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Abstract. An inverse problem to determine degenerate time- and space-dependent
relaxation kernels of internal energy and heat flux with third kind boundary condi-
tions by means of temperature measurements is considered. Existence and unique-
ness of a solution to the inverse problem are proved.

Key words: inverse problem, memory kernel, heat flow

1. Introduction

Constitutive relations in the theory of heat conduction in materials with ther-
mal memory contain time-dependent (and in the case of non-homogeneity also
space-dependent) memory (or relaxation) kernels [1, 9, 10, 13]. These kernels
are often unknown in the practice. To determine them, inverse problems are
used. Several papers discuss the identification of space- and time-dependent
kernels in continuous non-homogeneous bodies. They represent different ap-
proaches and apply different methods to study the inverse problems, e.g. in
[2, 5] stratified bodies are considered, [4] studies the identification of a kernel
by means of a restricted Dirichlet-to-Neumann map.

In some context the kernels can be degenerate, i.e. representable as fi-
nite sums of products of known space-dependent functions times unknown
time-dependent coefficients. This is so when either the medium is piecewise
continuous or a problem for a general kernel is replaced by a related prob-
lem for an approximated kernel. The unknown coefficients are recovered by
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a finite number of measurements of certain time-dependent characteristics of
the solution of the direct problem. In [6, 7, 8] inverse problems of such a type
were studied. In particular, [8] treats a problem with boundary conditions of
the third kind. The mentioned papers are limited to the simplified case when
the model contains only the relaxation kernel of heat flux. However, a more
precise model of a material with thermal memory involves two relaxation ker-
nels contained in basic constitutive relations: kernels of internal energy and
heat flux.

In the present paper we study an inverse problem to determine degenerate
nonhomogeneous relaxation kernels of internal energy and heat flux by means
of a finite number of measurements of temperature in fixed points over the
time. The corresponding heat conduction model contains boundary conditions
of the third kind. The corresponding case of boundary conditions of the first
kind (that is less relevant from the physical point of view) was treated in [11].
Third kind boundary conditions bring along certain complications related to
the non-vanishing Green function on the boundary. In [8] these problems were
overcome assuming certain vanishing conditions at the boundary either for the
derivative of the initial condition or for the memory kernel. In this paper we
present an approach that doesn’t assume such vanishing conditions.

In Section 2 we formulate the direct and inverse problems and in Section 3
apply the Laplace transform to them. In Section 4 we rewrite the transformed
problems in the fixed-point form. Sections 5 and 6 contain some auxiliary
results for the direct problem. Main existence and uniqueness results for the
inverse problem are included in Section 7 of the paper.

2. Formulation of Problem

We consider the heat flow in a rigid non-homogeneous bar consisting of a
material with thermal memory. For a sake of simplicity we assume the rod
to be of the unit length. Then, in the linear approximation we obtain the
following heat equation

t

ﬂ(x)%u(a:,t) + % /n(%t — Tz, 7)dr = %()\(x)uz(x,t))
0
_% /m(a:, t— Tug(z,7)dr +r(x,t), x€(0,1), t>0, (2.1)
0

where z € (0,1) is the space coordinate and ¢t € R is the time. Here u is
the temperature of the bar, which is assumed to be zero for ¢t < 0, e is the
internal energy and r is the heat supply. Moreover, 5 and A stand for the
heat capacity and the heat conduction coefficient, respectively. The model
contains two memory kernels n and m, being the relaxation kernels of the
integral energy and the heat flux, respectively.

The function u(z,t) is assumed to satisfy the initial conditions
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u(z,0) = p(z), x€(0,1) (2.2)

and the boundary conditions of the third kind

_Q(O7t) = Q1 (U(O,t) - fl(t))a Q(lvt) = Q2 (u(lv t) - fQ(t))a t>0,

with given functions ¢ on [0,1] and f;, 7 =1,2 on [0,00). Here ¢(z,t) is a
heat flux given by

q(z,t) = x)ug(z, 1) /m T)ug(z, 7) dT.
In view of this equality the boundary conditions can be written as

A(0)u,(0,t) — ftm 0, — T)ug (0,7) dr = oy (w(0,t) — f1(t)),
0 (2.3)
A Dugz(1,t) + gm(17t Tug(1,7) dr = az(u(1,t) — fa(t)).

Equation (2.1) with the conditions (2.2) and (2.3) form the direct problem for
the temperature u.

In an inverse problem we seek for the kernels n and m. We restrict ourselves
to the case of the kernels in the following degenerate forms

N1 N2
D= vi@n (1), mat)=> m@mit),  (24)
j=1 k=1

where v;, j =1,...,Ni, pg, k =1,..., No are given z-dependent functions
and n;, j=1,...,N1, mg, k=1,..., Ny are unknown time-dependent co-
efficients. Formulas (2.4) hold, for instance, when the medium is piecewise
continuous, where n; and my, are characteristic functions or smooth approxi-
mations of characteristic functions of the subdomains of homogeneity. In gen-
eral case (2.4) can be interpreted as finite-dimensional approximations of the
actual kernels.

