can be reduced to the solution of a
nonlinear operator equation

F (x) = 0 , (1.1)

where F is a mapping from a Banach Space X into Banach space Y, and it is Frechet-
differentiable as many times as necessary.

For a Fredholm equation of the second kind, a well-established theory exists and
an increasing collection of efficient numerical methods is available for determining
the unknown function approximately. Second kind equations are relatively straight-
forward to treat provided the forcing term (the right-hand side) and the operator
defining the equation are smooth. In this case the algebraic equations produced by
approximate methods are usually reasonably well-conditioned.

For solving the second kind integral equation numerically its kernel is usually
discretized. An alternative way to reduce infinite dimensional problem to a finite
dimensional one is the employment of so called projection method (Galerkin ap-
proach). Thus the numerical solution of integral equations involves to a high degree
the solution of systems of nonlinear equations. The approach adopted in this report is
based on iterative methods for finding an inexact resolvent of the linearized Fredholm
integral equation(s) or an inexact solution to the corresponding linear equations.

Computational effort is often one of the basic problems in the solution of real-life
problems. The total cost of an iterative method is determined by the number of itera-
tions needed to achieve the required accuracy and the cost of each iteration. The im-
plementation of methods with the high order of convergence requires for computing
a solution with the prescribed accuracy, as a rule, less iterations, than methods with
a lower convergence order and therefore likely a less amount of computational work
than those with a lower convergence order. In order to save solvings of laborous sub-
problems the use of rapidly convergent methods seems to be a reasonable approach.

2. Methods

For solving (1.1) we consider the use of approximate variants of methods with the
convergence order p ≥ 2 of the type

xk+1 = xk − Q(xk, Ai
k), i ∈ I, I = {1, . . . , r}, (2.1)

where Q(x, Ak) is an operator from a Banach space X into itself and Ai
k, i ∈ I are

approximations to the inverse operators occurring in the corresponding exact method.
The investigation of approximate variants may give more realistic imagination of
convergence properties for methods under consideration. It is perhaps appropriate to
mention that an approximate variant of the method can be obtained as a result of a
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strategy used for solving linear subproblems at iteration, i. e. associated linear equa-
tions are solved approximately by taking finitely many steps of an iterative procedure
or the inverse operator is approximated by a recurrence formula, e.g.

Ak+1 = Ak

q−1
∑

ν=0

(I − F ′(xk+1)Ak)ν , q ≥ 2, k = 0, 1, . . . , (2.2)

having the convergence order p ≥ 2. In the formula (2.2) I denotes the identity
mapping.

Presently there are a lot of iterative methods of the type (2.1) with the conver-
gence order p ≥ 2, but in practice they are relatively little exploited. This is partially
due to the fact that their computational schemes of execution of one iteration step
are, as a rule, laborous. Besides their advantages become evident mostly in the close
vicinity of the solution.

The most popular methods of order three are the method of tangent hyperbolas
(or the Chebyshev-Halley method) defined by

Q(xk, Ak) =
[

I − 1

2
AkF ′′(xk)AkF (xk)

]

−1
AkF (xk) (2.3)

and the method of tangent parabolas (or the Euler-Chebyshev method) defined by

Q(xk, Ak) = AkF (xk) +
1

2
AkF ′′(xk)

(

AkF (xk)
)2

. (2.4)

Such methods are appropriate for problems where the other costs dominate the ones
of the second derivative evaluation [3, 4]. For avoiding the evaluation of second
derivatives F ′′ can be replaced by a discretization formula containing one additional
value of F and F ′ [1, 8]. In such a way we get from (2.3) the midpoint method

xk+1 = xk −
[

F ′
(

xk − 1

2
ΓkF (xk)

)]

−1
F (xk)

with Ak = Γk = [F ′(xk)]−1 [8] and from (2.4) the method

xk+1 = xk − AkF (xk) − AkF
(

xk − AkF (xk)
)

. (2.5)

Let ρ be a nonzero real parameter (ρ > 0) and

νk = xk − AkF (xk) (2.6)

then the formula

xk+1 = νk − 2AkF (νk) − 1

ρ
Ak

[

F
(

νk + ρAkF (νk)
)

− F (νk)
]

(2.7)

presents a family of methods with the convergence order equal to four, provided the
accuracy of approximation is of order O(‖F (xk)‖), i.e.

