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Abstract. Existence and multiplicity of solutions of the problerfi = —q(t) |z|? sign =
(2), =(0) = (1) = 0 (4¢) are investigated by reducing equatia to a quasi-linear one
so that both equations are equivalent in some dorfraiti a solution of corresponding quasi-
linear problem is located in the domain of equivalefi;ghen this solution solves the original
problem also. If this process of quasilinearization is gmegor multiple essentially different
linear parts, then multiple solutions to the problein (i:) exist.
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1. Introduction
It is well known that the boundary value problem

2" = f(t,x), tel:=[0,1, feC{ xR,R),
(1.2)

is solvable iff is bounded, that is, there exist$ € (0, +oo) such that f| < M for
any values of arguments.

If fis not bounded, the existence of a solution is not guaranteesbme cases
boundary value problems with unboundgédan be reduced to a problem

2 =F(t z), z0)==z(1)=0, (1.2)
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whereF is continuous and bounded. This is the case, for instanteeiié exist the
so called upper and lower functiofsanda, which satisfy the conditions

a<67 a//Zf(t,Oé), ﬁ//gf(t7ﬁ)7 Vte‘[a
a(0) <0 < 3(0), a(l) <0<p(1).

A continuous and bounded right sideéin (1.2) can be constructed in such a way
that 7" and f coincide on the sefi(t,z) : 0 <t <1, a <2 < 8} and any solution
x(t) of the problem (1.2) satisfies the estimates< = < 3. Obviouslyx solves
the problem (1.1) also. The interested reader may consulidlok [1] to learn more
about the upper and lower functions.

We are motivated by the works of Erbe [2] and Jackson and 8ehf&]. They
showed that if the upper and lower functions exist then marel® said about so-
lutions of the boundary value problem. Their result, wheapddd to the problem
(1.1), says that at least one solutipio the problem exists such that the respective
equation of variations

y” = fm(tvg(t))y (13)

is disconjugate on the intervél that is, a solutiorny of the Cauchy problem (1.3),
y(0) =0, ¢'(0) = 1does not vanish in the intervé), 1) (it may vanish at = 1,
however).

This result is valid for problems of the type (1.1) with boeddight sides since
thena and can be constructed as appropriate quadratic functiéns (M (¢t —
12+ M, o= M(t - 3)? — M, for example).

Itis known as well ([1]) that the quasi-linear problei (is bounded)

(Laz)(t) := 2" + P(t)x' + Q(t) = Fi(t, ©), x(0)==z(1)=0 (1.4)

with nonresonant linear pa(tLgx) (t) (see Definition 1 below) is solvable. It was
shown in [4] that the quasi-linear problem (1.4) with ostiry linear par(Lgx) (t)
has a solutiorf () such that the respective equation of variations has sirodeil-
latory properties. The important conclusion of the reswlf4] is that if the origi-
nal problem of the type (1.1) can be reduced to various diresa problems with
essentially different oscillatory linear parts, then thigimal problem has multiple
solutions.

The intent of this paper is to apply the idea above and the mesinlt in [4] to
prove that the Emden - Fowler equation

2" = —q(t) |x|[Pisign z

has multiple solutions (of different types) subject to tleibdary conditions (1.1).

Precise definitions and statements of the respective se@given in Section 2.
Section 3 is devoted to investigation of the Dirichlet boarydvalue problem for the
second order Emden - Fowler equation provided that the caeftig(¢) is positive.

It is shown that forp ~ 1 there exist multiple solutions (of different types) of the
problem under consideration.



Quasilinearization and Multiple Solutions of the Emderwker Type Equatiod3
2. Quasilinearization and Multiple Solutions

Several definitions will be used in the sequel.

DEFINITION 1. The linear par(Lgx) (t) is called by a nonresonant (with respect to
the boundary conditions), if the homogeneous problem

(Laz)(t) =0, x(0)=0, =(1)=0 (2.1)
has only the trivial solution.
For instance, a linear paftL,z)(t) := 2" + k?z is nonresonant, it # i,
1 =0, 1,..., thatis, the coefficient belongs to one of the intervals
(0,7), (m,2m), ..., (im, (0 + D7), ...