We are going to recover the unknowns n; and mj by the measurement
of the temperature in N = N; + N, different interior points z; € (0,1),
t=1,...,N, ie., by the additional conditions

u(zi,t) = hi(t), i=1,...,N, t>0, (2.5)

where h; are given functions. Summing up, the relations (2.1)—(2.5) form the
inverse problem for n and m.
3. Application of the Laplace Transform

Applying the Laplace transform to equation (2.1) with initial condition (2.2)
and taking in consideration (2.4) we obtain
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Bz )[pU(a:p }+pZN z,p)

= 2 (@) -3 Mk<p>a—i (@)U 2.1) + Rl ),
k=1

where N; = Ln;, My, = Lmy, R = Lr,

o0

U(z,p) = Lu(z,t) = /e_ptu(x,t) dt.
0

The boundary conditions (2.3) are transformed to

NOU0.9) = [U0.9) = Fi(p)] + 3 1000 0.1,
(3.1)

“ADU(1,p) = 02U (1) - Fa(p)] - z ()M () (1, p),
where F; = Lf;, j = 1,2. The additional conditions (2.5) get the form
U(zi,p)=H;(p), i=1,...,N=N;+ Ny (3.2)

The goal of this section is to rewrite the problem for U in a form of a system
of integral equations. To this end we introduce the differential operator

(L) (.p) = 5 (M@)Ualep)) ~ Ba)pUlwp), 2 € (0.1).

and represent equation (2.1) in the form

N

(LU)(2,p) = p>_ Nj(p)v;(z)U (=, p) (3.3)

N,
+ Y Mip) 5 (1 (@)Un(ap) ) = Rle,p) = B@)o(a).
k=1

Let us denote by G(z,y,p) the Green function of operator L with homoge-
neous third kind boundary conditions, i.e.

L,G(z,y,p) =d(z,y), € (0,1),y € (0,1),
/\(O)Gy(ma 1,p)=a1G(x,0,p), _/\(I)Gy('xv Oap):O@G(ma 17p)v T e (Oa 1)
Then the solution of (3.3) is given by

Ny 1
UG =p YN () / Gl D))V (3. ) dy 3.4

1
+ Y 000) [ 6l (U 0.0) dy — o),
k=1 )
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where

1
/G .y, p By)p(y) +R(y,p)} dy + G(z,1,p)
0

< MU (1.p) +02U(1,p)| = Gl,0.p) [AOU:(0.p) ~ 2U (0,)].

Due to (3.1) the latter formula can be rewritten in the form

1
/G Ty, p By)e(y) +R(y,p)} dy
0

+ () Zuk U2 (0,9) ) G(0,,p
Ua(1,p)) (3.5)

( )
(a2F2 +ZMk ( )

G(1,z,p).
Integrating the integrals in the second sum of (3.4) by parts and using the
symmetry relations G(z,1,p) = G(1, z,p), G(x,0,p) = G(0,z, p), we obtain

N, 1
p) =ZpNj(p)/G(%y,p)Vj(y)U(y,p) dy
0

No 1
=3 M) [ Gyl U () dy — Qap), (39)
k=1 0

where

Q) = [ Gla.v) [B)e(w) + Rlw.p)] dy

+ a1 Fi(p)G(0,z,p) + asFr(p)G(1, x, p). (3.7

Further, differentiating (3.4) with respect to = we obtain the equation for
Us(,p)

1
ZPN /Ggg (@, y,p)v;(y)U (y,p) dy
Jj=1 0

N» 1
+ > Mi(p /Gw (z,y,p) 5~ (uk(y)Uy(y,p)) dy — Fy(x,p). (3.8)
k=1 0

We split the second integral in (3.8) into two parts, from 0 to z and from
z to 1, and integrate them by parts. Taking into consideration the jump
relation (see [12])
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Gy(z,x —0,p) — Gyp(z,z +0,p) = ﬁ, O<z<1
we get
1 & /
Usla.p) = 577 S Myl @)U (o.1) L3N ) [ Gutevn)

z k=1 Jj=1 0

Na I
x v (y)U(y,p)dy — > Mk(p)(/(Gzy(w, Y, 0k (y)Uy (y, p) dy

k=1 )

- :uk(l)UI(lvp)GE (33, l,p) + Lk (O)UI(O7p)GI (33, 07p)) - Fr(xvp)'

Thus, by (3.5) and (3.7) we have the following equation for U, (z,p):
1 &
) M (T,
) g k(P) ik (2) Uz (, p)

1
+ZPN /Gw (z,y,p)v;(y)U(y,p) dy
J=1 0

1
=S M) [ Gy D) (W)U () dy — Q) (59)
= 0

with @ given by (3.7). Summing up,(3.6) and (3.9) form a system of integral
equations for functions U(x,p) and Ug(z,p).

4. Fixed-Point Systems for Inverse and Direct Problems

In this section we deduce a fixed-point system for the inverse problem in
the Laplace domain and transform further the system for U and U,. From
equation (3.6) and (3.2) we obtain

N2

G(zi,y, p)v;()pU (y,p) dy — > /PMi(p) /P (4.1)

k=1

>0

O\H

X /Gy(%y,p)uk(y)pUy(y,p) dy = p*[H;(p) + Q(zi,p)]
0

for i = 1,..., N, where Q, given by (3.7), depends only on the data of the
problem.

Firstly, let us study the behaviour of this equation in the process Rep —
00 . Suppose a priori that the inverse problem has a solution ny, m; with the
following properties
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1. ny are differentiable, implying pNg(p) — ni(0) as Rep — oo;
2. /pPM;(p) — 0 as Rep — o0}

3. A solution of the direct problem u corresponding to these ny, m; satisfies
the relation

9 1
—u(-,t 1, ¢t .
6tu(’ )e C'[0,1], t>0
Then from item 3 and initial condition (2.1) we have
pU(2,p) — @(z), pUs(z,p) — ¢'(x) as Rep — co.