‖I − F ′(xk)Ak‖ ≤ γk = O
(

‖F (xk)‖
)

.
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In the limit case as ρ → ∞ we get from (2.7) the fourth order method

xk+1 = xk − (AkF ′(νk) − 2I)AkF (νk) (2.8)

In particular if we take ρ = −1 and Ak = Γk then from (2.7) follows the method

xk+1 = νk − ΓkF (νk) − ΓkF
(

νk − ΓkF (νk)
)

having the order of convergence order equal to 4. It can be shown that the higher
order of convergence then more accurately, in general, the related linear subprob-
lems are to be solved to preserve the order of convergence intrinsic to those standard
methods [8]. Assume now that there exist the uniformly bounded inverse operator
Γk as well as the constants M, K, λ, Λ and sequences {γk} and {bk} satisfying the
following inequalities

‖F ′(x)‖ ≤ M, ‖F ′′(x)‖ ≤ K, ‖Ak‖ ≤ Λ,

‖xk+1 − xk‖ ≤ λ‖F (xk)‖, λ, Λ < ∞,

‖I − F ′(xk)Ak‖} ≤ γk, max{γk, ‖F (xk)‖} ≤ bk, bk+1 = dqb2
k,

where (d < ∞), q ≤ 1, k = 0, 1, . . . . Next we shall prove the statement that
the method (2.5) under certain conditions converges superquadratically. This result
seems to be relevant as to solving nonlinear Fredholm integral equations.

Theorem 1. Let x0 ∈ X, S = {x ∈ X : ‖x − x0‖ ≤ ρ} and let the following
conditions be valid on S:

1◦ operator F is twice Frechet-differentiable;

2◦ the second derivative satisfies a Lipschitz-condition

‖F ′′(x) − F ′′(y)‖ ≤ L2‖x − y‖, 0 < L2 < ∞;

3◦ there exist Γ (x) with ‖Γ (x)‖ ≤ C and C < ∞;

4◦ δ = δ0 = db0 < 1.

Then if γk+1 = dqbk, where 0 < d < ∞ and 0 < q, b0 < 1 and r =
λH0(δ)/d ≤ ρ, then the equation F (x) = 0 has a solution x? in S, ‖x? − x0‖ ≤ r,
to which the sequence (2.5) converges superquadratically

‖xk − x?‖ ≤ λ

d
Hk(δ),

where Hk(δ) =
∞
∑

i=k

δ2i

qi.

Proof. Letting w1 and w2 be positive constants with w1, w2 < ∞ we shall first
show the validity of the following inequality

‖F (xk+1)‖ ≤ γ2
k‖F (xk)‖ + w1γk‖F (xk)‖2 + w2‖F (xk)‖3. (2.9)
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Indeed, taking Q1(x) = x then

Q2(x) = Q1(x) − Γ (x)F (x)

generates the Newton method and for general p ≥ 2

Qp+1(x) = Qp(x) − Γ (x)F [Qp(x)]

defines an iterative method

x
(p+1)
k+1 := Qp+1(xk) = Qp(xk) − Γ (xk)F [Qp(xk)] (2.10)

having the convergence order equal to p + 1.
Replacing Γk in (2.10) by its approximation Ak and putting x

(2)
k+1 := νk on the

basis of the Taylor expansion

F (x + ∆x) = F (x) + F ′(x)∆x +

∫ 1

0

F ′′(x + t∆x)∆x2(1 − t) dt

we have

‖F (x
(2)
k+1)‖ ≤ ‖[I − F ′(xk)Ak]F (xk)

+

∫ 1

0

F ′′(xk − tAkF (xk))[AkF (xk)]2(1 − t) dt‖

≤ γk‖F (xk)‖ +
1

2
Λ2K‖F (xk)‖2. (2.11)

Note, that in the capacity of Λ and K we can take Λ = C(1 + γ0) and K =
‖F ′′(x0)‖ + L2ρ respectively. In analogy we have

‖F (x
(3)
k+1)‖ = ‖F (x

(2)
k+1) − F ′(x

(2)
k+1)AkF (x

(2)
k+1)

+

∫ 1

0

F ′′(x
(2)
k+1) − τAkF (x

(2)
k+1)[AkF (xk)]2(1 − τ) dτ‖ (2.12)

