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Abstract. Analysis of nonstationary stage of quasi-Cherenkov irityalof electron beam
in the case of two-wave distributed feedback is carried athematical models and numeri-
cal methods of nonstationary quasi-Cherenkov electrombestability are proposed. Results
of numerical experiments are proposed. Bifurcations oftationary solution are discussed.
Key words: quasi-Cherenkov instability, numerical modelling, naglar integro-differential
system, bifurcations

1. Introduction

This contribution is devoted to further analysis of norietadry stage of quasi-
Cherenkov instability of electron beam in Volume Free EleetLaser (VFEL) by
methods of mathematical modelling.

Nowadays FEL (free electron laser) lasing is obtained ifedéht wavelength
ranges: from centimeter to ultraviolet. The high expensgiternational X-ray FEL
project is on the preparation stage now [7]. VFEL based onhaw@ism of multi-
wave volume distributed feedback (VDFB) was proposed id]1YFELs give pos-
sibility to reduce starting currents, to provide generatiolarge volume, to tune ge-
neration frequency [1]. Due to large electron beam crogsse®/FEL generation in
large volume essentially increases the electric strengttsonator and, in principle,
allows to produce electromagnetic pulses of high powerafgrehan 10 GW). Be-
sides the multi-wave distributed feedback VFEL providesrtitodes discrimination
in the case when linear sizes of resonator (waveguide) sexg®n exceed genera-
ted wavelength (in so-called oversized systems). Firgtdesf VFEL in millimeter
range was recently obtained by a group of scientists fromrkitute for Nuclear
Problems [2].
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VFEL is a system with a great number of parameters. Varyimgdhparame-
ters causes changes in VFEL generation and transitionekatdifferent generation
regimes, e.g. transition to the convective instability jfification regime) and from
the convective instability to absolute one (oscillatorimeg). Mentioned instabilities
demonstrate also different features depending on parasndteere are stationary
nonlinear oscillator regime and non-stationary oscilaggime in the case of ab-
solute instability. Non-stationary regime is also dividetb regimes with different
periods of electron beam and radiation modulation and @hawitability regime.
Analysis of existing regimes, transitions between therfu(bations) and parame-
ters at which these transitions occur (bifurcation pointsi@gions) is very important
for description of VFEL operation. Quasi-Cherenkov (pagéie) radiation is one of
the possible mechanisms to realize VFEL generation [3hildase spatial-periodic
system provides simultaneously Cherenkov synchronisrdition and VDFB. Sim-
ulation of quasi-Cherenkov VFEL and its operation in diffierregimes is the aim of
this paper.
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Figure 1. A simple scheme of quasi-Cherenkov VFEL (Bragg geometry).

2. Mathematical Formulation

In our previous paper [5] we presented a simple scheme of 8E& Fig. 1). An
electron beam with electron velocilypasses through the target. This target of length
L is a spatially periodic medium. Incident electromagnetawes 1 or 2 or 1 and 2
simultaneously emerge at the target. Waves 3 and 4 are tangstraves excited
in the target, when specific conditions (so-called Braggd@@ms) are fulfilled for
generation of quasi-Cherenkov radiation. If electronsiader Cherenkov condition,
they emit electromagnetic radiation in direction 3 or 4 ottbdirections depending
on diffraction regime. A case without incident waves cop@sds to oscillator gen-
eration regime. In Bragg geometry (Fig. 1) transmitted wanand diffracted wave
4 are directed in opposite directions relative to axi$n Laue geometry the waves
propagate in the same direction.
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Let us consider the system of equations describing noostaty quasi-Cheren-
kov instability. We write out it in a general form without acate definition of coef-
ficients.
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wheres is the imaginary unitt > 0, z € [0, L], p € [—2m, 27].