Using these asymptotic relations, the items 1, 2 above and assertions (5.5)
and (5.8) of Lemmas 1 and 2 below we obtain from (4.1) the equalities

Ny
=S mlO) g eele) = Jm (A0 + Q)] (42)
k=1 g P

for i = 1,...,N = N1 + Na. They form a system for initial values ny(0) of
the unknowns ny, which has a unique solution provided

1 . 9
rank((myk(xi)w(xi))kzlwﬂf Rel;l}lloop [Hi(p) + Q. )] )@:1,...,N
_ rank(@yk(xiyp(xi)) ry =N (4.3)

Here the argument of the rank-function is a matrix, formed by placing two
argument-matrices left to right. Thus, (4.3) is a necessary condition for the
inverse problem to have a unique solution with the properties 1-3.

We observe that the factors

1 1
/pG(:vi,y,p)Vj(y)pU(y,p) dy, \/1—9/Gy(wi,y,p)uk(y)pUy(y,p) dy
0 0

of the terms pN;(p) and /pMjy(p), respectively, in left-hand side of the system
(4.1) are bounded on Rep > o due to Lemma 1 below and the relations

pU(y,p) — ¢(v), pUy(y,p) — ¢'(y) as Rep — oo.

This suggests that the kernels n; and m; can be determined simultaneously
with higher smoothness in nj, than in m;, because the exponent of p is at N;(p)
higher than at M} (9). Therefore we define the unknowns Z = (Zy,...,Zn),

where
N, —ni(0), k=1,...,Ny,
Zu(p) = {2~ 0) ! (4.4)
My—n, (p), k=Ny+1,...,N,

and derive a fixed point system for Z. To this end we rewrite (4.1) in the form
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N1 N

Sy e + 3 2w g (o P @)

k=1 i) k=Ni+1

pG(zi,y,p)vi(y) [PU (y,p) — ¢(y)] dy

|
(]
)
S
ol

3

pG (i, y, p)v(y)p(y) dy + %w@(mi)@(wi)}

+
O\H

N 1
- > Zk(p)[/pGy(xi,y,p)uk_Nl () [PUy (v, p) — ¢’ (y)] dy
k=N1+1 0
— [ PG ) (e 002 ) dy = o (@) @) |
0
+ 113y (00 (0)pGe,0.p) = i, (19 (VpG(as 1,)|
Ny 1
+ an(o)/pG(xi,y,p)wc(y) [pU (y,p) — ¢(y)] dy
k=1 0
—p?*[Hi(p) + Q(zs,p)] +_lim ¢*[Hi(q) + Q(ws,q)], i =1,...,N. (4.5)

Req—o0
Indeed, opening the brackets in (4.5), integrating by parts the integral

1
[ pG(xi,y,p) (r—n, (¥)¢' (y))' dy, simplifying, and observing (4.2), (4.4) it is
0

not difficult to see that (4.5) is equivalent to (4.1).

In view of assertion (5.8) of Lemma 2 below and the relation pU — ¢
as Rep — oo the left-hand side of (4.5) is the principal part of this system.
Therefore we introduce the matrix I" = (vir), ,_; v related to this princi-
pal part, where ’

.....

1

= vk(@i)p(@i), k=1,...,Ny,
Yik = ﬁ(?) (4.6)
Bl e )¢ () k=N LN

and assume det [" # 0.
Further, we introduce vanishing with Rep — oo functions

B°[Z)(x,p) = pU[Z](x,p) — ¢(x), B'[Z](z,p) = pUs[Z](z,p) — ¢'(x), (4.7)

where U[Z](z,p) is the Laplace transform of the Z-dependent solution of the
direct problem. Now system (4.5) can be written in the fixed-point form

Z =T"'F(2), (4.8)
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where F(2) = (F1(Z),..., Fn(2)),

Ny I
FL2)0) =3 2e0)| [ pG(awi,v.pml) ()0, dy
k=1 0

1
+O/pG(I¢,y,p)Vk(y)<p(y) dy + @w@(mi)@(wi)}

N 1
+ > Zk(p)[—/pGy(xi,y,p)uk—Nl(y)Bl[Z](y,p)dy
k=N1+1 0

1

+ [ 0G0 (1o 00 ®) dy + 5 (e, (@) (@)

/

) B(z;) =z
+ i (0)¢! (PG4, 0.9) = s (1§ (PG, 1, )|
+]:Vink(0)/lpG(%y,p)Vk(y)BO[Z](yvp)dy+@i(p)7 i=1..,N, (49)
=1 0
N o / 1
Bi(p) = Y nu00)| / PGla.2)0)P(6) dy + i (w:)ola)|
= P’ [Hi(p) + Qlaip)] +  lim q* [Hi(q) + Q(z:,q)]. (4.10)

For future analysis we need a proper fixed-point system for the quantities
B°[Z] and B'[Z], too. From (3.6) in view of the definitions of Z and B°[Z]
we have

Ny 1
B Z)(,p) = Y Zu(p) / Gy, ) (v) [B°1Z)(w.p) + 0(v)] dy
k=1 0

N 1
= > 20) [ Geypmen ) (B2 + ¢ W] dy
0

k=N1+1
Ny 1

+an(o)/G(%y,p)Vk(y)Bo[Z](yW) dy +@°(z,p)  (4.11)
k=1 0

with

Ny 1
a,p) = 31 0) [ Gl ypaly)olw) dy — Qe p) - ¢la). (412
0

k=1

From (3.9) we obtain
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Ny I
P =3 2p) [ Culeypin(w)[B12)wn) + o(w)] dy
k=1 0