≤ ‖[I − F ′(x
(2)
k+1)Ak]‖‖F (x

(2)
k+1)‖ + G‖F (x

(2)
k+1)‖2

with G < ∞. Taking xk+1 := x
(3)
k+1 and bearing in mind (2.11) we get

‖xk+1 − xk‖ = ‖x(3)
k+1 − xk‖ ≤ ‖AkF (xk)‖ + ‖AkF (x

(2)
k+1)‖

≤ λk‖F (xk)‖ ≤ λ‖F (xk)‖,

where λ = Λ[1 + γ0 + 1
2Λ2K‖F (x0)‖]. On the basis of (2.11) and (2.12) it is not

hard to obtain the inequality (2.9).

Let γk ≤ d0qb
2
k with 0 < d0 < ∞ and d = max{d0, 1 + w1 + w2}, then

bk+1 = max{γk+1, ‖F (xk+1)‖} = max{d0qb
2
k, (1 + w1 + w2)b

3
k} ≤ dqb2

k.
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Further on

bk+1 = dqb2
k = d−1q(dbk)2 ≤ d−1qq2(dbk−1)

22

≤ d−1(db0)
2k+1

k
∏

i=0

q2i

= d−1δ2k+1

k
∏

i=0

q2i ≤ d−1δ2k+1

qk+1

and

‖xn − xk‖ ≤
n−1
∑

l=k

‖xl+1 − xl‖ ≤ λ

d

[

Hk(δ) − Hn(δ)
]

with n ≥ k, i.e. the sequence {xk} is fundamental and consequently

x? = lim
k→∞

xk, ‖x? − xk‖ ≤ λ

d
Hk(δ) ≤ ρ, ‖x0 − x?‖ ≤ λ

d
H0(δ).

�

Remark 1. It can be easily shown that in case q = 1 sequence {xk} defined by (2.5)
converges quadratically and if γk = d‖F (xk)‖ then it converges cubically.

3. Solution of Fredholm Integral Equations

Let K be a nonlinear integral operator

K(x) =

∫ 1

0

K(s, t, x(t)) dt

with a smooth kernel K. We define the equation

F (x(s)) ≡ x(s) −
∫ 1

0

K(s, t, x(t)) dt = 0. (3.1)

Obviously,

F ′(x(s)) = h(s) −
∫ 1

0

K ′

x(s, t, x(t))h(t) dt

and the solution of the linearized equation can be written as

[F ′(x)]−1k = k(s) +

∫ 1

0

G(s, t)k(t) dt,

where the resolvent G(s, t) satisfies the following equation [5]

G(s, t) = K ′

x(s, t, x(t)) +

∫ 1

0

G(s, t)K ′

x(τ, t, x(t)) dτ.

Seeking Ai+1k in the form
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Ai+1k = k(s) +

∫ 1

0

Hi+1(s, t)k(t) dt,

then according to the formula (2.2) for q = 2 we have

(I + Hi+1)k = Ai+1k = 2(I + Hi)k − (I + Hi)
(

I − K ′

x(xi+1)
)

(I + Hi)k

= I + K ′

xk + K ′

xHik − H2
i k + HiK

′

xk + HiK
′

xHik,

from which

Hi+1k = K ′

xk + K ′

xHik − H2
i k + HiK

′

xk + HiK
′

xHik. (3.2)

Bearing in mind that x − F (x) = K(x) and Ai+1k = (I + Hi+1)k the method

xi+1 = xi − AiF (xi) (3.3)

in combination with (2.2) for q = 2 as applied to solving the equation (3.1) takes the
form

xi+1 =

∫ 1

0

K(s, t, xi(t)) dt −
∫ 1

0

Hi(s, t)
[

xi(t) −
∫ 1

0

K(t, τ, xi(τ))
]

dt, (3.4)

where

Hi+1(s, t) = K ′

x(s, t, xi+1(t)) +

∫ 1

0

K ′

x(s, τ, xi+1(τ))Hi(τ, t) dτ

+

∫ 1

0

Hi(s, τ)K ′

x(τ, t, xi+1(t)) dτ −
∫ 1

0

Hi(s, τ)Hi(τ, t) dτ

+

∫ 1

0

Hi(s, τ)

∫ 1

0

K ′

x(τ, u, xi+1(u))Hi(u, t) du dτ. (3.5)

First, probably, the formulas (3.4) and (3.5) are presented by Ulm [6]. The method
(3.2) – (3.5) converges quadratically.

