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Abstract. Existence and multiplicity of solutions of the problemx′′ = −q(t) |x|p sign x

(i), x(0) = x(1) = 0 (ii) are investigated by reducing equation (i) to a quasi-linear one
so that both equations are equivalent in some domainΩ. If a solution of corresponding quasi-
linear problem is located in the domain of equivalenceΩ, then this solution solves the original
problem also. If this process of quasilinearization is possible for multiple essentially different
linear parts, then multiple solutions to the problem (i), (ii) exist.
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tion

1. Introduction

It is well known that the boundary value problem






x′′ = f(t, x), t ∈ I := [0, 1], f ∈ C(I × R, R),

x(0) = 0, x(1) = 0
(1.1)

is solvable iff is bounded, that is, there existsM ∈ (0, +∞) such that|f | < M for
any values of arguments.

If f is not bounded, the existence of a solution is not guaranteed. In some cases
boundary value problems with unboundedf can be reduced to a problem

x′′ = F (t, x), x(0) = x(1) = 0, (1.2)
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whereF is continuous and bounded. This is the case, for instance, ifthere exist the
so called upper and lower functionsβ andα, which satisfy the conditions

α < β, α′′ ≥ f(t, α), β′′ ≤ f(t, β), ∀t ∈ I,

α(0) ≤ 0 ≤ β(0), α(1) ≤ 0 ≤ β(1).

A continuous and bounded right sideF in (1.2) can be constructed in such a way
thatF andf coincide on the set{(t, x) : 0 ≤ t ≤ 1, α ≤ x ≤ β} and any solution
x(t) of the problem (1.2) satisfies the estimatesα ≤ x ≤ β. Obviouslyx solves
the problem (1.1) also. The interested reader may consult the book [1] to learn more
about the upper and lower functions.

We are motivated by the works of Erbe [2] and Jackson and Schrader [3]. They
showed that if the upper and lower functions exist then more can be said about so-
lutions of the boundary value problem. Their result, when adapted to the problem
(1.1), says that at least one solutionξ to the problem exists such that the respective
equation of variations

y′′ = fx(t, ξ(t))y (1.3)

is disconjugate on the intervalI, that is, a solutiony of the Cauchy problem (1.3),
y(0) = 0, y′(0) = 1 does not vanish in the interval(0, 1) (it may vanish att = 1,

however).

This result is valid for problems of the type (1.1) with bounded right sides since
thenα andβ can be constructed as appropriate quadratic functions (β = −M(t −
1
2 )2 + M, α = M(t − 1

2 )2 − M, for example).

It is known as well ([1]) that the quasi-linear problem (F1 is bounded)

(

L2x
)

(t) := x′′ + P (t)x′ + Q(t) = F1(t, x), x(0) = x(1) = 0 (1.4)

with nonresonant linear part
(

L2x
)

(t) (see Definition 1 below) is solvable. It was
shown in [4] that the quasi-linear problem (1.4) with oscillatory linear part(L2x

)

(t)
has a solutionξ(t) such that the respective equation of variations has similaroscil-
latory properties. The important conclusion of the result in [4] is that if the origi-
nal problem of the type (1.1) can be reduced to various quasi-linear problems with
essentially different oscillatory linear parts, then the original problem has multiple
solutions.

The intent of this paper is to apply the idea above and the mainresult in [4] to
prove that the Emden - Fowler equation

x′′ = −q(t) |x|pi sign x

has multiple solutions (of different types) subject to the boundary conditions (1.1).

Precise definitions and statements of the respective results are given in Section 2.
Section 3 is devoted to investigation of the Dirichlet boundary value problem for the
second order Emden - Fowler equation provided that the coefficientq(t) is positive.
It is shown that forp ∼ 1 there exist multiple solutions (of different types) of the
problem under consideration.
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2. Quasilinearization and Multiple Solutions

Several definitions will be used in the sequel.Definition 1. The linear part
(

L2x
)

(t) is called by a nonresonant (with respect to
the boundary conditions), if the homogeneous problem

(

L2x
)

(t) = 0, x(0) = 0, x(1) = 0 (2.1)

has only the trivial solution.