1
+ Z Zk {’uk Nl( ) /Gzy x Z/p#k N1(y)
0

k=N1+1 ( )
1

x [BYZ(y.p)+¢'(y }+an / (v, p)vi(y) B°[Z)(y, p)dy
0

+ Z DES Nl((g—d(xu@l(x,p) (4.13)
k=N1+1

with
N1 1
=Y mal0) [ Gale )o@ dy ~pQuleip) — ¢'(0). - (414)
k=1 0

For the function B°[Z], which in contrast to B![Z] doesn’t contain a space
derivative of U, we need a certain higher regularity in the time variable. To
this end we will assume that the free term ¢° can be decomposed as follows

°(x,p) = B®(2,p) + " (x,p), (4.15)
where |B°(z,p)| < C(|)n|st and |9°(xz,p)| < |o|n st with some a > 1 for Rep >
09, * € [0,1] and splith0 [Z] into the sum

B°(Z)(x,p) = B (. p) + B°[Z)(x.p), (4.16)
where for B° we will require that |B°[Z](z,p)| < % for Rep > oy,

z € 10,1].

From (4.11) and (4.12) in view of (4.15), (4.16) and the definitions of Z
and B'[Z] we deduce the following fixed-point equation for the vector B[Z] =
(B°(2], B'[Z)):

B[Z] = A[Z)B|Z] + b]Z], (4.17)
where A[Z] = (A°[Z], A'[Z]) is the Z-dependent linear operator of B with
the components

Ny P
(A°(Z)B)(z,p) =) ( p) +ni(0 /G (.5, )i (y) B (y. p) dy
k=1 0

N 1
> Zk(p)/Gy(xay,p)uwl(y)Bl(ym)dy7 (4.18)
0

k=N;+1
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N 1
(A'[Z]B)(z,p) =) ( p) + 1k (0 /Gw (9, p)vk(y) B (v, p) dy
k=1 0

+ sz [”k Nl)( w8 g ) /Gwy (2., P)iie—n (v) B (v, p) dy | (4.19)
k=N1+1 o

and b[Z] = (b°[Z],b'[Z]) is the Z-dependent B-free term with the components

Ny I
v,p)=>_ Zk(p /Gw Y. p)k(y {Eo(y,p)ﬂO(y)} dy
k=1 0

N 1
= Y 240 [ G pen W W dy+ Plap). (420)
k=N1+1 0

1
=> " Znp /Gmffyka y) | B°(y,p) + 2(y) }der sz
= 0

k=N;+1

x [% —/Gzy(a:,ym)ﬂk—m ()¢ (v) dy] + B (w,p) (4.21)
0

1
p) = k(0 /G (z,y,p)vk(y) B (y, p) dy + @°(z,p),  (4.22)
= 0

1
=3 m0) [ Galoy i) [Bn) + o) dy - (429
0

k=1

- pQw(xap) - (x)

5. Functional Spaces and Estimation of Green Function
To analyse the direct and inverse problems we define the spaces
={V :V(p) isholomorphicon Rep > o, |V|,,» < o0},

where
[Vlly.e = sup |p["|V(p)|
Rep>o
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with the norm

Ve (AN,

N
Vilyo =D Vil
k=1

We note that A, , C Ay, (A%U)N - (A%U’)N and | - ||%0’ <" ||%Gr if
o' >o.
Let o be a real number such that

3
Moreover, let ¢ = (c1,...,cn) be a given vector. We will search the solution

Z =(Z1,...,ZN) of (4.10) from the space
¢ N
Meo={2: 2= V), Ve (40) " }-
Furthermore, we introduce the spaces of z- and p-dependent functions
B, = {F(x,p) L F(z,) € A,y forz € [0,1], (5.2)
F(-,p) € C[0,1] for Rep > cr}

with the norms
- ¥
1Ello = jmax, sup [p["|F (. p)-

We are going to solve the equation (4.17) for the pair B = (EO, Bl) in the

space B, = Bq,o X BOH%J with the norm

I1Blls = 11B° B!

la-to-
For estimating the Green function we use the following lemmas.

Lemma 1. Let \,3 € C?[0,1] and X\, 3 > 0in[0,1]. Then

1

Ky = sup |p| [ |G(z,y,p)|dy < oo, (5.3)

(I)K_ezfgé 0
1

Ky = sup /[ / Gy p)] dy < o0, (6.4
Hers0

K3 = sup \/|p/|G (x,y,p)| dy < o0, (5.5)
Ferso

Ki= s [ [Goyfopp)ldy < oc. (5.6)
0<z<1

Rep>0 ()
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Moreover,
VIpl|G(2,0,p)| < Cre=@VIPIE v e [0,1], Rep >0, (5.7)
VIP[1G (@, 1,p)| < Cae CVIPI=2) yuc[01], Rep>0,  (5.8)

where Cy, Cy, Co, Oy are certain positive constants.

Proof. The assertions (5.3)—(5.6) were proved in [4]. To prove (5.7), (5.8) we
use the following representation for G (see [4]):

1 1 ch(sz) ch(s(1 —w)) + Oy, forz <y
G(z,y;p) =

Co(p) a(z)a(y) | ch(sw)ch(s(l —z)) + O, fory < x.