The application of the formula (2.5) in combination with (2.2) for q = 3 to the
equation (3.1) can be found in [8]. This variant of the method converges cubically
but the execution of the formula for q = 3 is too expensive and it is desirable to
find a reasonable compromise between the needed accuracy of approximation and
computational cost. Next we propose a non-expensive procedure for improving the
rate of approximation.

First we evaluate Φ(xi+1) = AiF
′(xi+1)Di and after that exploit the formula

Di+1 = Di(2I − Φ(xi+1)Di) (3.6)

and, finally, compute Ai+1 = Di+1Ai ≈ [F ′(xi+1)]
−1. Seeking the operator Di in

the form

Dil = l(s) +

∫ 1

0

Q(s, t)l(t) dt = (I + Q)l

we find that
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Φ(xi+1)k = AiF
′(xi+1)k = (I + Ei+1)k,

where
Eik =

(

Hi − K ′

x(xi+1) − HiK
′

x(xi+1)
)

k.

Let k = Dil, then

Φ(xi+1)k = (I + Ei+1)(I + Qi)l = (I + Si+1)l,

where
Si+1l = (QiEi+1 + Ei+1Qi)l

and

DiΦ(xi+1)Dil = Di(I + Si+1)l = (I + Qi)(I + Si+1)l

= (I + Si+1)l + Qi(I + Si+1)l.

Note, that in the limit case

lim
q→∞

Di

q−1
∑

ν=0

(I − Φ(xi+1)Di)
ν = [AiF

′(xi+1)]
−1. (3.7)

The proposed procedure requires for finding Ai+1 only four integrations:

HiK
′

x(xi+1), Ei+1Qi, QiSi+1, Qi+1Hi .

The operator Φ(xi+1) has a lower condition number than F ′(xi+1) and therefore the
inversion of Φ(x) is more stable procedure than the inversion of F ′(x) directly. The
main disadvantage of the procedures

xi+1 = xi − [F ′(Θi)]
−1F (xi) (3.8)

Θi =

{

x0, if i = 0;

xi − 1
2 [F ′(Θi−1)]

−1F (xi), if i ≥ 1,

is the failure of a correct error estimate. It seems also reasonable to combine the
formula (3.8) with the formulas (2.7) and (2.8).

Although the case of this procedure for computing Ai+1 in the method (2.5)
guarantees only a quadratic convergence it is expected to be more efficient than (3.5)
because the operator Φ(xi+1) has a lower condition number than F ′(xi+1) and there-
fore the inversion of Φ(xi+1) is more stable than the direct inversion of F ′(xi+1).
One of the disadvantages of (3.6) is the failure of a correct error estimate. Neverthe-
less of that it seems effective to combine the formula (3.6) with (2.5) or the method
(2.5) with (3.8) having the convergence order equal to 1 +

√
2 [2, 9].

Further on we consider the solution of (3.1) in Hilbert space setting assuming
that F ′ is symmetric and the following inequalities

m(h, h) ≤ (F ′(x)h, h) ≤ M(h, h), 0 < m ≤ M < ∞, h ∈ H (3.9)

are valid in a Hilbert space H . In this case for inverting F ′(x) we can use the iterative
formula



Some Rapidly Convergent Methods for Nonlinear Fredholm Integral Equation 71

Ai+1 = Ai − αi+1(I − F ′(xi+1)Ai) (3.10)

with 0 < αi < 2/M, i = 0, 1, . . . , n and then Hi+1 is defined by the relation

Hi+1(s, t) = (1 − αi+1)Hi(s, t) + αi+1K
′

x(s, t, xi+1(t))

+ αi+1

∫ 1

0

K ′

x(s, τ, xi+1(τ))Hi(τ, t) dτ. (3.11)

For finding Ai+1 we now use the following pair of formulas

Ai+1 = 2Ai − AiF
′(xi+1)Ai, (3.12)

Ai+1 = Ai+1 + αi+1(I − F ′(xi+1)Ai+1). (3.13)