(2.1) — (2.3) is a system of integro-differential equatidnsaddition to tempo-
ral argument there are two independent arguments: spatatinmatez and initial
electron phase. Amplitudes of electromagnetic fields(t, z), E,(t, z) and coef-
ficientsa, b and® are complex-valued. Functiafi(¢, z, p) is the phase of electron
in electromagnetic wave. Functi@h and coefficientV are realk is a projection of
wave vector on axis, w is a field frequencyy is an initial electron beam velocity.
Boundary conditions are written for the case of Bragg geomet

Equation (2.3) describes a propagation of the electron heMREL. We model
it by averaging over initial phases of electrons. This mdtigowell-known [12]
and widely used in simulation of BWT (backward wave tube),B {itaveling wave
tube), FEL and other electronic devices. Next we presentigalion of (2.3). We
consider a magnetized electron beam and assume that isgatign can be consid-
ered as one-dimensional. The motion equation of one eleatrthe wave has the
following form:

. e . e . .
3= o (€,7)Re{aexp(ik 7L + ik.z — iwt)},
wheree andm are electron charge and mass respectivelg, the Lorentz factor of
electron beam. Initial phase is an individual mark of the®tm in beam. Averaging
over this phase allows us to pass from microscopical degmmipo macroscopical
one. Averaging current and applying Liuville’s Theoremdéa the following equa-
tion:

1 o w(t—z/u)+27
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whereng is a beam density) (¢, to, 71 ) = k.2 + Eﬂi — wt(z,tp) is an electron
phaset(z,to) is a trajectory of electron emerged at momegnin the target. Initial
phase of the electron in interaction region has the form:

Q(t:to,to,FJ_)ZEJ_FJ_—wt():@l—@o.

Producing some transformations one can reduce the avgrager phase®), and
O, to the averaging over one phase [—2, 27| and obtain equation (2.3).

In [5] we have considered the following stationary systeragfations describing
quasi-Cherenkov instability:

dE 2m 9 —
$+a11E+a12Er :@Of %

X (exp ( — i@(z,p)) + exp ( — 16z, —p))) dp,
dE,
- T an1E +agnk; =0, E(0)=E,, FE(L)=E, (2.4)
d?6(2,p) do(z,p)\’ .
—s = ' (k = Re(E(z) exp (29(2,]9))),

_ de(0,p)

Now the nonstationary system (2.1) — (2.3) is consideregausof (2.4). Differ-
ent types of instabilities and bifurcations leading to &iians between these types
of instabilities are studied on the basis of (2.1) — (2.3).

3. Numerical Algorithms

We use notations from [11] and introduce in domain
N={0<2z<L, —2r<p<2n}x{t>0}
uniform grids with respect te, z andp:

wr ={t; =1hs, 1 >0}, w, ={z2m =mh,, m=0,1,....,M, Mh, =L},
wp ={p; =jhp, j=-N,...,—1,0,1,...,N, h,N =27}

Discrete functions, defined on the grid, are denoted by
Em = E(tlJrla Zm)a B, = E(tla Zm)a an = @(thzm,pj)-

We approximate the differential problem (2.1) — (2.3) witlke following finite—
difference scheme:

ol —w (k: - é§)3Re (Eexp(iéj)) . j=0,41,...,+N,



Nonstationary Stage of Quasi-Cherenkov Beam Instability 5

N
E; + alﬁg + bHE + meT = @Z Cj (exp(—ié‘j) + exp(—ié_j)) R (31)

j=0
B+ asE,, + by E + by By = 0,

whereE = E(t; — atm, 2m), @ = |h,/(hwu)]. Whent; — at,, < 0 we assume that
E = E(0, ). Herec; are coefficients of the quadrature trapezoidal rule.

In [5] we have proposed the following iterative algorithm $olving (2.4):

stl s+l 3 s s+1

@i—zzlll(k—@l) Re(Eexp (i@ﬂ)),

s+1 s+1 s+1 N s+1 s+1

FE:+a1E tapE = cj(exp(—iéj)—|—exp(—i9*ﬂ)), (3.2)
j=0

s+1 s+1 s+1
E..+axn E +axkE, =0,

0. 0 0
where s > 0is a number of iteratior§)’ = h,j, £ =0, E, =0.
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Figure 2. Numerical solutions: (a) stationary system, dependend¢benumber of iterations,
(b) nonstationary system, dependence.on

Let us demonstrate the dependence of stabilization ofisal(®.2) on the num-
ber of iterations (see Figa2. When the current density threshold is exceeded (curve
1) or there is no radiation amplification (curve 2), then glien iterations are suffi-
cient. For the other cases it is necessary to make 20 — 5@idgtesgcurve 3). In the
region near generation threshold, where solution is settey slowly, it is necessary
to compute a few hundreds of iterations (curve 4).