For instance, a linear part
(

L2x
)

(t) := x′′ + k2x is nonresonant, ifk 6= πi,
i = 0, 1, . . ., that is, the coefficientk belongs to one of the intervals

(0, π), (π, 2π), . . . , (iπ, (i + 1)π), . . .Definition 2. The linear part
(

L2x
)

(t) is i-nonresonant in the interval[0, 1] with
respect to the Dirichlet boundary conditions in (1.1), if a solution of the Cauchy
problem

(

L2x
)

(t) = 0, x(0) = 0, x′(0) = 1 (2.2)

has exactlyi zeros in the interval(0, 1) andx(1) 6= 0.

For instance, a linear part
(

L2x
)

(t) := x′′ + k2x is i-nonresonant for anyk of

the formk =
π

2
+ πi, i = 0, 1, 2, . . .Definition 3. We will say thatξ(t) is an i-type solution of the second order

boundary value problem
(

L2x
)

(t) = f(t, x), x(0) = 0, x(1) = 0, (2.3)

if for small enoughα > 0 the differenceu(t; α) = x(t; α)− ξ(t) has exactlyi zeros
in the interval(0, 1) andu(1; α) 6= 0, wherex(t; α) is a solution of the equation

(

L2x
)

(t) = f(t, x), (2.4)

which satisfies the initial conditions

x(0; α) = ξ(0) = 0, x′(0; α) = ξ′(0) + α. (2.5)

The following theorem is valid ([4, Th. 2.1]).

Theorem 1. Quasi-linear problem(2.3)with ani-nonresonant linear part
(

L2x
)

(t)
has ani-type solution.Definition 4. Let the equation (1.1) and quasi-linear equation (2.4) be equivalent
in a domain

ΩN = {(t, x) : 0 ≤ t ≤ 1, |x| < N}. (2.6)

Suppose that any solutionx(t) of the quasi-linear problem (2.4) with boundary con-
ditions in (1.1) satisfies the estimate

∣

∣x(t)
∣

∣ < N, ∀ t ∈ [0, 1].

We will say then that the problem (1.1) allows for quasilinearization with respect to
a domainΩN and a linear part

(

L2x
)

(t).
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The statements below follow from Theorem 1.

Corollary 1. If the problem (1.1) allows for quasilinearization with respect to some
domainΩN and somei-nonresonant linear part

(

L2x
)

(t), then it has ani-type solu-
tion.

Corollary 2. Suppose that the problem (1.1) allows for quasilinearization with re-
spect ton domains of the form (2.6) andn essentially different (in the sense of
Definition 2) linear parts. Then it has at leastn different solutions.

Analogous results on multiple solutions are obtained for the second order Neu-
mann [6] and Sturm-Liouville [5] boundary value problems.

3. The Emden - Fowler Equation

Consider the boundary value problem

x′′ = −q(t) |x|p sign x, p > 0, q ∈ C(I, (0, +∞)), (3.1)

x(0) = 0, x(1) = 0. (3.2)

Theorem 2. Suppose that
0 < q1 ≤ q(t) ≤ q2 (3.3)

and the inequality

k

| sin k|
< β

p
p

p−1

|p − 1|

(

q1

q2

)
1

|p−1|

(3.4)

holds for somek ∈ (iπ, (i + 1)π), (i = 0, 1, ...), whereβ > 1 is the root of the
equation

βp = β + (p − 1) p
p

1−p . (3.5)

Then there exists ani-type solution of the problem(3.1), (3.2).

Proof. Let us consider instead of the equation (3.1) the equivalentone

x′′ + k2x = k2x − q(t) |x|p sign x. (3.6)

The linear part
(

L2x
)

(t) := x′′ + k2x is nonresonant with respect to the boundary
conditions (3.2). We wish to make the right side in (3.6) bounded. Denote

fk(t, x) := k2x − q(t) |x|p sign x.

The functionfk(t, x) is odd inx for fixed t. Let us consider it for nonnegative val-
ues ofx. There exists a positive point of local extremumx0 (it is either a point of
maximum in case ofp > 1 or a point of minimum in case of0 < p < 1)

x0 =

(

k2

p q(t)

)
1

p−1

.
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Figure 1. Existence of a numbernk.