DEFINITION 2. The linear par(L,z)(t) is i-nonresonantin the intervé, 1] with
respect to the Dirichlet boundary conditions in (1.1), ifadusion of the Cauchy
problem

(Laz)(t) =0, =2(0)=0, 2'(0)=1 (2.2)

has exactly zeros in the interval0, 1) andz(1) # 0.
For instance, a linear paffL,z) (t) := 2’ + k*x is i-nonresonant for any of
the formk = g +mi, 1 =0,1,2,...

DeriNITION 3. We will say that(t) is ani-type solution of the second order
boundary value problem

(LQ:C) (t)=f(t, z), =(0)=0, =z(1)=0, (2.3)

if for small enoughy > 0 the differences(t; o) = x(t; o) — £(t) has exactly zeros
in the interval(0, 1) andu(1; ) # 0, wherex(¢; «) is a solution of the equation

(Lgx) (t) = f(t, ), (2.4)
which satisfies the initial conditions
z(0; ) = £(0) = 0, ' (0; ) = £'(0) + av. (2.5)

The following theorem is valid ([4, Th. 2.1]).

Theorem 1. Quasi-linear problen{2.3)with ani-nonresonant linear par(Lgx) (t)
has ani-type solution.

DEFINITION 4. Let the equation (1.1) and quasi-linear equation (2.4) hévatent
in a domain
Qv ={t,z): 0<t<1, |z| < N}. (2.6)

Suppose that any solutiat{t) of the quasi-linear problem (2.4) with boundary con-
ditions in (1.1) satisfies the estimate

lz(t)| < N, Vvt €0, 1].

We will say then that the problem (1.1) allows for quasilineation with respect to
a domain2y and a linear parfLox) ().
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The statements below follow from Theorem 1.

Corollary 1.If the problem (1.1) allows for quasilinearization with pest to some
domain{2y and some-nonresonant linear pa(f;ga:) (t), then it has arn-type solu-
tion.

Corollary 2. Suppose that the problem (1.1) allows for quasilineadzatvith re-
spect ton domains of the form (2.6) and essentially different (in the sense of
Definition 2) linear parts. Then it has at leastlifferent solutions.

Analogous results on multiple solutions are obtained fersacond order Neu-
mann [6] and Sturm-Liouville [5] boundary value problems.

3. The Emden - Fowler Equation

Consider the boundary value problem

2" = —q(t) |z|Psignz, p>0, g€ C(I,(0,+00)), (3.1)
z(0) =0, z(1)=0. (3.2)
Theorem 2. Suppose that
0<q <q(t)<q (3.3)
and the inequality
k prT (a7
- < = 3.4
k] <1 <q> a4

holds for some: € (im, (i + 1)), (¢ = 0,1,...), where > 1 is the root of the
equation .

pP=p+—-1)pr. (3.5)
Then there exists antype solution of the problel(3.1), (3.2).
Proof. Let us consider instead of the equation (3.1) the equivaleat

2" + k*x = k*x — q(t) |=|P sign 2. (3.6)

The linear part(Lgx) (t) := 2" + k%x is nonresonant with respect to the boundary
conditions (3.2). We wish to make the right side in (3.6) baech Denote

fu(t, ) := k*x — q(t) |z|P sign .

The functionfy (¢, ) is odd inx for fixed ¢. Let us consider it for nonnegative val-
ues ofz. There exists a positive point of local extremum (it is either a point of
maximum in case g > 1 or a point of minimum in case d < p < 1)

RO\
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y 0O<p<l1 t=t"

y=fr(t*, x(t

m(t*)|-= ===~
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Figure 1. Existence of a numbe;,.