We are interested in investigation of dynamics of the whgkem, since it is
well-known that in laser systems different types of indttes (bistability, pulsed
solutions, chaos) can appear ([9], [10]). For differensoees namely lasers played a
decisive role in development of synergetics.
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Problems of numerical stability of solutions of PDEs of aifamnature were
investigated in [6]. But since it seems to be impossible testigate analytically the
stability of nonlinear integro—differential time—depemd problem (2.1) — (2.3), we
restrict ourselves to numerical investigations. Durinppatations we have changed
different control parameters of the system (see Fig.R2g. 3—Fig. 5). There exist
more than ten such parameters. As a result at all plots edémlifor Bragg geometry
we obtain Hopf’s bifurcations [8, 9, 10] which lead to treii between generation
regimes with single or some basic frequencies or stablegtsalutions.

If for some control parameters the solutions are unstah&n uinder random
perturbations the trajectory sweeps chaotically in a Ipfygse space. As a random
perturbation we can consider computational errors in +fgdrtd sides of the system.
As a result we can obtain turbulence or chaos. In our expaitisnee get turbulence
only in Laue geometry for large length of the target and highrent density. In
Bragg geometry we obtain typical self-oscillations withreoprincipal frequencies.
We suppose that for Laue geometry we obtain Hopf’s bifuocetiwith wide set of
principal frequencies too. This corresponds to numerofusdations of limit cycle
to the torus.
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Figure 3. Numerical solution for different current densifywithout (a) and with (b) absorp-
tion in Bragg geometry.

Since our numerical algorithms (3.1) and (3.2) are nonlinieaeems to be im-
possible to investigate their convergence. If we consiolerakized cases of these
processes all becomes evident. So, according to numexjoatienents, our schemes
proved itself be stable and numerical solutions convergethalytical solutions of
the initial differential system.

4. Numerical Results for the Nonstationary System

Let us discuss results of numerical experiments carriedotitis paper we want to
give several examples of numerical calculations desagibihavior of the solution
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Figure 4. Numerical solution for different detuning parametén Bragg geometry.
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Figure 5. Numerical solution for different current densify(a) and different lengttL (b) in
Laue geometry.

of nonstationary system. In each graphic plot only one cbpirameter is changed.
That leads to transition between different regimes of gatitar in accordance with
transition of parameter from one critical value to the ottvee. This parameter can
be a beam current densify detuning parameter absorption coefficientm (o),
target lengthZ, frequency and so on. In Figbh2Fig. 3—Fig. 5, one can see curves
with single period of oscillations, with some basic freqcies and steady states.
For example in Fig. 3 curves of amplitudgs(¢, L)| (lower curve) and £ (t,0)]
(upper curve in each pair) are presented. It is intereshingih each pair periods of
oscillations of both curves are different. In Laue geométge Fig. 5) a turbulence
induced by numerous bifurcations is obtained for largetlenfthe targef. (greater
than 80 cm).

In two-wave Bragg diffraction geometry different genewatiregimes include
also cases when one or two electromagnetic modes are inreyrisim with elec-
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tron beam. During nonlinear dynamics this leads to tramsitietween these modes
and to more indicative bifurcation picture in Bragg diffian geometry. More pos-

sible regimes exist for multi-wave diffraction which shad#l considered in our future
works.

5. Conclusions

The proposed mathematical models and numerical algoritambe used effectively
for modelling nonlinear regimes of VFEL operation. Theylw# useful for provid-
ing experiments on VFEL on the installation VFEL-300 keVatesl at the Institute
for Nuclear Problems of Belarussian State University.
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Nestacionariosios faes kvazi-Cherenkovo spinduliuoés nestabilumas periodigse struk-
turose

K. Batrakov, S. Sytova

Straipsnyje analizuojama nestacionariosio®$akvazi-Cherenkovo elektrony spinduliest
nestabilumas esant dvieju bangy saveikai su griZztaysio pernesSimu. Pasi ulyti Sios elek-
trony spinduliucés nestacionariosios fag atveju matematiniai ir skaitiniai sprendimo meto-
dai. Pateikti skaitinio eksperimento rezultatai. Aptariestacionariojo sprendinio bifurkaci-
jos.