Here s = 1\/p, Co(p) = —7 sh(s) + O3, a(2) = {/B@)A(x),

v w1 B, [
Z‘l/o Ok 1/0 ! / O

es(l—w+z) es(w+1—z)
=0 (Y 0,=0(£0Y, 0,0t

S S

and

for Rep — 400 holding uniformly in z and y from [0, 1] and Imp € R. Accord-
ing to this representation we have

l ch(s(1—-2))+0O (63(1*2))

S

sa(z)a(0) sh(s) + O (%)

G(z,0,p) = — for Rep — oo,

where the O-terms are uniform in z and Tmp. Since |s| = I/|]p| — oo as
Rep — oo from this relation and the local boundedness of G we obtain the
estimate

|G (x,0,p)| < Cs|s| e **|, for Rep >0, = € [0, 1]

with some nonnegative constant C5. Further, using the definition of » and
. 1 .
the relation Res = [Re\/p > ﬁ\/|p| = ﬁ|s|, which holds for Rep > 0, we

deduce
_ es? _ e—Resz _ e vz*© e—C'Q |plz

<Cy

5] |s] 1/1p]

with some constant Cy > 0. This implies (5.7). The estimate (5.8) can be
proved in a similar manner. B
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Lemma 2. Let \,3 € C?[0,1], \, > 0in [0,1] and v € C*[0,1]. Then

1

sw [VII( [ 060000y + 20)| < Kalvllewo 69)

Rep>0 ﬁ(ﬁ)
0

for all x € (0,1), where K5 is independent of © in every closed subinterval

of (0,1).

Lemma 2 was proved in [4].

6. Analysis of Direct Problem

Let us assume

A\ B € C?0,1], X\ 3> 0;

¢@° given by (4.12) admits the decomposition(4.15), where
B¢ Bi o, and P ¢ Be o, with some ¢ > 1 and « satisfying (5.1); p (6.1)
@' given by (4.14) belongs to B,_1 . ¢ € C'[0,1];

2

v, €C[0,1], k=1,...,Ny, i € C[0,1), 1 =1,..., No.

Lemma 3. Let the assumptions (6.1) hold. If Z = ]E? +V € M., then the

vector function b[Z] = (b°[Z],b'[Z]), given by (4.20), (4.21), belongs to Bo,
and satisfies the estimate

i, < 1+~ (14 + e ) 6:2)

—a Jafl

N
with any o > oo, where C1 is a constant and |c| = Y |ck|. Moreover, for every
k=1

o >0 and Z' = ¢ +Vl Z2 = ¢ +V2e M o the difference b [Zl} —b [Zg]
p p
fulfills the estimate

[b[2"] = b[2%]||, < Co—= V' = V7., (63)

x ‘
\/E
with a constant Cs.

Lemma 4. Let the assumptions (6.1) hold. If Z = Cive M, then the

p
linear operator A[Z] = (A°[Z], AY[Z)), defined by (4.18), (4.19), is bounded in
B, and satisfies the estimate

L+l , IVllaw

o o%

HA[Z]”g(BU) < Cs (6.4)
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for any o > oy with a constant C3. Moreover, taking Z' = ¢ + Vi 72 =
p

¢ +V2%e M., the estimate for difference
b

14121 - A2 s, < ot [V~ V7 (65

[eNes
holds for any o > oy with a constant Cl .

Proofs of Lemmas 3 and 4 are shifted to the appendix of the paper.
Due to Lemmas 3, 4 and the contraction principle equation (4.17) has a
unique solution B = B[Z] € B, provided Z = ¢ +V eM., and 0 > o9
p

satisfy the relation

1 a.o 1
el Vllao 66)

Z = —.
n(Z,0) o oc® T 2Cs

Furthermore, from (4.17) we have
—1
1B[Z]lo < (1 = [ A[Z]| 2(5.))  Ib[Z]]lo-

This in view of (6.2), (6.4) and (6.6) yields the estimate

%—a ga—1

1B[Z]ll, < 2Ch [1 + = ! <|c| + ”V”“’”)] (6.7)

for the solution of (4.17).
Next let us find an estimate for B[Z!] — B[Z?%]. Let ¢ > oo and

70 =S 11 22 = © 1 V2 be such that (6.6) is valid for V replaced by V!
p

D .
and V2, i.e. n(Z7,0) < ﬁ, j = 1,2. Subtracting equation (4.17) for Z = Z?
from the corresponding equation for Z = Z' we have

B[Z'] - B[Z*] = A[2°) (B[Z'] - B[2”]) + (A[Z'] - A[Z%)) B[Z"]
VAR VAL

This implies

1B[ZY] - BIZ%|le < (1 |AIZ%| 2(5,))
x [1A1Z"] = A[Z%)| 2. IBIZ "Il + [B[2"] — b[Z]],] -

Using in this relation the estimates (6.3)—(6.7) we obtain

o= w2252 s (o )]+ )

< [vi-v?,,- (6.8)

Summing up, we have proved the following theorem.
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Theorem 1. Let the assumptions (6.1) hold. Then for any o > o¢ and
Z=£+V€Mc7g, satisfying the inequality (6.6), equation (4.17) has a

unique solution B[Z] = (§0 [Z], Bl[Z]) in B,. This solution satisfies estimate
(6.7). Moreover, for every o > oo and Z' = Ci vt 7?2 = Civee M o
p

p
such that n(Z7,0) < ﬁ, j = 1,2, the difference B[Z'| — B[Z?] fulfills esti-
mate (6.8).