Figure 1 illustrates the case 6f< p < 1 for a fixedt = t*.
We can calculate the value of the function at the point of mimnz,. Set

mi(t) = | fe(t,xo)| = (%ﬁ) - p— 1] q(t) ™. (3.7)
Choosen(t) such that
lz| < ng(t) = |fr(t,x)| < my(t), Vtel.
The value ofn(t) is computed by solving the equation
Ji(t, z) = = fi(t, o),
or, equivalently, that of
2 1

Kz — q(t)a? = <%> - (1—p)q(t)™

with respect tar for any fixedt. Computation gives that

2\
ni(t) = <m> g, (3.8)

where a constani > 1 is described in (3.5). Set
Ny =min{ng(t) : t €[0, 1]}, My = max{my(t): ¢t €0, 1]}.
Let us consider the quasi-linear equation
o + k*r = Fy(t, x), (3.9

where
Fy(t,z) = p(z) fr(t, v)
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andp(x) is aC* (R, I) function such that
1, |z| £ N,
P = {07 || > Nk + &1

and0 < ¢(z) < 1 for remaining values of. Then

max{|Fy(t,z)| : t € I, x € R} < My + eo. (3.10)
Notice that both positive; ande, can be made arbitrarily small. Denote

Qo ={(t,x): 0<t <1, |z(t)] < Ni}.

The original problem (3.1), (3.2) and the quasi-linear a8 (3.2) are equivalent
in (2 .
The quasi-linear problem (3.9), (3.2) can be written in titegral form

1

x(t) = /Gk(t, $)Fy (s, z(s)) ds,
0
whereGy(t, s) is the Green function for the respective homogeneous pmobtas

given by
sink(s — 1) sin kt

< <
ksink ’ tsssi,
Gr(t,s) = (3.11)
sink(t — 1) sinks sct<1
ksink ’
and satisfies the estimate
1
<Ip=—"—. .
|Gr(ts)l < T = © ] (3.12)
It follows from (3.10), (3.12) that
|z(t)| < T (My, + £2).
If the inequality
I, M, < Ny (313)

holds, and:, is such that alsd’, (M), + €2) < Ny (and this is the case), then a
solutionz(t) of the quasi-linear problem (3.9), (3.2) satisfies the estitm

|z(t)| < Ni, Vitelo, 1]

and the original problem (3.1), (3.2) allows for quasilirization with respect to the
domain{?;, and the linear par(LQ:c) (t) := 2 + k2x. It follows from Theorem 1
that if the linear parL,x is i-nonresonant, then the problem (3.1), (3.2) hastype
solution.
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Consider the inequality (3.13) and assume tl{a} satisfies the estimates (3.3).

If p > 1,then
k2 e
)= |[=— -1 =
tren[gﬁmk() ’ lp—1lq 7,

L (3.14)
2\
. P :
tg%%] (1) q2 b
butin the case df < p < 1 we have
_p
k2\ 7 2
t)=|— —1]qy 7,
Jnax mi(t) ) lp—1[ g
(3.15)

1
B2\
min ng(t) = (—)
t€[0,1] q1

Hence the inequality (3.13) reduces to (3.4). The proof implete. l

Corollary 3.If there exist numbers; € (i;m, (i; + 1)x), j = 1,2,...,n, which
satisfy the inequality (3.4), then there exist at leasblutions (of different types) of
the problem (3.1), (3.2).

For k of the formk = + mn, wheren = 0, 1, 2, ..., the basic inequality (3.4)
to be verified takes the form

2 =Tl
k<pgL ki . (3.16)
|p— 1| q2

In Appendix we provide two tables of the results of calcalas. The superlinear
(p > 1) and sublinear(( < p < 1) cases are treated separately. For certain values

of p andﬂ, the values of of the formg +7mn,n =0, 1,2,... are given which
satisfy th%2 inequality (3.16).