Figure 1 illustrates the case of0 < p < 1 for a fixedt = t∗.

We can calculate the value of the function at the point of minimumx0. Set

mk(t) =
∣

∣fk(t, x0)
∣

∣ =

(

k2

p

)

p

p−1

|p − 1| q(t)
1

1−p . (3.7)

Choosenk(t) such that

|x| ≤ nk(t) ⇒ |fk(t, x)| ≤ mk(t), ∀ t ∈ I.

The value ofnk(t) is computed by solving the equation

fk(t, x) = −fk(t, x0),

or, equivalently, that of

k2x − q(t)xp =

(

k2

p

)

p

p−1

(1 − p) q(t)
1

1−p

with respect tox for any fixedt. Computation gives that

nk(t) =

(

k2

q(t)

)
1

p−1

β, (3.8)

where a constantβ > 1 is described in (3.5). Set

Nk = min{nk(t) : t ∈ [0, 1]}, Mk = max{mk(t) : t ∈ [0, 1]}.

Let us consider the quasi-linear equation

x′′ + k2x = Fk(t, x), (3.9)

where
Fk(t, x) := ϕ(x)fk(t, x)
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andϕ(x) is aC∞(R, I) function such that

ϕ(x) =

{

1, |x| ≤ Nk,

0, |x| ≥ Nk + ε1

and0 < ϕ(x) < 1 for remaining values ofx. Then

max{
∣

∣Fk(t, x)
∣

∣ : t ∈ I, x ∈ R} ≤ Mk + ε2. (3.10)

Notice that both positiveε1 andε2 can be made arbitrarily small. Denote

Ωk = {(t, x) : 0 ≤ t ≤ 1, |x(t)| ≤ Nk}.

The original problem (3.1), (3.2) and the quasi-linear one (3.9), (3.2) are equivalent
in Ωk .

The quasi-linear problem (3.9), (3.2) can be written in the integral form

x(t) =

1
∫

0

Gk(t, s)Fk(s, x(s)) ds,

whereGk(t, s) is the Green function for the respective homogeneous problem. It is
given by

Gk(t, s) =



















sin k(s − 1) sin kt

k sin k
, 0 ≤ t ≤ s ≤ 1,

sink(t − 1) sinks

k sin k
, 0 ≤ s < t ≤ 1

(3.11)

and satisfies the estimate

|Gk(t, s)| ≤ Γk =
1

k | sin k|
. (3.12)

It follows from (3.10), (3.12) that
∣

∣x(t)
∣

∣ ≤ Γk (Mk + ε2).

If the inequality
Γk Mk < Nk (3.13)

holds, andε2 is such that alsoΓk (Mk + ε2) < Nk (and this is the case), then a
solutionx(t) of the quasi-linear problem (3.9), (3.2) satisfies the estimate

∣

∣x(t)
∣

∣ < Nk, ∀ t ∈ [0, 1]

and the original problem (3.1), (3.2) allows for quasilinearization with respect to the
domainΩk and the linear part

(

L2x
)

(t) := x′′ + k2x. It follows from Theorem 1
that if the linear partL2x is i-nonresonant, then the problem (3.1), (3.2) has ani-type
solution.
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Consider the inequality (3.13) and assume thatq(t) satisfies the estimates (3.3).
If p > 1, then

max
t∈[0,1]

mk(t) =

(

k2

p

)

p

p−1

|p − 1| q
1

1−p

1 ,

min
t∈[0,1]

nk(t) =

(

k2

q2

)
1

p−1

β;

(3.14)

but in the case of0 < p < 1 we have

max
t∈[0,1]

mk(t) =

(

k2

p

)

p

p−1

|p − 1| q
1

1−p

2 ,

min
t∈[0,1]

nk(t) =

(

k2

q1

)
1

p−1

β.

(3.15)

Hence the inequality (3.13) reduces to (3.4). The proof is complete.�

Corollary 3. If there exist numberskj ∈
(

ijπ, (ij + 1)π
)

, j = 1, 2, . . . , n, which
satisfy the inequality (3.4), then there exist at leastn solutions (of different types) of
the problem (3.1), (3.2).