7. Existence and Uniqueness for Inverse Problem

In this section we study the inverse problem in the fixed-point form (4.10)
in the Laplace domain and thereupon infer a result for the inverse problem
(2.1)—(2.5) in the time domain.

Due to the decomposition (4.16) the full Z-free term of the operator F =
(fl, ce ,fN) given by (49) is¥ = (Wl, ceey WN), where

1 ~
50) = To)+ > m(0) [ oGl (1)

and ¥, is defined in (4.10).
Theorem 2. Assume that (6.1) holds and

v € CH0,1), k=1,...,Ny, g € C?0,1],1=1,...,Ny; ¢ € C30,1]. (7.2)
Moreover, let det I # 0 for I, given by (4.6), and

d
V= DY € Mg, (7.3)

with some d € RN . Then there exists o1 > oo such that equation (4.8) has a
unique solution Z = ¢ +V € Mco,, here c=I'"1d.
p

Proof. Setting ¢ = I'"'d and observing (7.1), (7.3), problem (4.8) for Z =
]% + V in M., is equivalent to the following equation for V' in (Aa,o)N'

V=FV), (7.4)
where F = ' Fy,

Fi (V) = Lo(]% TV, B[Z])+L1(£ n v) VYLo(BZ) +Y, (7.5

Ly is the following bilinear operator of Z € M., B = (EO, BY) € B,:
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1
(Lo(Z, B)); sz / G(xi,y. p)vi(y) B (y, p)dy

1
- Z Zk(p)/pGy(ari,y,p)uk_Nl(y)Bl(y,p)dy, i=1,...,N (76)
k=Ni+1 0

and L; and L, are the linear operators of Z € M., and B = (EO, B € B,,
given by the formulae

Ny 1
(p) = ZZk(p){ /pG(xi,y,p)Vk(y)éo(y,p)dy
k=1 0

N

+ / PGy Iu) () dy + e nlepla) )+ 3 4w

«{ / PGl y.2) (s )¢ ) -+ o (e (2)¢ ()
+ i, (0)2 (009G, 0,p) = i, (V¢ (VpGeis 1p) b, i = 1., N,
(7.7)

!’

T=T;

and
1

Z”k /pG i, 4, D) (y) B (y,p) dy, i =1,...,N,(7.8)
0

respectively. We will prove the assertion of theorem using the fixed-point ar-
gument in the following balls:

Daalp) = {V € (Aac)™ : Vllop <}

To this end we first deduce some estimates for Ly, L1 and Lo. Multiplying by
[p|® in (7.6) and estimating we have

Ny o
b (B 4 v,B) ] < Y (1t ZEEE )
k=1

Ip| p|
1

[ 66 u.8)[dy x 1)l cgo bl o, |B(w.p)]

0<y<1
0
- PV
k
+ Z (|Ck|+ | |a 1 > /|G xlayp |dy
k=N;+1
X =i llego P12~ max [B(y, p)\ =1,...,N.

0<y<1
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Using the assumptions (6.1), (7.2), the assertions (5.3), (5.5) of Lemma 1 and

the definition of the norm | - ||, we obtain
o lex] [V 5
b1 | (Zo( + V. 5)) \_Z ( oLt e ) K@l 1B e

s (|c -+ P )K sl 1B lass i = 1o,
k=Nji+1

for Rep > o0, 0 > 09, ¢ € [0,1]. Taking in this relation the supremum over
Rep > o,z € [0,1], observing the relation |p|” > o7 for Rep > o, which
holds in the cases v = 1, o, @ — 1 due to the assumed inequality (5.1) and the
inequality 1/0 < 1, which holds due to o > o9 > 1, we get

VO[U
< Gl + Wlea g, o200, (79)

o,0

(. v:5)
p

s

where Cg is a constant. Similarly, from (7.7) by means of the assertions (5.3),
(5.7), (5.8) and (5.9) of lemmas 1 and 2 we deduce

Ny

o C |ck| HVk”ao K, 50
Ip|* [(L1(=+V)),(p)| < — + ’ [l B
(22 +7)), )] kz_l(m%a = ) = Il

el Vi

k Elle,
+ Ks vl )+ Y (S + )
k=Nj+1 |p|2 V|pl

X (Kall (-329') lenio, + Cilian— v, (0)'(0)] | # e € ol

+ Coluin, (' (V)] JplFe-CVIA0=20) i =1, N, (7.10)

for Rep > o, 0 > 09, « € [0,1]. Let us define k = minN{C'gxi;C'4(1 —xi)}

i=1,...,
Since z; € (0,1),i =1,..., N, we have k > 0. Thus, there exists 5o > o such
that the function x (o) = o2e"V7 is decreasing for o > 5,. Taking in (7.10)
the supremum over Rep > o, x € [0, 1], where o > &¢, observing the relation
Ip|” > ¢” for Rep > o, which holds in the cases v = 3/2 — a, % due to (5.1),
and the monotonicity of x (o) we obtain

VOLO' —
1 E 4V < er(Fh+ ey oza,

where C7 is a constant. Finally, from (7.8) in view of (5.3) we deduce
[L2(B)[la,c < Csl|Bllo, o > 0o, (7.12)

with a constant Cg.
Let us return to the equation (7.4) with the operator F = I' "1 F}, where
F} is given by (7.5). By means of (7.9), (7.11), (7.12) we obtain
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Va0

1 _
IEA(V)llap < Co (147257 ) (B2l +—= ) + ¥ 10, @ = 70, (713)

a,o

with a constant Cy. Further, let us suppose that V € D, +(p), where o > &9
and o, p satisfy the relation