Let ‖I − F ′(xi+1)Ai‖ ≤ βi, ‖I − αi+1F
′(xi+1)‖ ≤ µi+1 and µ = max{µi+1}. It

can be easily deduced from (3.12) and (3.13) that

‖I − F ′(xi+1)Ai+1‖ = ‖I − F ′(xi+1)Ai[2I − F ′(xi+1)Ai]‖
≤ (I − F ′(xi+1)Ai)

2‖ ≤ β2
i

and

‖I − F ′(xi+1)Ai+1‖ = ‖I − F ′(xi+1)[Ai+1 + αi+1(I − F ′(xi+1)Ai+1]‖
≤ ‖(I − αi+1F

′(xi+1)[I − F ′(xi+1)Ai+1]‖ ≤ µβ2
i .

In virtue of (3.9) it is possible to find a quantity αi+1 such that µi+1 ≤ 1. Thus we
can take q = µ < 1. Obviously,

‖I − F ′(xi+1)Ai‖ ≤ ‖I − F ′(xi)Ai‖ + ‖[F ′(xi) − F ′(xi+1)]Ai‖

≤ γk + λΛK‖F (xi)‖ ≤ (1 + λΛK)bi =
√

d0b
2
k,

where d0 = (1 + λΛK)2. On the basis of Theorem 1 we now can conclude that the
use of procedure (3.12) – (3.13) for computing Ai+1 in methods (2.5) guarantees for
them at least superquadratic convergence.

The second approach, adapted by this report, is to use an iterative solution method
for solving associated linear equations. A strategy of problem solving that instead of
finding the exact solution of a linear equation at every iteration solves it intentionally
inexactly is a possibility to save computational effort and is adaptive in sense that it
uses low accuracy numerical solutions at inner iterations when the solution of (3.1)
is not reached yet and improves the accuracy as the solution is approached.

The method (3.10) – (3.11) has only superlinear rate convergence but its com-
putational schemes are very simple and therefore it can be used for finding non-
expensive approximate solutions to corresponding linear equations for high order
methods as applied repeatedly to solving linear equations in inner iterations.

Example 1. The formula (2.5) with (3.5) was applied to solving the equation

x(s) =

∫ 1

0

[1 − 0, 4854 + s2 + st arctgx(t)] dt

whose exact solution is x∗ = 1 + s2. The iteration process was started with x0 =
3
2 , H0(s, t) = 12

35st and Simpson’s formula was used for numerical integration. After
two iterations we obtained x2(s) = 1 + 0, 000103s + s2.
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4. Concluding Remarks

Iterative methods are usually self-correcting and hence they are not sensitive to com-
putations error. Common for all methods under consideration is the feature that they
involve as the main operation the integration which is numerically a trustworthy and
well-posed one. Methods under discussion offer various possibilities to organize par-
allel computation, e.g. the terms K ′

xHi, H2
i , HiK

′

x, HiK
′

xHi can be computed in
parallel as it can for instance, be shown from formula (3.5). Besides methods with
successive approximation of the resolvent yield the solution in an analytical form.

To ensure for methods (2.7) and (2.8) the convergence order equal to 4 one can
twice use the recurrence formula (3.5) at every iteration step.
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Keletas greitojo konvergavimo metodų netiesinei Fredholmo integralinei lygčiai

I. Kaldo, O. Vaarmann

Daug modeliavimo problemų galima suformuluoti netiesinės lygties F (x) = 0 pavidalu. Čia
F yra Banacho erdvės X atvaizdavimas į Banacho erdvę Y , turintis visas reikalingas Freshe
išvestines. Lygčiai F (x) = 0 spręsti taikomas aukštosios eilės iteracinis procesas tokio tipo

xk + 1 = xk − Q(xk, A
i

k), i ∈ {1, . . . , r}, k = 0, 1, . . . .

Čia Q(x,Ai

k) yra tam tikras operatorius X → X, Ai

k, yra atvirkštinio atvaizdavimo aproksi-
macijos. Įrodyta konvergavimo teorema ir išnagrinėti metodų taikymo skaičiavimo aspektai.
Aptariamos skaičiavimų lygiagretinimo galimybės, taikant si ūlomus metodus netiesinei Fred-
holmo integralinei lygčiai.