Fork of the formk =
π

2
+ πn, wheren = 0, 1, 2, . . ., the basic inequality (3.4)

to be verified takes the form

k < β
p

p

p−1

|p − 1|

(

q1

q2

)
1

|p−1|

. (3.16)

In Appendix we provide two tables of the results of calculations. The superlinear
(p > 1) and sublinear (0 < p < 1) cases are treated separately. For certain values

of p and
q1

q2
, the values ofk of the form

π

2
+ πn, n = 0, 1, 2, . . . are given which

satisfy the inequality (3.16).

The number of appropriatek gives the lower bound of the number of solutions of

different type to the BVP (3.1), (3.2). For instance, ifp =
2

3
and

q1

q2
=

4

5
, then there

exist at least 2 solutions of different types (namely, a0-type solution and a1-type

solution). If for the samep the ratio
q1

q2
=

16

17
, then there exist at least 3 solutions of

different types, and so on.
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4. Appendix

Table 1. Superlinear casep > 1.

p
q1

q2

ki

p = 2
q1

q2

=
1

2
k0 =

π

2

q1

q2

=
41

42
k0 =

π

2
; k1 =

3π

2

p =
3

2

q1

q2

=
1

2
k0 =

π

2

q1

q2

=
3

4
k0 =

π

2
; k1 =

3π

2

q1

q2

=
28

29
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2

p =
4

3

q1

q2

=
2

3
k0 =

π

2

q1

q2

=
3

4
k0 =

π

2
; k1 =

3π

2

q1

q2

=
7

8
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2

q1

q2

=
33

34
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2

p =
5

4

q1

q2

=
2

3
k0 =

π

2

q1

q2

=
3

4
k0 =

π

2
; k1 =

3π

2

q1

q2

=
6

7
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2

q1

q2

=
11

12
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2

q1

q2

=
40

41
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2
; k4 =

9π

2

p =
6

5

q1

q2

=
2

3
k0 =

π

2

q1

q2

=
4

5
k0 =

π

2
; k1 =

3π

2

q1

q2

=
6

7
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2

q1

q2

=
9

10
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2

q1

q2

=
16

17
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2
; k4 =

9π

2

q1

q2

=
47

48
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2
; k4 =

9π

2
; k5 =

11π

2
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Table 2. Sublinear case0 < p < 1.

p
q1

q2

ki

p =
1

2

q1

q2

=
2

3
k0 =

π

2

q1

q2

=
9

10
k0 =

π

2
; k1 =

3π

2

p =
2

3

q1

q2

=
2

3
k0 =

π

2

q1

q2

=
4

5
k0 =

π

2
; k1 =

3π

2

q1

q2

=
16

17
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2

p =
3

4

q1

q2

=
2

3
k0 =

π

2

q1

q2

=
4

5
k0 =

π

2
; k1 =

3π

2

q1

q2

=
8

9
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2

q1

q2

=
23

24
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2

p =
4

5

q1

q2

=
2

3
k0 =

π

2

q1

q2

=
4

5
k0 =

π

2
; k1 =

3π

2

q1

q2

=
7

8
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2

q1

q2

=
12

13
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2

q1

q2

=
31

32
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2
; k4 =

9π

2

p =
5

6

q1

q2

=
2

3
k0 =

π

2

q1

q2

=
4

5
k0 =

π

2
; k1 =

3π

2

q1

q2

=
6

7
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2

q1

q2

=
10

11
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2

q1

q2

=
17

18
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2
; k4 =

9π

2

q1

q2

=
38

39
k0 =

π

2
; k1 =

3π

2
; k2 =

5π

2
; k3 =

7π

2
; k4 =

9π

2
; k5 =

11π

2
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Emdemo-Faulerio tipo lygties kvazelinerizavimas ir daugialypiai sprendiniai

I, Yermachenko, F. Sadyrbaev

Darbe nagriṅejamas taip vadinamas Emdeno-Faulerio kvazitiesinės diferencialiṅes lygties ho-
mogeninio kraštinio uždavinio sprendinių egzistavimas ir daugialypumas. Parodyta, kad šio
uždavinio sprendinio daugialypumas priklauso nuo tam tikru b ūdu gautos kvazilinearizuotos
lygties tiesiṅes dalies savybių.