1+|c|+£< 1

— .14
o o® — 2C5 (7.14)

m(p,0) =

Then (6.6) holds, hence we can apply estimate (6.7) of Theorem 1 for | B[Z]]|,-
Plugging (6.7) into (7.13) and estimating ||V |4, by p and observing that
1/03’0‘ < const for o > 57 we have

P
Ua—l

1By < Cro (14 =25) 1V ey (7.15)

a0 —

with a constant C1o. From (7.10) due to the equality F' = I'"'F; and the re-
lation o > 1 we see that for every p > pg := |F’1‘ (Cro+|Y]] there exists

o9 = o2(p) > G such that the inequalities 79(p, o) < ﬁ and [|[FV]|,, <p
hold for any o > o2(p). Consequently,

ao0)

F:Dyo(p) = Dao(p) for p>po and o> o2(p). (7.16)

Next, we prove that F' is a contraction. From (7.5) we have
(V) = (V) = Lo(V = V. BIZ) + Lo(; + V. B[Z] - BIZ))
+ Li(V = V) + Ly(B[Z] - B[Z))
where Z = ]E? +V,Z = ]E? + V. Using here (7.9), (7.11), (7.12) and observing
the inequality 1/y/o < 1/0*~! that holds due to o > 59 > 1 and (5.1), we get

1+ BIZI)NV = V|aw

IA(V) = B (Vo < Cui{ =
1V ]la0

+ (1+ 52 )IBIZ) - BiZllo . 0 2 00, (77)
with a constant C;. Let us suppose that V, Ve Dq,-(p) where o > Gy and
p, o satisfy (7.14). Then we can make use of the estimates (6.7) and (6.8) of

Theorem 1 and we have

I10V) = i)l < Coa{ i (14 = (14 225))

+(1+ P )[i(l—i— ! (1+ 1))+%}|\V—17||a7g.

a-oz—l oo 0'%70‘
In view of the relations 1 < a < 3 the coefficient of ||V — ‘N/||a7g on the
right-hand side of this estimate approaches zero as o — oo for a fixed p > 0.
Hence, for every p > 0 there exists o3 = o3(p) > 7o, such that the inequality

P
oY~
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no(p,o) < 1/2C5 holds and F = I'"'F} is a contraction in the ball D, ,(p)
for p > 0 and o > o3(p). This together with (7.16) shows that equation
(7.4) has a unique solution V in every ball D, ,(p), where p > py and o >
c4(p) = max{oz(p);o3(p)}. This proves the existence assertion of theorem
with o1 = U4(2p0).

It remains to prove that the solution of (7.4) is unique in the whole space
(Aa.o, )" . Suppose that (7.4) has two solutions V' and V2 in (As 4, )" . Let
us define p := max(2po; |V ;||[V?| .. ) and & := max(c1;04(p)). Then
we have ||V7| 4.0, < p, j = 1,2. Since the norm |.| 4., is non-increasing with
respect to o and & > o1, from this relation we derive

a,o1 « (71

[V ao <5 = VI € Dus(p), j=1,2.

But due to p > py and & > 04(p), the uniqueness in the ball D, 5(p) has
already been shown. Thus, V! = V2. Theorem 2 is proved. B

Finally, applying the well-known results about the invertability of the
Laplace transform [3] we deduce the following corollary from Theorem 2.

Corollary 1. Let conditions (4.3) hold yielding the unique initial values n;(0)
for the unknowns nj, k = 1,...,N; from system (4.2). Moreover, let the
assumptions of 2 be satisfied for the functions Mg, p;, ¢ and the quantities
@0, ¢! ¥ given by formulas (4.12), (4.14), (7.1) with (4.10), (4.14) in terms
of the Laplace transforms R, Fy, F», H; of the data of inverse problem (2.1)—
(2.5). Then inverse problem (2.1)—(2.5) has the unique solution (n,m) with
coefficients n; and my, of the form

&+ioco
n;(t) = n;(0) +cjt+2m// 7 (p)dpdr, k=1,... Ny,

1 E+ioco
mk(t) = Ck+Ny + ﬂ €thk+N1(p) dp, k= 17...NQ,
£—i00

where ¢ = (c1,...,cn) €ERN, Z = (Z1,...,Zx) € (Aae), N = Ny + No.

The functions n; are continuously differentiable and m, are continuous for
t > 0. Moreover, n;(0) = ¢;, j = 1,..., Ny and my,(0) = cxyn,, k= 1,..., Na.

8. Appendix

Proof of the Lemma 3  Let us start with the estimation of b°[Z]. Substituting
]% + V for Z in (4.20), multiplying by [p|* and estimating we have