The number of appropriategives the lower bound of the number of solutions of
different type to the BVP (3.1), (3.2). For mstancepﬁ: and o 5 then there

g2
exist at least 2 solutions of different types (namely- aype solution and d-type
q1

q2

16
solution). If for the same the ratio— = 7 then there exist at least 3 solutions of

different types, and so on.
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4. Appendix
Table 1. Superlinear casg > 1.
p & ki
0
q 1 T
—o| L _2 ==
p . B 0 D)
@ _ 4l ko= 2. ky 3T
q2 42 2 2
3l 1 T
= - — = — kj:_
P=51% T2 ™73
q1 3 iy 3
A _°2 k=.k 27
oA 0=75; M 5
BB k=T k= k=T
q2 29 2 2 2
4| ¢ 2 T
= - — = — kj:_
P=3le "3 ™73
q1 3 iy 3
A _°2 k=.F 27
oA 0=75; M 5
BT p=Ii b= k=T
@ 8 2 2 2
Q 33 s 3 51 Vs
@4 _ 22 =ty = =2 =
% 34 0 27 1 2, 2 2, 3 2
5l g1 2 T
=22 _2 jp. ==
P=%le 73 M™73
@ _3 ko= 2. ky 3T
G2 4 2 2
@ 6 T 3 51
B2 k=Ll =" k=2
%@ 7 0 27 1 2, 2 2
o _ 1 ko==; ki 3—, ) 5—7T; ks ™
@ 12 2 2 2 2
g 40 o 3 by Vs 91
@ 4l Ro=gi k=755 k=55 k= k=3
p:§q_1:2 ko = =
5| q2 3 2
@ _ 4 ko= Z: ky 3T
G2 5 2 2
@ _6 . o_m . _3m . b
i k‘o—27 k1 2,k2 5
a9 o 3 by Vs
q2—10 k0_27 kl 21 k2 21 kjS P)
@ 16w 8w Gmo o Tno 9%
@ 17 fo=gi =" k=25 k=25 k=g
g AT wo 8mo Smo o Tno O9no e
¢ 48 Fo=gi M= k== ke =2 k=2 ks =
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Table 2. Sublinear casé < p < 1.

p L k;
q2
1 @1 2 T
&L _z2 =z
P=51% 73 ™73
q1 9 ™ 37
@ _ g T 2T
@ 10 T2 M7
ngq_lzz ko = =
3| g2 3 2
¢ 4 ™ 3
o T 27
i 0=73; k=
q1_16 o 37r‘ 5
@ 17 o=gi b= k=
3| ¢ 2 T
=24 _2 L ==L
P=%le "3 ™73
o _ 4 ko= X ky 37
G2 5 2 2
¢ 8 o 3 5m
@ 9 Ro=gi b= k=3
T 23 T 3 5 T
B2 =T =T gy = =T
@ 24 0T M Ty T T
p:éq_lzz ko = =
5| g2 3 2
¢ 4 ™ 3
A S
i 0=73; k1=
q1 7 T 3 5
Dl =T gy = =T
il 0=75; k=75 k=
@ _ 12T 3. o, s
¢ 13 fo=g5i == k== k=5
R R O R N
@ 32 fo=gi = k=20 k=25 k=g
5l 2 T
= - — = — ko = —
L I
q1 4 T 3
K L
@ 5 072 M7
q1 6 T 3 5%
D2 =T gy = =T
w7 0=75; k=75 ke =
@ _ 10T 3. o s
q2711 k‘0727 kl 2, kQ 2, k3 D)
q1_17 o 3 bus 771'. 9
q2718 k‘0727 kl 2, kQ 2, k3 27 k47 2
o _ 38 ko= 2 ki 3—7T; k2 5—7T; ks 7—7T; k4:9—7r; kszll—ﬁ
q2 39 2 2 2 2 2 2
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Emdemo-Faulerio tipo lygties kvazelinerizavimas ir daugialypiai sprendiniai

I, Yermachenko, F. Sadyrbaev

Darbe nagriejamas taip vadinamas Emdeno-Faulerio kvazitestfiferencialigs lygties ho-
mogeninio krastinio uzdavinio sprendiniy egzistavimadaugialypumas. Parodyta, kad Sio
uzdavinio sprendinio daugialypumas priklauso nuo tamuttkudu gautos kvazilinearizuotos
lygties tiesires dalies savybiu.