Ny
o 0121 )| < 3 (Il + 2T |/|Ga: v.9)| dy

k=1
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1 ~0 lelleo

X |lvellepo {W |P|O<a§1|B (y,p )|+W
N
|p|*[Vi (p)|
+ Z (|Ck|+||ﬁ Vipl
k=N;+1 P
/ El
@ llclo,1 ol 2

x / |Gy<x,y,p)|dynuk_Nlncm,uW;]+|p| F@p)|. 6

0

Note that (6.1) implies #° € Ba,o, for the function @° defined in (4.22). Using
this relation, the assertions (5.3), (5.5) of Lemma 1 and the definitions of the

norms | - ||4,0, || - || we obtain from (8.1)
o [0 T 1Villoo 1810, lellop
I [0°12)(,p)| <3 (lewl + o052 Kl oo [ Mo + ]
P | |p| |
1€ lco.0) |, (|4
+ Z |l 1 )K3||N NJ\COlWLI]—i—H@O
«@,00

k=Ni1+1

for Rep > o, 0 > 09, = € [0, 1]. Taking here the supremum over Rep > o, x €
[0,1] and observing the relation |p|” > o7 for Rep > o, which holds in the
casesy=a—1,3—a,2—a, 3/2— « due to (5.1), we have

||Vk B0 lellcoa
|11, <Z( e ) Kalbdlewn |t + T
Villow €' ller
+ Z ( + Dl k” )K [y N1H001]701]+H@0
k=Ni+1 N

for o > o¢. Finally, observing that o > o7 for v/ > ~, because 0 > op > 1

we arrive at the relation
C L Y lle,o

||bO[Z]||a,o' — 5 g Z (1) (82)
a'2

«@,00

with a constant Cg depending on K1, K3, v, u, BY, .
Next, we perform similar transformations with 5'[Z] in (4.21) multiplying
by |p|*~ = instead of |p|*. We have

Ny
a1l p|*|Vi(p
7l 2|bl[Z]<x,p>|sz<|ck|+"| 'ljl )\/ /|G (2. ,p)| dy

k=1

1 lellco
X vk o) {WW onax, |B(y,p)| + W}

N
Iplale(p)l) 1
+ Z (|Ck| + |p|oz—1 |p|%7o¢

k=N;+1
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1

§ gg:giggfigi._jfawy@gyﬁﬂukNi@nw%y>dy\+|pf‘%
0

&' (2,)|

Note that (6.1) implies &' € B, 1, for the function ' defined in (4.24).

a—3,00
Thus, using the assertions (5.4) and (5.6) of Lemma 1 and taking the supre-
mum over Rep > o, z € [0, 1] we obtain

HBO lellcroa
il <Y (el + 25 ) a5k Dt
N
+ 50 (lod+ L) Kol leton 5= + 2]
—%,90

k=N;i+1

for o > 0¢. This yields
C V o0
1210 < 2 (1e+ Llme) o @]

with a constant Cy.

In particular, (8.2) and (8.3) imply b[Z] = (b°[Z],b'[Z]) € B, for o > oy
and estimate (6.2). To prove (6.3) we denote Z = Z!' — Z2. Then the com-
ponents b°[Z] and b'[Z] of the vector b[Z] = b[Z'] — b[Z?] are expressed by
the formulas (4.20) with ¢° = 0 and (4.21) with &' = 0, respectively. Using
the estimates (8.2) and (8.3) for the components of b[Z] and observing that
Z=S4Vwithc=0and V = V! — V2 we deduce (6.3). The proof is

p
complete. B

, 0 >0 (8.3)

—31.,00

Proof of the Lemma 4. First we show that the linear operator A[Z] =
(A°[Z], AY[Z]), given by (4.18), (4.19), is bounded in B, and satisfies es-

timate (6.4). From (4.18) by Z = }% +V we get

Ny o "
ol |(4°1218) ()| < 3 (1o + L 1)
Pt Pl

p|? Ip|

< 1ol [ 16,2 dy g o1* g, [B(a.p)

c |*|Vi(p
*EZCH|U@1% /mfwmy

k=N1+1 Pl

% i, oo [Pl max [B' (v, p)\

Using Lemma 1 and taking the supremum over Rep > o, = € [0, 1] we deduce
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Ny
Vi «,o 0 5
iz, < 3 (Ll Wil 4 1O) gy 2]
k=1 ’
V «o,0
S (o Pl ) sl 11,
k=N;+1

for ¢ > 0¢. This due to the relations 02 > ¢ and ¢“*t! > ¢ holding for
o > o0g > 1 implies

0)] + Vla,o
401218, < cw | PO Wes [y, o0,

g%

where C1g is a constant. Further, from (4.19) we derive

@Wl)ﬂﬁ— Om+wuwn+mm%

|p|? |p|ott Ip|

I

X \/Ipl/IGw (@, 9. p)| dy vkl g IP|* max ‘ *(y, p)‘

0<y<1
0

N
Vilp
S <|ck| w) k= llopog

pvn \ [P

1

X)\o

lﬁ

/Iny .y, p)ldy}lpl 3 max |B y,p)| -

Here )¢ := 0r<mr<1 A(z) > 0 because X\ € C[0,1], A(x) > 0, by assumption.

Using Lemma 1 and taking the supremum over Rep > o, z € [0, 1] we get

0)| + Vla,o
HAl[Z]BHa_%’U < Ci1 |:|TL( )(L |C| || UH :| HB” o> oo (8.5)

with a constant C1;.
Putting estimates (8.4) and (8.5) together we have

0)| + Vila,o
IA[Z)B|l, < C1 ['”( )(L e, 1 U” ]|B|| o>00  (8.6)

with a constant C5. Due to this relation A[Z] is bounded in B, and satisfies
estimate (6.4).

It remains to prove (6.5). Denoting Z = Z! — Z? the components A°[Z]
and A'[Z] of the vector A[Z] = A[Z'] — A[Z?] are expressed by the formulas
(4.18) and (4.19), respectively, containing nx(0) = 0. Using the estimate (8.6)

for A[Z] and observing that Z = — + V with ¢ = 0 and V = V! — V2 we
p
deduce (6.5). Lemma, is proved. B
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